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Adult mouse retinal primary cultures

Adult mouse primary retinal cultures were prepared as previously de-
scribed with minor modifications (Nakazawa et al., 2007a, 2007¢). Six
neural retinas from 8-week-old mice were immediately dissected in
Hank's buffered-saline solution (HBSS) and incubated at 37 °C for
10 min in a CO, incubator in a digestion solution containing papain
(10 U/mL; Worthington, Lakewood, NJ) and 1-cysteine (0.3 mg/mL;
Sigma) in HBSS. Retinas were rinsed and triturated in HBSS containing bo-
vine serum albumin (1 mg/mL; Sigma) and DNase (0.2 mg/mL; Sigma).
Dissociated cells were passed through a strainer (40-pm nylon net;
Falcon, Bedford, MA) and collected by centrifugation. Cells from six
mouse retinas were resuspended in a 1 mL Neurobasal A medium
(Invitrogen) with B27 supplement without antioxidants (NBA/B27A0 —,
10889-038; Invitrogen). The density of retinal cells in the suspension
was counted and the cells were seeded to each well of an 8-well chamber
(4x10* cells per well, Nunc, Naperville, IL, USA). The total volume in
each well was increased to 400 pL with NBA/B27A0 — or NBA/
B27A0 + (antioxidant cocktail = vitamin E, vitamin E acetate, su-
peroxide dismutase, catalase and glutathione; B27, 17504-044;
Invitrogen), 1 pg/mLinsulin, 2 mM L-glutamate and 12 pg/mL genta-
micin with or without 45 mM p-glucose. The cells were further incu-
bated for 24 h with 5% CO, at 37 °C with or without 40 uM of
SNJ-1945. Cells were then gently washed with PBS and fixed with
4% PFA for 10 min at room temperature. To assess the viability of
RGCs, we performed immunocytochemistry (ICC) with mouse anti-
BIII tubulin antibody, an RGC marker. The cells were permeabilized
with 0.1% Triton X-100 in PBS for 5 min and incubated in a blocking
buffer for 30 min at room temperature. Cells were then incubated
with a monoclonal anti-RIIl tubulin antibody (1:400 dilution, Sigma)

at 4 °C overnight, rinsed (PBS 3%, 5 min), incubated with goat
anti-mouse secondary antibody (1:200, Alexa Fluor-488; Molecular
Probes, 1 hr at room temperature) and rinsed again (PBS 3x, 5 min).
Eight-well chamber slides were mounted with a Vectashield mounting
medium with DAPL Controls were treated similarly, except without the
primary antibody. Samples were arranged in a pseudo-randomized
manner on the plates so that the investigator would not be aware of
their identity when quantifying BIII tubulin-positive RGCs. To quantify
the PIII tubulin-positive RGCs, 10 random images per well were cap-
tured using a fluorescent microscope (20 x objective) equipped with a
digital imaging system. Subsequently, the RIII tubulin-positive cells
were counted using the IMAGE] software. We repeated these cultures
four times; values represent the mean 4- SEM of four replicate wells.

Statistical analysis

All data were expressed as mean 4= SD. The values were processed
for statistical analysis with one-way ANOVA followed by Tukey's post
hoc test (JMP, SAS institute, Mac ver.). Differences were considered
statistically significant at p<0.05.

Results
Induction of hyperglycemia via HFD and STZ

Mice treated with STZ (40 mg/kg, 5 shots/5 days) and fed a HFD
showed a significant decrease in body weight, increase in blood
sugar levels, and levels of HbA;c (S. Fig. 1). This was true for
STZ-treated wild-type, CAST KO, and Nrf2 KO mice compared to
age-matched citrate buffer control mice (S. Fig. 1A-D, B-E, C-F).
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Fig. 3. SNJ-1945 prevented RGC and axonal degeneration in wild-type and CAST KO mice after four weeks of HFD- and STZ-induced hyperglycemia. (A, D upper panels) Represen-
tative photographs (wild-type and CAST KO mice, respectively) of FG-labeled RGCs in flat-mounted retinas with or without SNJ-1945 (100 mg/kg/wt). (A, D lower panels) Repre-
sentative photographs (wild-type and CAST KO mice, respectively) of micro-sectioned samples of the optic nerve axons. (B, E) Bar charts showing quantitative data of the density of
FG-labeled RGC in wild-type and CAST KO mice, respectively. (C, F) Bar charts showing quantitative data of axon density in the three different conditions, for wild-type and CAST KO
mice, respectively. SNJ-1945 had a significant neuro-protective effect on HFD- and hyperglycemia-induced RGC death and axonal degeneration. N.S.: no significance. *p<0.01,

