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length [F (1,16) = 1.46, p = 0.244] did not differ significantly be-
tween the ARMS subjects who later developed schizophrenia (n =
5) and those who did not (n = 17). These results did not change
even when only antipsychotic-naive ARMS subjects were included
in the analyses. In the ARMS subjects, left olfactory sulcus depth
was negatively correlated with the severity of positive formal thought
disorder (r = —0.709, p = 0.001), but no significant correlations
were found between the sulcus measures and other clinical variables.

To our knowledge, this is the first report to demonstrate altered
depth of the olfactory sulcus in clinical high-risk subjects for psycho-
sis. The olfactory sulcus, which appears in the fetal forebrain at
around 16 weeks gestation (Chi et al,, 1977), relates to olfactory func-
tion in healthy subjects and is usually deeper on the right hemisphere
in association with functional lateralization in the olfactory system
(Hummel et al., 2003). The present and our previous (Takahashi et
al, 2013) MRI findings of olfactory sulcus are thus consistent with
the observation of olfactory deficits in schizophrenia (Cohen et al,,
2012) as well as high-risk subjects for developing psychosis
(Brewer et al,, 2003; Turetsky et al., 2012). Interestingly, Brewer et
al. (2003) suggested that olfactory identification impairment was a
premorbid marker of future conversion to schizophrenia. Although
we failed to find the relation between the olfactory sulcus morpholo-
gy and future transition, the left sulcus depth was associated with
prodromal symptomatology. This lateralized finding might be partly
consistent with the notion that the olfactory sulcus depth only in
the left hemisphere, which is hypothesized to have greater suscepti-
bility to plasticity as compared with right sulcus depth, correlates to
olfactory function in healthy subjects (Hummel et al., 2003). Further
studies should evaluate the sulcus morphology and its relation to
olfactory functioning and clinical features in a larger well-defined
high-risk cohort.
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Early Intervention Practice in Toyama Prefecture : Efforts to Improve the Clinical Service

Tomiki Sumrvosar”, Shimako Nisaryama®, Yuko HigucHr”, Tsutomu TAKAHASHI”,
Tadasu MATSUOKAY, Yasuko MURANAKAY, Masayoshi KURACHIY, Yuko Mizukamr*?,
Satoru KAZUKAWA?, Michio Suzukr”

1) Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and
Pharmaceutical Sciences
2) Toyama Prefectural Mental Health Center

We report our activity in the Consultation and Support Service in Toyama (CAST), a
clinical service provided by the collaboration of Toyama Prefectural Mental Health Center and
University Hospital of Toyama(UHT). About 23% of users diagnosed with at-risk mental state
(ARMS), during October 2006 until March 2012, transitioned to overt schizophrenia. More than
half of the subjects who continued to visit the specialized clinic in UHT were treated with anti-
psychotic drugs. We encountered a case of schizophrenia in which early treatment with an
atypical psychotic drug was effective in normalizing cognitive function and achieving a good
social consequence. The ability of mismatch negativity, an event-related potential, to predict
progression to psychosis in subjects with ARMS is discussed. Further efforts should be
directed towards improving long-term outcomes, such as social function, for users of the
CAST.

< Authors’ abstract>

<Key words : at-risk mental state, prodrome, schizophrenia, early treatment,

mismatch negativity >
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Abstract Schizophrenia (SCZ) is a complex psychiatric
disease with a lifetime morbidity rate of 0.5-1.0 %. To date,
aberrant DNA methylation in SCZ has been reported in
several studies. However, no comprehensive studies using
medication-free subjects with SCZ have been conducted. In
addition, most of these studies have been limited to the
analysis of the CpG sites in CpG islands (CGIs) in the gene
promoter regions, so little is known about the DNA meth-
ylation signatures across the whole genome in SCZ.
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Genome-wide DNA methylation profiling (485,764 CpG
sites) of peripheral leukocytes was conducted in the first set
of samples (24 medication-free patients with SCZ and 23
non-psychiatric controls) using Infinium HumanMethyla-
tion450 Beadchips. Second, a monozygotic twin study was
performed using three pairs of monozygotic twins that were
discordant for SCZ. Finally, the data from these two inde-
pendent cohorts were compared. A total of 234 differen-
tially methylated CpG sites that were common between
these two cohorts were identified. Of the 234 CpG sites, 153
sites (65.4 %) were located in the CGIs and in the regions
flanking CGlIs (CGI: 40.6 %; CGI shore: 13.3 %; CGI shelf:
11.5 %). Of the 95 differently methylated CpG sites in the
CGIs, most of them were located in the promoter regions
(promoter: 75.8 %; gene body: 14.7 %; 3'-UTR: 2.1 %).
Aberrant DNA methylation in SCZ was identified at
numerous loci across the whole genome in peripheral leu-
kocytes using two independent sets of samples. These
findings support the notion that altered DNA methylation
could be involved in the pathophysiology of SCZ.

