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ABSTRACT

The design of drug delivery systems that can deliver multiple drugs to the posterior segment of the eye is
a challenging task in retinal disease treatments. We report a polymeric device for multi-drug transscleral
delivery at independently controlled release rates. The device comprises a microfabricated reservoir, con-
trolled-release cover and three different fluorescent formulations, which were made of photopolymeized
tri(ethyleneglycol)dimethacrylate (TEGDM) and poly(ethyleneglycol)dimethacrylate (PEGDM). The
release rate of each fluorescent is controlled by varying the PEGDM/TEGDM ratio in its formulation
and the cover. The release kinetics appeared to be related to the swelling ratio of the PEGDM/TEGDM
polymers. When the devices were implanted onto rat sclerae, fluorescence was observable in the ocular
tissues during 4 weeks’ implantation and distributed locally around the implantation site. Our polymeric
system, which can administer multiple compounds with distinct kinetics, provides prolonged action and
less invasive transscleral administration, and is expected to provide new tools for the treatment of pos-
terior eye diseases with new therapeutic modalities.

© 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Diseases of the posterior eye segments cause impaired vision
and blindness for millions of patients around the world [1]. There
has been an increase in the understanding of the disease processes,
and multiple factors have been reported to play a role in the dis-
eases [2-4]. Thus, multi-drug therapy has become the primary
method of disease management, because it offers the major advan-
tages of enhanced efficacy of treatment, reduction of each drug
dose, and mitigation of toxicity and side-effects caused by high
doses of single drugs [5-7]. Multiple drugs have been used to treat
patients with glaucoma [5,6] and to suppress choroidal neovascu-
larization in patients with age-related macular degeneration
(AMD) [7]. The regulation of neovascularization has received much
attention, and it is now known that its balance is maintained by
more than two dozen cytokines [8]. Thus it would be more effec-
tive and reasonable to use a number of drugs to treat such disease
processes. Some techniques and novel pharmacological agents

* Corresponding author. Tel./fax: +81 22 717 8234.
E-mail address: toshi@oph.med.tohoku.ac.jp (T. Abe).

offer promise for the future treatment of posterior eye segment
diseases [9-11]. However, the successful treatment of some retinal
diseases has been limited. The limitation may be partially related
to inadequate drug delivery systems for the retina, including mul-
tiple drug administration.

The principal route for local ophthalmic drug delivery remains
topical application [12]. However, drug delivery to intraocular tis-
sue by this approach is limited by the significant barrier of corneal
epithelium and tear fluid turnover [13]. Systemic drug administra-
tion is not a viable alternative due to the blood-retinal barrier that
limits drug access to the posterior tissues of the eye. Although
intravitreal injections and intraocular implants may deliver drugs
effectively to the retina and choroid, this approach is invasive to
the eye and may cause severe adverse effects, such as endophthal-
mitis and retinal detachment [14]. Periocular or transscleral routes
are less invasive than intravitreal administration and provide high-
er retinal and vitreal drug bioavailability (~0.01-0.1%) compared
to eye drops (about 0.001% or less) [15,16]. Due to the high degree
of hydration and low cell density of the sclera, soluble substrates
readily pass through the sclera, although the ease of penetration
of the drug to the vitreous cavity is dependent on the thickness

1742-7061/$ - see front matter © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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of the sclera [17]. Thus transscleral delivery has the potential to be
a more effective and less invasive route for intraocular drug
delivery.

Several potential carriers for ocular drug delivery such as mi-
celles [ 18], microneedles [19], nano- or microparticles [20,21], lip-
osomes [22,23] and hydrogel systems [24,25] have been
investigated. All the systems are injectable for localized and tar-
geted delivery of drugs to the desired site and biodegradable to
avoid a second procedure for implant removal. However, release
profiles for biodegradable systems are generally complex with
burst effects, i.e. an initial burst, a diffusional release phase and a
final burst [26]. Additionally, the release period of such biodegrad-
able systems is limited to less than 2 weeks [25]. In chronic eye
diseases such as AMD and retinitis pigmentosa, duration of effect
with controlled drug release is critical. Although several systems
for multi-drug delivery have been developed [27-32], there are
none intended for ocular multi-drug delivery.