**p<0.001, ***p<0.0001 vs. control.
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HbA;c was significantly higher in the mice treated with STZ or
SNJ-1945 than in the control mice (S. Fig. 1G, H, I). These data suggest
that modification of either calpastatin or Nrf2 does not influence
HFD- and STZ-induced hyperglycemia.

HFD- and hyperglycemia-induced RGC death through calpain activation

To investigate the cytotoxic effects of HFD- and STZ-induced hyper-
glycemia, the density of surviving FG-labeled RGCs was verified at zero,
two, three, and four weeks after STZ and in the control group, which re-
ceived a citrate buffer treatment (Fig. 2). The control group (treated
with citrate buffer) experienced no significant change in the density
of positive FG-labeled RGCs, but the STZ-treated wild-type mice experi-
enced a significant decrease in the density of FG-labeled RGCs begin-
ning at 3-weeks (3092 4+ 204 cells/mm?, p=0.0002) compared to the
control (4041 4142 cells/mm?) at the same time mark. RGC density
continued to decline, and at 4-weeks, the percentage of RGCs that sur-
vived in the STZ-treated mice was 62.0% (2661240 cells/mm?,
p<0.0001) compared to the control mice (40314 330 cells/mm?). In
STZ-treated CAST KO mice, interestingly, the time scale was different.
After only 2-weeks, the density of RGCs was significantly lower
(2807 £ 150 cells/mm?, p<0.0001) than in the STZ-treated wild-type
mice (41544222 cells/mm?) (Fig. 2B). These data suggest that
calpain plays an important role in the pathogenesis of RGC death
in hyperglycemia-induced retinopathy, and that calpastatin, an
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endogenous calpain inhibitor, has a limited ability to suppress
calpain activation in the retinas of the wild-type mice.

Calpain had a neurotoxic effect on HFD- and hyperglycemia-induced RGC
death and axonal degeneration

To investigate whether calpain activation played a role in HFD-
and hyperglycemia-induced degeneration of RGCs and their axons,
we sampled the retina and optic nerve 4-weeks after STZ treatment.
The density of positive FG-labeled RGCs was significantly lower
(2985 + 345 cells/mm?, p<0.0001) in the wild-type mouse vehicle
(STZ-CMC) group compared to the control group treated with citrate
buffer (4289 + 330 cells/mm?). Orally administered SNJ-1945 signif-
icantly (4051 4 269 cells/mm?, p<0.0001) suppressed the degenera-
tion of RGCs (Fig. 3A, upper panel, B) compared to the vehicle group.
Concomitantly, axonal degeneration was significantly (40,072 +
1192 axon/mm?, p<0.0001) suppressed in STZ-SNJ-1945 treated
mice, compared to the vehicle group (23,656 + 1798 axon/mm?)
(Fig. 3A, lower panel, C). In the CAST KO mice, the density of RGCs
degenerated significantly (2580 + 271 cells/mm?, p<0.0001) in the
vehicle group compared to the control group mice (38904461
cells/mm?). SNJ-1945 was also able to suppress the degeneration of
RGCs (3959275 cells/mm?, p<0.0001) (Fig. 3D, upper panel, E)
and their axons (28,7424 1427 axon/mm?, p<0.0001) (Fig. 3D,
lower panel, F) compared to the vehicle group. These data showed
a coincident degeneration of both RGCs and their axons after
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Fig. 4. Calpain-1 but not calpain-2 was activated in HFD and STZ-induced hyperglycemia. (A-B wild-type mice; C-D CAST KO mice) Bar charts showing the quantitative data from
qRT-PCR in the neural retina with specific primer sets for calpain-1 and calpain-2 4-weeks after HFD- and STZ-induced hyperglycemia (n =6 each condition). N.S.: no significance.
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4-weeks of HFD- and STZ-induced hyperglycemia. Combined with
higher neuro-degeneration in the CAST KO mice compared to the
wild-type mice, this indicated that calpain is a leading cause of RGC
death in HFD-hyperglycemia induced retinopathy, and that SNJ-1945
protected RGCs and their axons in both diabetic wild-type and CAST
KO mice.