Keywords Schizophrenia - DNA methylation -
Epigenetic - Microarray - Monozygotic twins

Introduction

Schizophrenia (SCZ) is a mental disease characterized by
auditory hallucinations, delusional ideas, and cognitive
impairments. Its reported lifetime morbidity risk is 7.2 per
1,000 (Bhugra et al. 2005). SCZ is a complex disorder that
results from genetic and environmental etiological influ-
ences, and its heritability is estimated to exceed 80 % (Sul-
livan et al. 2003). Although candidate gene approaches,
genome-wide association studies, and copy number variant
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studies have been carried out for SCZ (Harrison and Wein-
berger 2005; International Schizophrenia Consortium 2008;
Purcell et al. 2009; Rees et al. 2011; Shi et al. 2009; Ste-
fansson et al. 2009), the effects of each individual genetic
factor are not large.

Epigenetics is defined as the study of mitotically or mei-
otically heritable variations in gene function that cannot be
explained by changes in DNA sequence (Petronis et al. 2000).
The 41-65 % concordance rate of SCZ in monozygotic
twins, non-Mendelian inheritance, the presence of sporadic
cases, sexual dimorphism, and parental origin effects suggest
that epigenetic components are involved in the etiology of
SCZ (Cardno and Gottesman 2000). DNA methylation,
which is the addition of a methyl group to the cytosine in a
CpG dinucleotide, is a major epigenetic mechanism, and
attention to its role in SCZ has recently increased. To date,
aberrant DNA methylation in SCZ has been reported in
several studies (Abdolmaleky et al. 2006; Carrard et al. 2011;
Chen et al. 2011; Dempster et al. 2011; Grayson et al. 2005;
Iwamoto et al. 2005; Melas et al. 2012; Mill et al. 2008;
Nohesara et al. 2011). Although antipsychotic drugs are
known to influence DNA methylation (Dong et al. 2008;
Melas et al. 2012; Mill et al. 2008; Shimabukuro et al. 2006;
Tremolizzo et al. 2005), no comprehensive studies using
medication-free subjects with SCZ have been conducted. In
addition, most of previous studies have been limited to the
analysis of the CpG sites in CpG islands (CGIs) in the gene
promoter regions, so little is known about the DNA methyl-
ation signatures across the whole genome in SCZ.

In this study, first, genome-wide DNA methylation pro-
filing (485,764 CpG dinucleotides) of peripheral leukocytes
both in the first set of samples (24 medication-free SCZ
patients and 23 non-psychiatric controls) and in the second
set of samples (3 pairs of monozygotic twins discordant for
SCZ) was conducted. Then, the data from these two inde-
pendent cohorts were compared, and common changes in
DNA methylation between the cohorts were detected.

Materials and Methods
Subjects

For the first set of samples, twenty-four medication-free
patients with SCZ (11 males and 13 females, mean age:
30.9 £ 10.5 y) were recruited from Tokushima and Kochi
University Hospitals in Japan. The diagnosis of SCZ was
made by at least two experienced psychiatrists according to
DSM-IV criteria on the basis of extensive clinical inter-
views and a review of medical records. None of the
patients with SCZ had any psychiatric comorbidity. Among
the twenty-four patients, sixteen of patients had no history
of taking antipsychotics, and of the other eight patients,
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seven had not taken any antipsychotics for at least
2 months. Twenty-three control subjects (10 males and 13
females, mean age: 31.9 &+ 9.7 year) were selected from
volunteers who were recruited from hospital staff, students,
and company employees documented to be free from
psychiatric problems, a past history of mental illness, and
medications. For the second set of samples, three pairs of
monozygotic twins discordant for SCZ were recruited from
Nagasaki University Hospital. All of the twins were males,
and their mean age was 52.7 &= 10.4 year. These three
pairs of twins were also reported in a previous study (Ono
et al. 2010). All affected individuals among the twins were
treated with various psychotic drugs. Demographic data of
all samples analyzed in this study are presented in Sup-
plementary Table S1. All subjects who participated in this
study were of unrelated Japanese origin and signed written
informed consent approved by the institutional ethics
committees of the University of Tokushima Graduate
School, Kochi Medical School, and Nagasaki University
Graduate School of Biomedical Science to participate in
this study.