In this work, we manufactured a polymeric device for multi-
drug transscleral delivery to the posterior segment of the eye at
independently controlled release rates (Fig. 1). The device
comprises a microfabricated reservoir, controlled-release cover
and drug formulations, which were made of photopolymeized
tri(ethyleneglycol)dimethacrylate (TEGDM) and poly(ethylenegly-
col)dimethacrylate (PEGDM). Here, we show that the release of
multiple drugs can be tuned by changing the formulations of the
drug as well as the covering, and demonstrate the transport of
drugs into the ocular tissue in rats using fluorescents.

2. Materials and methods
2.1. Materials

PEGDM (Mn 750), TEGDM (Mw 286.3) and 2-hydroxy-2-meth-
ylpropiophenone were purchased from Aldrich (USA). Poly-
dimethylsiloxane (PDMS), fluorescein (FL, Mw 332.31),
rhodamine-B (Rho, Mw 479.02) and 4,6-diamidino-2-phenylindole
dihydrochloride (DAPI, Mw 350.25) were purchased from Wako
(Japan).

2.2. Device fabrication

The device consists of a reservoir that can contain different
types of sustained release formulations and is sealed with a con-
trolled release cover (Fig. 1c). PEGDM and TEGDM including 1%
2-hydroxy-2-methylpropiophenone as a photoinitiator were used

TEGDM

reservoir

for device materials. For the preparation of the reservoir, TEGDM
prepolymer was poured into the PDMS mold fabricated via a
microfabrication technique using a microprocessing machine
(MicroMC-2, PMT Co.) (Supplementary Fig. S.1), and photopoly-
merized for 3 min with UV light (HLR400F-22, Sen Lights) at an
intensity of 7.4 mW cm™2. After loading the drugs, a reservoir cover
was prepared by applying a prepolymer mixture of the required
concentrations of PEGDM and TEGDM to the reservoir, followed
by UV curing for 3 min. For the preparation of the fluorescent for-
mulations, the fluorescents were combined with a mixture of a
predetermined ratio of PEGDM and TEGDM and poured into PDMS
molds and photopolymerized for 3 min. All fluorescent formula-
tions had a fluorescent concentration of 50 mg ml~! and the vol-
ume was 1.2 pl (60 pg) or 0.4 ul (20 pg) for single-fluorescent
delivery or multi-fluorescent delivery devices, respectively. The
dimensions of the device were 2 mm x 2 mm x 1 mm (external)
and 1.55mm x 1.55mm x 0.5 mm (internal; maximum loading
volume, 1.2 pl). PEGDM/TEGDM prepolymer mixture ratios of
100%/0%, 80%/20%, 60%/40%, 40%/60%, 20%/80% and 0%/100% were
designated as P100, P80, P60, P40, P20 and PO, respectively.

2.3. Characterization of diffusion mechanism through the
PEGDM/TEGDM system

The permeability of FL in phosphate-buffered saline (PBS)
(0.5mgml~!, 20ul) through the PEGDM/TEGDM reservoir
(4 mm x 4 mm x 1.5 mm, internal) was assessed by monitoring
the increase in fluorescence in the external PBS (1 ml) solution
with time (n = 5). To characterize the diffusion mechanism through
the PEGDM/TEGDM system, we determined the swelling ability of
the PEGDM/TEGDM polymers. The samples (size: 5 mm x 5 mm x
2 mm) with various PEGDM/TEGDM ratios were weighed in air be-
fore (W;) and after (W,) immersion for 24 h in 10 ml of PBS, and
the swelling ratio (W,/W}, x 100) was calculated (n=5).

2.4. In vitro release study

For the single delivery study, FL was pelletized with P60 and
loaded in the device, followed by sealing with P100, P60 or P40
covers. For the multiple delivery, three types of fluorescents, FL,
Rho and DAPI, were pelletized each with different ratios of
PEGDM/TEGDM and loaded in the device, followed by sealing with
P100 or P60 covers. The devices were each incubated in 1 ml of PBS
at 37 °C. To estimate the amounts of fluorescent that had diffused
out of the devices, the fluorescence intensities of the PBS solutions
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Single-drug Sealed with
delivery 5

delivery PEC TEGDM

Fig. 1. (a) Schematic image of transscleral intraocular multi-drug delivery using a polymeric device placed on the sclera. (b) Photograph of the rat eye where the device was
implanted on the sclera for 3 days. (c) Image shows assembling process of the device that consists of three kinds of fluorescents pelletized with PEGDM/TEGDM, a reservoir
made of TEGDM and a controlled release cover made of PEGDM/TEGDM. After loading the pellets in the reservoir, the cover was sealed on the reservoir by UV curing. (d)
Photographs showing three kinds of fluorescent pellets, including FL, Rho and DAPI, and a reservoir before assembling, and (e) the device after assembling. Scale bars, 2 mm.
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were measured spectrofluorometrically (FluoroscanAscent; Ther-
mo), where fluorescence excitation (ex) and emission (em) for FL,
Rho and DAPI was measured at ex. 485 nm/em. 538 nm, ex.
544 nm/em. 590 nm and ex. 355 nm/em. 460 nm, respectively
(n=6). The PBS was replenished during the course of the release
study to ensure that the concentration of fluorescent molecules
was below 20% of its saturation value at all times. The results were
expressed as amount determined using a standard curve.