HFD- and hyperglycemia-induced calpain activation in mouse retinas

To investigate the role of the calpain pathway in the retina, we
evaluated the gene expression in our model of calpain-1 and
calpain-2 in the retina 4-weeks after treatment with STZ in mice fed
a HFD. qRT-PCR data showed that there was a significant increase in
the mRNA expression of calpain-1 levels in STZ-treated animals of
both wild-type (p=0.023) and CAST KO (p=0.005) compared to
those treated with citrate buffer (Fig. 4A, C). Orally administrated
SNJ-1945 significantly suppressed the upregulation of gene expres-
sion of calpain-1 in both wild-type (p=0.023) and CAST KO mice
(p=0.005) compared to STZ-treated ones, almost bringing them
back to normal. However, there was no significant difference in the
gene expression of calpain-2 compared to the control in either treat-
ed group (Fig. 4B, D). These data showed that gene upregulation of
calpain-1, but not calpain-2, was responsible for inducing RGC toxic-
ity in our diabetic model, and that the gene expression of calpain-1
was downregulated by the administration of SNJ-1945.

Cleavage of a-fodrin targeted ganglion cell death was suppressed with
SNJ-1945

Since expression of the calpain-1 gene was up-regulated, we tried to
determine whether cleaved o-fodrin could be detected in the retina

A

4-weeks after treatment with STZ. Immunoblot analysis demonstrated
that cleaved a-fodrin was significantly increased in STZ-treated wild-
type (p=0.029) and STZ-treated CAST KO mice (p=0.024) compared
to a citrate buffer-treated control group (Fig. 5A-B wild-type, C-D
CAST KO). We next tried to modify the status of the activated calpain
by orally administering SNJ-1945 at 100 mg/kg/day in our diabetic
mice. The level of band intensity of cleaved «-fodrin decreased after
SNJ-1945 treatment in the wild-type and CAST KO mice (p=0.981,
0.937 respectively), approaching the control groups (Figs. 5A-B, C-D).
These data suggest that activated calpain-1 in STZ-treated animals led
to autolytic cleavage of a-fodrin into its large pro-apoptotic products
at 150 kDa, which induced RGC death. SNJ-1945 was able to suppress
the band intensity of cleaved fodrin, bringing it close to normal.

Reduction of RGC density and synaptophysin in the diabetic retina was
reversed by SNJ-1945

To understand the underlying mechanism of how calpain activa-
tion led to RGC degeneration in our diabetic mouse model, having al-
ready determined the cause of axonal degeneration, we evaluated the
expression of C38 (MB88), an antigen that is specifically expressed in
RGCs (Wakabayashi et al., 2010). We also evaluated their cell trans-
duction by examining synaptophysin, a synaptic vesicle protein abun-
dant in the inner retinal neurons (Kurihara et al., 2008). RGC count
was significantly decreased in the STZ-treated groups compared to
the control citrate buffer groups and STZ-SNJ-1945 groups (Fig. 6A—
left panels, C). Interestingly, synaptophysin protein levels also de-
creased significantly in retinas with hyperglycemia compared to the
control (Fig. 6E), especially in the inner plexiform layer (IPL), at the
four-week point of the experiment (Fig. 6A—right panels). SNJ-1945
significantly blocked the decrease of synaptophysin protein in the
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Fig. 5. SNJ-1945 suppressed the cleaved c«-fodrin of HFD and STZ-induced hyperglycemia. (A, C) Photographs representing immunoblot analysis. They show the band density of
cleaved «-fodrin 4-weeks after the induction of diabetes. (B, D) Quantitative data for the bands representing cleaved fodrin (n=4 each group) in wild-type (B) and CAST KO
(D) mice. The cleavage of fodrin into its pro-apoptotic products at 150 kDa is generated through the activation of calpain, which was suppressed significantly with SNJ-1945,
The density values of cleaved a-fodrin were normalized to density values of 3-tubulin. N.S.: no significance. *p<0.05, **p<0.01 vs. control.
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retina (Fig. 6D-E). These data suggested that a loss in synaptic vesicle SNJ-1945 suppresses oxidative stress-induced RGC death in vivo
input might occur in DR, linked to calpain activation. SNJ-1945 admin-