DNA Methylation Methods

Genomic DNA was extracted from peripheral blood using
the phenol-chloroform method. Bisulfite conversion of
500 ng genomic DNA was performed using the EZ DNA
methylation kit (Zymo Research). DNA methylation level
was assessed according to the manufacturer’s instructions
using Infinium® HumanMethylation450 Beadchips (Illu-
mina Inc.). The technical schemes, the accuracy, and the
high reproducibility of this array have been described in
previous papers (Bibikova et al. 2011; Dedeurwaerder et al.
2011; Sandoval et al. 2011). Quantitative measurements of
DNA methylation were determined for 485,764 CpG
dinucleotides, which covered 99 % of the RefSeq genes
and were distributed across the whole gene regions,
including promoter, gene body, and 3’-untranslated regions
(UTRs). They also covered 96 % of CGls from the UCSC
database with additional coverage in CGI shores (0-2 kb
from CGI) and CGI shelves (2-4 kb from CGI). Detailed
information on the contents of the array is available in the
Infinium HumanMethylation450 User Guide and Human-
Methylation450 manifest (www.illumina.com) and in
recent papers (Bibikova et al. 2011; Sandoval et al. 2011).
DNA methylation data were analyzed with the methylation
analysis module within the BeadStudio software (Illumina
Inc.). DNA methylation status of the CpG sites was cal-
culated as the ratio of the signal from a methylated probe
relative to the sum of both methylated and unmethylated
probes. This value, known as f, ranges from 0 (completely
unmethylated) to 1 (fully methylated). For intra-chip nor-
malization of probe intensities, colored balance and back



Neuromol Med (2013) 15:95-101

97

ground corrections in every set of twelve samples from the
same chip were performed using internal control probes. X
chromosome CpG sites in the CGIs in the AR gene in this
array as well as the internal control probes were checked to
validate the DNA methylation measurements, as done in a
previous study (Siegmund et al. 2007), and large sex dif-
ferences were observed at all of these CpG sites (Supple-
mentary Figure S1).

Statistical Methods

In the first set of samples, surrogate variable analysis (Leek
and Storey 2007) was used to identify CpG loci showing
significant differences in DNA methylation between medi-
cation-free patients with SCZ and the controls. This analysis
is useful in clinical studies, where a large number of clinical
variables, including known and unknown factors, have a
complicated joint impact on microarray data, as applied in
previous studies (Colantuoni etal. 2011; Numata et al. 2012).
A false discovery rate (FDR) correction was applied at the
0.05 level for multiple testing. In the second set of samples, a
paired ¢ test was used to assess the significance of DNA
methylation differences between the affected and unaffected
twin subjects. P values < 0.05 and average DNA methyla-
tion differences between two groups >0.01 were considered
significant differential methylation.

Results

Diagnostic Differences in DNA Methylation Between
Medication-Free Patients With SCZ and Controls

DNA methylation levels were compared between 24
medication-free patients with SCZ and 23 control subjects
using Infinium® HumanMethylation450 BeadChips. Of

A) (B)

485,764 CpG sites, significant diagnostic differences in
DNA methylation were observed at 10,747 CpG sites at
FDR 5 % correction. The top 100-ranking differentially
methylated CpG sites are shown in Supplementary Table
S2.

DNA Methylation Differences in Monozygotic Twins
Discordant for SCZ

Genome-wide DNA methylation profiling of three pairs of
monozygotic twins that were discordant for SCZ using the
same Illumina methylation arrays was also conducted. Of
485,764 CpG sites, significant diagnostic differences in
DNA methylation were observed at 15,872 CpG sites
(P < 0.05 and average Af > 0.01). The top 100 ranking
differentially methylated CpG sites are shown in Supple-
mentary Table S3. In addition, a list of the CpG sites that
showed a Af > 0.3 within each individual twin pair is
shown in Supplementary Table S4.