2.5. Animal experiments

Male Sprague-Dawley rats (SLC) weighing 250-300g were
used in this study. All animals were handled in accordance with
the Association for Research in Vision and Ophthalmology State-
ment for the Use of Animals in Ophthalmic and Vision Research
after receiving approval from the Institutional Animal Care and
Use Committee of the Tohoku University Environmental & Safety
Committee (No. 2013MdA-218).

2.6. Implantation

The rats were anesthetized with ketamine hydrochloride
(90 mg kg~!) and xylazine hydrochloride (10 mg kg™'). Their ocu-
lar surfaces were anesthetized with a topical instillation of 0.4%
oxybuprocaine hydrochloride. A paralimbal conjunctival incision
was made 1 mm from the temporal limbus. The devices were
placed onto the left eyes at the sclerae. The right eyes served as
controls.

2.7. In vivo release study

After implantation, the eyes were enucleated and the conjunc-
tiva, muscle, optic nerve and the device were carefully removed.
Fluorescent images were captured using a hand-held retinal cam-
era for fluorescein angiography (Genesis-D, Kowa) to document
the fluorescence distributions around the implantation site. After
taking the image, the eyes were carefully separated into the retina,
vitreous, lens, cornea and sclera/choroid/retinal pigment epithe-
lium (RPE). The retina and sclera/choroid/RPE were homogenized
in 100 pl of lysis buffer (1% Triton X-100 in PBS). The homogenates
were centrifuged at 15,000g for 10 min, and the fluorescence inten-
sity of the 80 pl of supernatant was measured spectrofluorometri-
cally (FluoroscanAscent) (n = 6). For histological examination, the
eyes were frozen in liquid nitrogen. A suture was placed as a land-
mark at the implant site of the device. After mounting the cryostat
sections in a medium (Vectashield, Vector Lab), the distribution of
fluorescein was observed by fluorescent microscopy (DMIG000B,
Leica).

2.8. Statistical analysis

Experimental data are presented as means *standard
deviations (SD). Statistical significance was calculated with Ekuser-
u-Toukei 2012 (Social Survey Research Information), using the un-
paired t-test for normally distributed isolated pairs, and the
analysis of variance (ANOVA) with Tukey'’s test for multiple com-
parisons. Differences were considered significant if p < 0.05 (*).

3. Results
3.1. Device fabrication
The device consists of a separately fabricated TEGDM reservoir,

fluorescent formulations and a PEGDM/TEGDM cover (Fig. 1c). The
device was designed to deliver various formulations and dosages.

In this study, sustained-release fluorescent formulations, including
a single FL pellet or multiple FL/Rho/DAPI pellets (Fig. 1d), were
encapsulated in the reservoir using a cover to prolong fluorescent
release by limiting the rate of fluorescent dissolution within the
reservoir. After loading the fluorescent pellets, the PEGDM/TEGDM
prepolymer was cast over the reservoir and UV-cured to provide a
seal (Fig. 1e). Because photopolymerized TEGDM is impermeable
to small molecules (see below), the reservoir is a barrier that forces
unidirectional fluorescent release to the sclera side.

3.2. Diffusion mechanism through the PEGDM/TEGDM system

Fig. 2a shows that the release of FL was dependent on the
PEGDM/TEGDM ratio. Pure PEGDM (P100) shows the highest per-
meability, whereas pure TEGDM (P0O) was impermeable. The re-
lease rate estimated from the slope of the curve at the initial
linear state was 1296 (P100), 684 (P80), 333 (P60), 83 (P40), 35
(P20) and 0 (PO) ng day~'. The release rate gradually decreased
as the cumulative release approached the plateau level
(10 pg ml~', maximum concentration when FL was fully released
in PBS), as was seen in P100 and P80. Fig. 2b shows that the swell-
ing ratio increased with increasing the PEGDM ratio. Fig. 2c shows
the correlation of the swelling ratio, obtained from the results in
Fig. 2b, with the slope obtained from the release profile results in
Fig. 2a. The correlation coefficient was 0.9904, indicating almost
linear correlation between the swelling ratio and release rate.