istration rescued RGCs and their synapses from diabetic pathological We next investigated the role of oxidative stress in inducing RGC
changes. death, including the role of calpain activation. We induced hyperglycemia
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Fig. 6. SNJ-1945 prevented the HFD- and hyperglycemia-induced reduction of RGC and synaptophysin. (A) Representative photomicrographs of retinal sections immunostained
with antibody against C38 (upper left panels), synaptophysin (upper right panels) and double labeling (overlap) with DAPI nuclear staining. The yellow arrowheads show a coin-
cident decrease in both positive C38 RGC expression (left middle panel) and synaptophysin (right middle panel), and immunoreactivity in the inner plexiform layer (IPL) in the
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data for the number of positive C38 RGCs (n=16 in each condition). (D) Representative photographs of immunoblot analysis with synaptophysin (Syn: upper panel) and
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in Nrf2 KO mice fed a HFD and over the course of 4-weeks (Fig. 7). Nrf2 is
a key transcript factor for the expression of antioxidant genes, such as
glutathione and HO-1, and protects against oxidative stress. Our data
showed a significant decrease in the density of FG-labeled RGCs at
week four in STZ-treated Nrf2 KO mice (23124212 cells/mm?,
p<0.0001), compared to wild-type mice treated with citrate buffer
(37464115 cells/mm?) (Fig. 7A-B). The survival rate of RGCs was
58.2% at week four, suggesting that oxidative stress is also involved in
the pathogenesis of hyperglycemia-induced RGC death. Since it has
been reported that oxidative stress increases intracellular free Ca®*
levels, and activates Ca?*-dependent enzymes (Ray et al., 2000), we
evaluated calpain status in Nrf2 KO mice retinas at the four week mark
of the experiment by investigating the state of a-fodrin. Immunoblot
analysis demonstrated that cleaved «-fodrin increased significantly in
STZ-treated mice (p=0.004) compared to animals treated with the cit-
rate buffer. The cleavage of fodrin was significantly (p =0.004) reduced
in STZ-treated mice with administration of SNJ-1945 compared to vehicle
groups (Fig. 7C-D). Interestingly, SNJ-1945 also significantly suppressed
RGC death after just 2-weeks of administration (Fig. 8A-B). These data
revealed that oxidative stress is involved in inducing RGC death in our di-
abetic model, and that SNJ-1945 can significantly suppress RGC degener-
ation by preventing subsequent calpain activation (Fig. 1).

Hyperglycemia-induced RGC death was mediated by oxidative stress and
the SNJ-1945 had a neuroprotective effect in vitro

Measuring free radicals in animal models is difficult because of their
transient nature, but since the production of free radicals is closely
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associated with hyperglycemia in cell culture models (Mullarkey et al.,
1990), we tried to evaluate the state of oxidative stress on cultured
RGCs (Fig. 9) in a high-glucose culture medium, using an anti-oxidant
supplement with or without SNJ-1945. In a high glucose culture medi-
um without an anti-oxidant supplement, the density of surviving
plil-tubulin (+) RGCs decreased significantly (1.140.5%, p<0.0001)
compared to cultures treated with anti-oxidants (6.3 £ 1.2%). SNJ-1945
(40 pM) significantly suppressed RGC death (4.540.3%, p<0.0001)
(Fig. 9A-B). When anti-oxidants and SNJ-1945 were combined, there
was a significant (8.6 4 0.6%, p=0.0271) additive neuro-protective ef-
fect compared to cultures treated with only anti-oxidants. These data
give clear evidence that calpain and oxidative stress participate in
hyperglycemia-induced RGC death. Together, anti-oxidants and calpain
inhibitors provide potent neuroprotection against hyperglycemia-
induced RGC toxicity.