Common Changes in DNA Methylation in SCZ
Between the Two Independent Cohorts

The data from these two independent cohorts were com-
pared, and a total of 234 differentially methylated CpG
sites that were common between the cohorts were identi-
fied. Of these 234 CpG sites, 215 sites (92.4 %) demon-
strated higher DNA methylation in SCZ compared to
controls. When these 234 differentially methylated CpG
sites were classified into four categories (CGI, CGI shore,
CGI shelf, and others) according to the CpG content in the
genes, 153 sites (65.4 %) were located in the CGls and in
the regions flanking CGIs (CGI shore and CGI shelf)
(Supplementary Table S5). Although the proportions of
CpG sites in the CGIs and in the regions flanking CGIs in
this array were respectively 31 and 33 %, fewer changes in

©

% Promoter
#3'UTR

® CGI shore
# Others

#CGl
#CGI shelf

# Gene body
# Intergenic

# Promoter
#3'UTR

& Gene body
& Intergenic

Fig. 1 The percentage of the CpG sites associated with schizophrenia
(SCZ) between the two cohorts. a The percentage of the CpG sites
associated with SCZ according to their CpG contents in the genes. Of
the 234 CpG sites significantly associated with SCZ, 95 sites (40.6 %)
were located in the CGIs, 31 sites (13.3 %) in CGI shores, and 27

sites (11.5 %) in CGI shelves. b The percentage of the CpG sites -

associated with SCZ according to their location in the genes. Of the

234 CpG sites significantly associated with SCZ, 109 sites (46.6 %)
were located in the promoter regions, 64 sites (27.4 %) in gene
bodies, and 6 sites (2.6 %) in 3'-UTRs. ¢ The percentage of the CpG
sites in the CGIs associated with SCZ according to their location in
the genes. Of the 95 CpG sites significantly associated with SCZ, 72
sites (75.8 %) were located in the promoter regions, 14 sites (14.7 %)
in gene bodies, and 2 sites (2.1 %) in 3’-UTRs
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DNA methylation in SCZ in the regions flanking CGIs
were observed than in the CGIs. Ninety five sites (40.6 %)
were located in the CGIs, 31 sites (13.3 %) in CGI shores,
and 27 sites (11.5 %) in CGI shelves (Fig. 1a). When these
234 differentially methylated CpG sites were classified into
four different categories (promoter region, gene body,
3'-UTR, and intergenic region) according to their location
in the genes, 109 sites (46.6 %) were located in the pro-
moter regions, 64 sites (27.4 %) in gene bodies, and 6 sites
(2.6 %) in 3-UTRs (Fig. 1b). Of the 95 differentially
methylated CpG sites in the CGIs, most of them were
located in the promoter regions. Seventy two sites (75.8 %)
were located in the promoter regions, 14 sites (14.7 %) in
gene bodies, and 2 sites (2.1 %) in 3’-UTRs (Fig. 1c).
Examples include two differentially methylated CpG sites
in the CGIs in the promoter regions in the B3GAT2 and
HDAC4 genes, which have been implicated in SCZ (K&hler
et al. 2011; Kim et al. 2010) (Fig. 2).

Discussion

In this study, first, genome-wide DNA methylation profil-
ing of peripheral leukocytes was conducted in the first set
of samples (24 medication-free patients with SCZ and 23
non-psychiatric controls) using Infinium HumanMethyla-
tion450 Beadchips. To our knowledge, this study is the first
to use medication-free samples with SCZ for DNA meth-
ylation profiling. Second, a monozygotic twin study was
performed using three pairs of monozygotic twins that
were discordant for SCZ. Although DNA methylation is
associated with genotypic variants (Numata et al. 2012), a
twin study is a useful method for investigating DNA
methylation differences between disease phenotypes with-
out the influence of genetic discordance. In fact, this

B3GAT2

first set second set

approach has been applied successfully to identify epige-
netic differences in complex diseases, such as autoimmune
disease, type-1 diabetes, psoriasis, and bipolar disorder
(Gervin et al. 2012; Javierre et al. 2010; Kuratomi et al.
2008; Rakyan et al. 2011). Finally, a total of 234 differ-
entially methylated CpG sites that were common between
the cohorts were identified.

The present study demonstrated that altered DNA
methylation in SCZ occurred at CpG sites not only in the
CGIs but also in CGI shores and CGI shelves. As shown in
Fig. 1, aberrant DNA methylation in SCZ was mostly
observed at CpG sites in the CGIs (40.6 %). Interestingly,
of the 95 differently methylated CpG sites in the CGlIs,
most of them were located in the promoter regions
(75.8 %). Among these 72 differentially methylated CpG
sites in the CGIs in the promoter regions, several genes,
such as B3GAT2, HDAC4, and DGKI, have been impli-
cated in SCZ (Kéhler et al. 2011; Kim et al. 2010; Mosk-
vina et al. 2009). When we compared to previous
methylation studies using peripheral blood samples (Carr-
ard et al. 2011; Chen et al. 2011; Melas et al. 2012), we
could not replicate altered DNA methylation changes in
SCZ in the COMT, HTRIA, and MAOA genes. The lack of
replications between studies may be due to differences in
sample size, CpG sites examined, and the demographical
features of samples (age, sex, race, medications, clinical
subtypes, or illness severity). In particular, antipsychotic
drugs are well known to influence DNA methylation (Dong
et al. 2008; Melas et al. 2012; Mill et al. 2008; Shima-
bukuro et al. 2006; Tremolizzo et al. 2005). Irizarry et al.
demonstrated that altered DNA methylation in cancer
occurred in CGI shores rather than in the CGlIs, and DNA
methylation changes in CGI shores were strongly related to
gene expression (Irizarry et al. 2009). In the present study,
15 differentially methylated CpG sites in the regions

HDAC4

0.12

first set second set

Fig. 2 DNA methylation signatures of two genes (B3GAT2 and
HDAC4). DNA methylation levels are shown on the y-axis. Patients
with SCZ are shown in blue, and the controls are shown in red. The
CpG sites of B3GAT2 (cgl9273746) and HDAC4 (cgl5142485)
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demonstrated significant differences in DNA methylation between
SCZ and controls both in the first set of samples (24 medication-free
SCZ patients and 23 controls) and in the second set of samples
(3 pairs of monozygotic twins discordant for SCZ)
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flanking CGlIs in the promoter regions were identified, and
several genes, such as PCMI and INSIG2, have been
implicated in SCZ (Datta et al. 2010; Gurling et al. 2006;
Lett et al. 2011). However, we did not observe more var-
iable DNA methylation changes in SCZ in the regions
flanking CGIs than in the CGIs. This observation is con-
sistent with the findings of Deaton et al.’s report in the
immune system (Deaton et al. 2011).

The present study also demonstrated that altered DNA
methylation in SCZ occurred at CpG sites not only in the
promoter regions but also in gene bodies. The role of DNA
methylation in gene bodies is still unclear. Shann et al.
demonstrated the correlation between intragenic hypome-
thylation and gene silencing in cancer cell lines (Shann
et al. 2008), and Ball et al. demonstrated that gene body
DNA methylation in highly expressed genes is a consistent
phenomenon in human cells (Ball et al. 2009). Recently, it
became apparent that CGIs in gene bodies act as alternative
promoters (Illingworth et al. 2010; Maunakea et al. 2010)
and that tissue-specific or cell type-specific CGI methyla-
tion is prevalent in gene bodies (Deaton et al. 2011;
Maunakea et al. 2010). In the present study, 14 differen-
tially methylated CpG sites in the CGIs in the gene bodies
were identified. GFRAZ is one such gene of interest. The
GFRA2 protein is a cell-surface receptor for GDNF and
neurturin, and GDNF is a neurotrophic factor of dopami-
nergic neurons. The variants in this gene have been asso-
ciated with tardive dyskinesia in patients with SCZ and
antipsychotic responses in SCZ (Lavedan et al. 2009;
Souza et al. 20104, b).

There are several limitations to the present study. First,
the sample size was not large. Replication studies will be
needed in larger samples, including chronic patients with
SCZ who are taking psychotic drugs. Second, the analyzed
CpG sites were limited in number, although the 450 K
microarray is one of the most powerful and cost-effective
tools currently available for assessing methylation changes.
Third, we demonstrated DNA methylation signatures of
only peripheral leukocytes, not brain tissues. However,
DNA methylation changes in major psychosis in the brain
were also found in peripheral samples in particular genes
(Kaminsky et al. 2012; Kuratomi et al. 2008). Hyperme-
thylation of the RAIl gene in SCZ in our study was also
observed in a previous comprehensive DNA methylation
study using post-mortem brain tissues (Mill et al. 2008).
Finally, it is not possible to differentiate methylation from
5-hydroxymethylation of cytosine, which also plays a
critical role in gene regulation (Bhutani et al. 2011).