Discussion

RGCs are the main output neurons in the retinal visual pathway
and direct dysfunction of RGCs influences a patient's visual function.
Thus, RGCs are an important cellular target for neuro-protective
treatment to prevent blindness in patients with DR. This study was
designed to investigate the neurotoxic effect on RGCs of combining
a high fat diet (HFD; as a source of lipid peroxidation) (Park et al.,
2010), and hyperglycemia, induced by frequent low doses of STZ.

Our data showed that a HFD and hyperglycemia caused a signifi-
cant increase in RGC degeneration, including the synapse and axon,
at the four-week mark of the experiment. In CAST KO mice, which
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Fig. 7. Nrf2 deficiency in mice treated with STZ induced RGC degeneration; SNJ-1945 prevented cleavage of fodrin. (A) Representative photos of fluorogold (FG)—back labeled RGCs
in flat-mounted Nrf2 KO mouse retinas after 4-weeks. (B) Quantitative data for FG-labeled RGCs (n=6 each time point). (C) Photographs of immunoblot analysis, showing that
band intensity was significantly up-regulated in STZ-treated mice compared to mice treated with citrate buffer and SNJ-1945. (D) Bar chart showing the band density of cleaved
fodrin (n=4 each group), normalized to the density of 3-tubulin. N.S.: no significance, *p<0.05, **p<0.001, ***p<0.0001 vs. control. Circles = control, triangles = STZ.
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are susceptible to calpain activation, hyperglycemia-induced RGC
death was higher earlier on, at the two-week mark, compared to
wild-type mice (Fig. 2B). These results indicate that calpain plays an
important role in RGC degeneration.

The percentage of surviving RGCs in wild-type and CAST KO mice
is close in week four, but this may be explained as calpastatin showed
only a limited, weak neuroprotective effect; it suppressed RGC death
during only the first 2-weeks following STZ induction in wild-type
mice fed a HFD. Noting this, we attempted to suppress calpain activa-
tion by using a more potent exogenous calpain inhibitor, SNJ-1945, an
«-ketoamide derivative containing a secondary amine in place of the
cyclopropyl ring. This increases the potency of calpain inhibition by
ten times (Cuerrier et al, 2006), with the advantage that it can
cross the blood-retinal barrier (Shirasaki et al., 2006). However, it
shows a protective effect on cultured human retinal endothelial
cells (Ma et al., 2009). After induction of hyperglycemia, RGC and ax-
onal degeneration was successfully prevented by SNJ-1945 4-weeks
into the experiment (Fig. 3).

It has been reported that mRNA expression of calpain is correlated
with its activity (Li et al., 2009; Muroya et al.,, 2012). SNJ-1945 was
able to suppress mRNA overexpression of calpain-1 in our diabetic
model (Fig. 4), which may be explained by the changing shape of
calpain shifting domains to form an active compact structure, affect-
ing mRNA expression (Suzuki et al., 2004). However, SNJ-1945 pre-
vents these structural changes, and is thus responsible for keeping
mRNA expression of calpain-1 close to normal.