In summary, aberrant DNA methylation in SCZ was
identified at numerous CpG sites across the whole genome
in peripheral leukocytes using two independent sets of
samples. Of the differently methylated CpG sites in the
CGIs, most of them were located in the promoter regions.
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These findings support the hypothesis that altered DNA

methylation could be involved in the pathophysiology of
SCZ.
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Introduction

Schizophrenia (SCZ) is a devastating psychiatric disorder with a
median lifetime prevalence rate of 0.7-0.8%.! Elevated plasma
total homocysteine has been suggested as a risk factor for SCZ,*?
and hyperhomocysteinemia has been proposed to contribute to
the pathophysiology of SCZ via various biological effects, such
as a partial antagonist of the glutamate site of the N-methyl-D-
aspartate receptor,’ the interferer of oxygen delivery by damaging
placental vasculature,> DNA damage and cell cytotoxicity,’ neu-
ronal apoptosis® and mitochondrial nitric oxide accumulation.”
Recently, accumulating evidence has shown that DNA
methylation is also implicated in SCZ.2?” As more attention is
paid to DNA methylation, homocysteine has been recognized
as a potentially key substance. Homocysteine is formed during
the methionine cycle, is involved in one-carbon methyl group-
transfer metabolism and acts as a methyl donor when it is con-
verted to S-adenosyl-methionine. Several studies have reported
an association between hyperhomocysteinemia and aberrant
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DNA methylation in several diseases, including atherosclerosis,
osteoporosis, uremia and alcoholism.?*?! Furthermore, Fryer and
colleagues reported a significant correlation between cord blood-
plasma total homocysteine and DNA methylation at numerous
CpG sites.? These studies led us to hypothesize that hyperhomo-
cysteinemia in SCZ might have an impact on the DNA meth-
ylation levels in specific genes. However, to date, there are no
reports that examine the relationship between homocysteine and
genome-wide DNA methylation in SCZ.

To gain further insight into the pathogenic mechanisms that
underlie hyperhomocysteinemia in SCZ, we examined the rela-
tionship between plasma total homocysteine and DNA methyla-
tion patterns in the peripheral leukocytes of patients with SCZ
by using a quantitative high-resolution DNA methylation array.

Results

Differences in plasma total homocysteine between patients
with SCZ and controls. The mean plasma total homocysteine
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level in patients with SCZ (n = 42) was 19.5 + 7.2 nmol/mL
(mean = SD), and the level in the control subjects (n = 42) was
12.4 + 2.9 nmol/mL (mean = SD). The plasma total homocyste-
ine levels of the patient group were significantly higher than those
of the control group (p < 0.0001), as shown in Figure 1.

Relationship between plasma total homocysteine and
genome-wide DNA methylation patterns in patients with
SCZ. Of the 164,657 CpG sites analyzed, significant plasma
total homocysteine-related changes in DNA methylation were
observed at 1,338 sites (p < 0.01). The top 10-ranking CpG
sites significantly associated with plasma total homocysteine are
shown in Table 1, and the top 100-ranking CpG sites are shown
in Table S1. Examples include two CpG sites in the SLCI842
and the GNAL genes (Fig. 2). Both of these genes have been
implicated in SCZ.3%¢ When these 1,338 CpG sites were clas-
sified into four different categories according to their location in
the genes [promoter, gene body, 3'-untranslated regions (UTRs)
and intergenic region], 425 sites (31.8%) were located in the
promoter regions, 414 sites (30.9%) in gene bodies and 34 sites
(2.5%) in 3'-UTRs (Fig. 3A). When these 1,338 CpG sites were
classified into four categories according to the CpG content in
the genes [CpG island (CGI), CGI shore, CGI shelf, and others],
212 sites (15.8%) were located in the CGls, 377 sites (28.2%)
in CGI shores, and 169 sites (12.6%) in CGI shelves (Fig. 3B;
Table S2). Of the significant 212 CpG sites in the CGls, 74 sites
(34.9%) were located in the promoter regions.

Of the 1,338 significant CpG sites, positive correlations of
plasma total homocysteine with DNA methylation were observed
at 580 sites (43.3%), and negative correlations were observed at
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758 sites (56.7%). Positive correlations were found predomi-
nantly at CpG sites in the CGIs. The percentage of the CpG
sites with positive correlations, which were located in the CGIs,
CGI shores, and CGI shelves, were 71.7%, 50.1% and 23.7%,
respectively (Fig. 4).

Discussion

In this study, we demonstrated that patients with SCZ had signif-
icantly elevated plasma total homocysteine levels compared with
the controls’ levels, and this result is consistent with the results
of a previous meta-analysis.> We also performed a genome-wide
DNA methylation profiling of the peripheral leukocytes in the
same subjects with SCZ, and examined the relationship between
plasma total homocysteine and DNA methylation patterns. We
identified plasma total homocysteine-related changes in DNA
methylation at numerous CpG sites. To our knowledge, this is
the first study to examine the relationship between plasma total
homocysteine and genome-wide DNA methylation in SCZ.

The present study demonstrated that significant correlations
between plasma total homocysteine and DNA methylation were
observed at CpG sites not only in the promoter regions but also
in the gene bodies, and 3-UTRs. Thus, plasma total homocys-
teine might affect DNA methylation across whole gene regions.
Furthermore, plasma total homocysteine was significantly corre-
lated with DNA methylation at CpG sites not only in the CGIs but
also in CGI shores and CGI shelves. Consistent with a previous
genome-wide DNA methylation study using cord blood-plasma
total homocysteine,® both positive and negative correlations
between plasma total homocysteine and DNA methylation were
observed in this study. Notably, the proportions of the CpG sites
with positive correlations differed among these three categories
(CGI: 71.7%; CGI shore: 50.1%; and CGI shelf: 23.7%). These
results suggest that plasma total homocysteine might influence
DNA methylation depending on CpG densities.

To date, only one study has examined an association between
homocysteine and DNA methylation in patients with SCZ:
Bromberg and colleagues measured plasma total homocysteine
and global blood DNA methylation in patients with SCZ by using
a modification of the radiolabeled [PH]dCTP-extension assay,
and they failed to find a significant association.!® This result sug-
gests that DNA methylation must be analyzed at a gene-specific
level in studies of SCZ. When we focused on specific genes that
demonstrated significant correlations in our study, several genes
of these genes, such as SLCI842, GNAL, KCNH2 and NTNG?2,
have been implicated in SCZ. SLCI8A2 encodes the vesicular
transporter type2 (VMAT2), which transports monoamines into
the synaptic vesicles.”” Genetic variations of this gene have been
associated with SCZ and cognitive functioning in patients with
psychotic disorder.#3** GNAL encodes guanine nucleotide-
binding protein G subunit o, and altered expression of this gene
in the brain is associated with functional changes of dopamine
D1 recepror.®® This gene is located in the region of chromosome
18p11.2, and this region has been implicated in susceptibility to
bipolar disorder and SCZ 3% KCNH2 is a member of a family

that provides instructions for making potassium channels and
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Table 1. The top 10-ranking of CpG sites significant associated with plasma homocysteine

that modulates neuronal firing. Altered KCNH2 expression in
the hippocampus in SCZ, and a genetic association of this gene
with SCZ and SCZ-related neuropsychological deficits in healthy
subjects have been reported.®*! The NTNG2 gene plays a role
in synaptic formation and maintenance.® Altered the NTNG2
gene expression in postmortem brains in SCZ and the genetic
associations of this gene with SCZ have been reported.

There are several limitations to the present study. First, the
sample size was not large and the risk of potential false-positive
results due to multiple testing must be considered. Replication
studies with larger samples are necessary. Second, the number
of CpG sites that have been analyzed was limited, although the
450K microarray is one of the most powerful tools currently avail-
able for assessing DNA methylation changes. Third, the subjects
analyzed were chronic patients with SCZ who were receiving
treatment with various antipsychotic medications. Antipsychotic
drugs are known to influence DNA methylation status.'*?0:4546
Fourth, some genetic variants, clinical symptoms, and other com-
ponents of the methionine cycle, such as S-adenosyl-methionine,
folic acid, and vitamin B, might be involved in variations of
DNA methylation and plasma total homocysteine.?"#>? Finally,
hyperhomocysteinemia has been identified as an independent
risk factor for several neurological disorders, such as depression
and dementia, in addition to SCZ,>*% so further disease-specific
DNA methylation analysis will be necessary.