Arecent publication by our team concluded that orally administered
SNJ-1945 protects against RGC degeneration induced by optic nerve
crush and vinblastine in an in vivo mouse model (Ryu et al, 2011).
Those types of axonal damage induced rapid RGC loss in the first
7-days, with a mitochondrial-dependent cell death pathway as a re-
sponse to a rapid disintegration and alternation of axoplasmic flow
(Knoferle et al., 2010). However, in glaucoma, RGC degenerate specifi-
cally from axonal damage in the lamina cribrosa on the optic nerve
(Kerrigan-Baumrind et al., 2000). In this study, we tried to explore the
mechanism of ganglion cell death in hyperglycemia-induced retinopa-
thy by investigating both, their axons and synapsis. Interestingly, our
data had shown a coincided degeneration of RGCs and their synapsis,
a synaptic vesicle protein abundant in the inner plexiform layer (IPL),
mainly representing synapses related to ganglion cells, and responsible
for signal transduction, suggested that impairment on synaptic signal is
involved in RGC death in early stages of DR, together with axonal de-
generation. However, it is still unclear whether synaptophysin degrada-
tion precedes cell body deaths. In any case, oral administration of
SNJ-1945 had a significant preventive effect against diabetic changes
to RGC synapses (Fig. 6D-E).

In many studies, the common way of assessing the autolytic activity
of calpain is through measuring its substrates (c-fodrin), and its
break-down end products (Kampfl et al., 1996; Nakazawa et al., 2009;
Nath et al., 1996). Our model and data showed that pro-apoptotic end
products of cleaved a-fodrin at 150 kDa, which had been up-regulated
in STZ-treated wild-type, CAST KO and Nrf2 KO animals, were signifi-
cantly reduced by oral administration of SNJ-1945 (Fig. 5, 7C-D). This
reveals that cleavage of fodrin was involved in the mechanism of RGC
death in our diabetic mouse models.

In our investigation of the role of oxidative stress in our experiment,
we induced hyperglycemia in Nrf2 KO mice, which are susceptible to
oxidative stress. We found that HFD- and hyperglycemia-induced RGC
deaths were significantly augmented in Nrf2 KO mice, and decreased
significantly by SNJ-1945 (Fig. 7A-B, 8 A-B). Previous reports have
documented that oxidative stress increases intracellular free Ca*™
levels, and activates Ca?*-dependent enzymes (Ray et al., 2000). In re-
sponse, we evaluated the link, if any, between oxidative stress and
calpain activation in a high glucose culture medium with or without an-
tioxidants in an in vitro retinal experimental model (Fig. 9). Our data
has shown a significant neurodegenerative influence of RGCs 24 hr

after incubation in a high glucose (45 mM bp-glucose) culture without
antioxidant (AO —), compared to those treated with antioxidant supple-
ment (AO + ). These results suggested that oxidative stress was induced
in high glucose culture medium and participated in pathogenesis of
RGCs death. Then, we evaluated the condition of the high glucose culture
medium with (40 pM) SNJ-1945. It has significantly protected RGCs
against high glucose-induced oxidative stress, when compared to the
non-treated groups (Fig. 9B). The neuroprotective effect of SNJ-1945
was weaker than that of the antioxidants in vitro because the antioxi-
dants were a mixture of potent antioxidant compounds. This does not
imply that activation of the calpain-signal was not involved in the RGC
death. However, the influence which SNJ-1945 inhibits in high-glucose
conditions, and in the presence of antioxidants, may be a remnant of ox-
idative stress that has not been canceled by the antioxidants, or may be
another cell death pathway (i.e. ER stress). These data suggest that
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oxidative stress induced by hyperglycemia is involved in the pathogen-
esis of RGC death, and that calpain inhibitors have the potential to pro-
tect RGCs against hyperglycemia-induced RGC toxicity.

At the cellular level, the mechanism of RGC death in our diabetic
model is hypothesized to be due to hyper-excitability of the cell mem-
brane, which occurs in hyperglycemia and leads to cell membrane de-
polarization and a Ca?" influx through the voltage sensitive Ca®™
channel. Once inside the cell, the excitation of ER and mitochondria

through an increase in oxidative stress hints at a release of more intra-
cellular Ca®*. Subsequently, calpain activation and cleavage of ci-fodrin
into pro-apoptotic end products will lead to cell deaths (Fig. 1).

In conclusion, calpain plays a curtailed role in HFD-induced RGC
death caused by hyperglycemia and oxidative stress. Inhibition of
calpain and the administration of antioxidants have the potential to
prevent neuronal dysfunction in the early stages of vision threaten-
ing DR.
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