In summary, significant correlations between plasma total
homocysteine and DNA methylation were identified at numer-
ous CpG sites in patients with SCZ, and these results suggest that
homocysteine might play a role in the pathogenesis of SCZ via a
molecular mechanism involving alterations to DNA methylation.

Materials and Methods

Subjects. Forty-two male patients with SCZ (mean age: 51.8
+ 6.7 y) were recruited from Tokushima and Kochi University
Hospitals in Japan. The diagnosis of SCZ was made according
to DSM-IV criteria by at least two expert psychiatrists on the
basis of extensive clinical interviews and a review of medical
records. None of the patients had any psychiatric comorbidity
or cardiovascular diseases. All patients were treated with vari-
ous antipsychotic drugs. The mean chlorpromazine equivalent
dose was 829.2 + 498.2 mg/d. Forty-two male control subjects,
well matched for age (mean age: 51.9 £ 5.5 y), were selected
from volunteers who were recruited from hospital staff, students,
and company employees documented to be free from psychiat-
ric problems, past histories of mental illness and medications,
including vitamin supplements. All subjects who participated in
this study were of unrelated Japanese origin. All subjects signed
written informed consent approved by the institutional ethics
committees of the University of Tokushima Graduate School and
Kochi Medical School.

Plasma total homocysteine analysis. Plasma total homo-
cysteine levels were measured by high performance liquid
chromatography. Homocysteine was labeled with 4-fluoro-7-
sulfamoylbenzofurazan and detected by a fluorescent detector
according to the method of previous studies.!
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that covered 99% of the RefSeq genes and
were distributed across whole gene regions,
including promoters, gene bodies, and
3'-UTRs. The arrays also covered 96% of
the CGIs from the UCSC database with
additional coverage in CGI shores (0-2
kb from CGI) and CGI shelves (2—4 kb
from CGI). Detailed information on the
contents of the array is available in the
Infinium HumanMethylation450 User
Guide, HumanMethylation450 mani-
fest (www.illumina.com) and recent
papers’®®® DNA methylation data was
analyzed using the methylation analysis

# CGI
# OGI shelf

# Promoter ® Gene body

#3-UTR

& Intergenic

mCGI shore|

Hothers

module within the BeadStudio software

(Ilumina Inc.). DNA methylation status

of the CpG sites was calculated as the ratio

DNA methylation methods. Genomic DNA was extracted
from peripheral blood using the phenol-chloroform method.

Bisulfite conversion of 500 ng of genomic DNA was per-
formed with the EZ DNA methylation kit (Zymo Research).

DNA methylation level was assessed with Infinjum®

HumanMethylation450 BeadChips (Illumina Inc.) according to
the manufacturer’s instructions. The technical schemes, accu-
racy, and high reproducibility of this array have been described
in previous papers’®*® Quantitative measurements of DNA
methylation were determined for 485,764 CpG dinucleotides
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of the signal from a methylated probe
relative to the sum of both methylated
and unmethylated probes. This value,
known as B, ranges from 0 (completely
‘unmethylated) to 1 (fully methylated).
For intra-chip normalization of the probe
intensities, colored balance and back-
ground corrections in every set of 12 sam-
ples from the same chip were performed
using internal control probes. X chromosome CpG sites in the
CGIs in the AR gene as well as the internal control probes were
checked to validate the DNA methylation measurements, as in
a previous study.” Of the 485,764 CpG sites, the loci that have
B-values of < 0.1 or > 0.9 were eliminated, as in previous stud-
ies.?>° The loci that are potentially confoundable with single
nucleotide polymorphisms with a minor allele frequency of >
0.1 in the HapMap-JPT population were also removed because
DNA methylation is associated with genotypic variants.5' The
final data set includes 164,657 CpG sites.
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Statistical methods. Differences in plasma total homocyste-
ine levels between the two groups were examined using a Mann—
Whitney U test. The influences of plasma total homocysteine on
DNA methylation was examined with a multiple linear regres-
sion analysis adjusted for age and chlorpromazine equivalent
dose as potential confounders, after standardizing DNA meth-
ylation B and plasma total homocysteine values with Z-scores
across the samples.
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