3.3. Single FL release study

Fig. 3a shows the single release profiles of FL-loaded devices
that were sealed with different types of covers. Although FL-pellets
without reservoir or cover showed a rapid burst-like release over
5 days, the covered devices showed a zero-order release without
an initial burst. The release rate decreased with decreasing PEGDM
ratio in the cover. The release rate estimated from the gradient
curve for pellet, P100-, P60- and P40-covered devices were 20.7,
1.13,0.53 and 0.10 pg day ', respectively. The results demonstrate
the ability to control the release rate from a device by changing the
ratio of PEGDM/TEGDM in the cover.

Devices containing FL pellet (F60) and sealed with P100, P60
and P40 covers, and pellets without reservoir or cover, were im-
planted onto the sclerae of rats. The devices remained at the
implantation site during the experiments and were easily removed
from the implantation site at the end of experiments. Routine oph-
thalmological examinations showed no device-related toxic ef-
fects. To demonstrate the controllability of the in vivo release of
FL, images of fluorescence in the sclera after removing the device
were captured by a hand-held camera (Fig. 3b). White areas corre-
sponding to fluorescence indicate the distribution of released FL.
For the pellet only, little fluorescence was observed at 1 week after
implantation, probably due to the burst-like release within 5 days.
For the P100-cover devices, the intensity was high at 1 week, then
decreased gradually during the subsequent 3 weeks. For the P60-
cover devices, the intensity was moderate for 2 weeks, then weak
intensity was sustained during the remaining 2 weeks. For the
P40-cover devices, weak fluorescence was sustained during
4 weeks. Trends in the fluorescence intensity were almost compa-
rable to the in vitro release results (Fig. 3a).

Fig. 4a-d shows sectional images of an eye around the implan-
tation site. FL (green areas) penetrated the sclera at least 1 day
after implantation (Fig. 4a and c), and then reached the choroid/
RPE at least 3 days after implantation (Fig. 4b and d). Intense fluo-
rescent can be seen at the RPE, one of the blood-retinal barriers
(Fig. 4d). Blurred fluorescent that passed through the RPE can be
seen at the retina, indicating the passing of the molecules through
the RPE into the neural retina. The amount of FL in the
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sclera/choroid/RPE, and retinal fractions during 4 weeks’ implanta-
tion was measured. For the sclera/choroid/RPE fraction (Fig. 4e),
the amount of FL correlated with the release profiles of the covered
devices at the first week (P100 > P60 > P40). Pellet only showed al-
most no fluorescence after 1 week due to the burst-like release
within 5 days, as is seen in Fig. 3a. From 2 weeks' implantation

onwards, the amounts of FL for the P100- and P60-covered devices
were at almost the same level, whereas the amount for the
P40-covered device was consistently at a lower level during the
successive incubation. These results are well matched with
the fluorescent images on the sclera shown in Fig. 3b. For the ret-
inal fraction (Fig. 4f), the amount of FL differed among the devices
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for the first week, but was then maintained at almost the same le-
vel for each device during the following 2 weeks. Pellet only was
unable to deliver FL to the retina except during the early days. After
3 weeks, the FL level for the P100-covered device was lower, while
the level for the P40-covered device had decreased after 4 weeks.
Although the amount of FL in the retina shows little correlation
with the release profiles, the results demonstrate that fluorescent
molecules released from the devices could reach the retina during
the 4 weeks of implantation and the amount of FL was reduced to
between 1/30 and 1/40 at the retina after passing through the
sclera.

3.4. Multiple FL/Rho/DAPI release study

The simultaneous independently controlled multiple release
was tested using three kinds of fluorescents, FL, Rho, and DAPI,
which may mimic low-molecular-weight drugs. The device was
filled with three kinds of pellets, each with different ratios of
PEGDM/TEGDM. The release profiles of each pellet are shown in
Supplementary Fig. S.2. DAPI pelletized with P100 (D100) was al-
ways included in the device as a constant control. FL was pelletized
with P100 (F100), P70 (F70) and P60 (F60). Rho was also pelletized
with P100 (R100), P70 (R70) and P60 (R60). Fig. 5a-c shows that
the release rate of the molecules can be tuned by changing the
composition of each pellet. For example, the release rate of FL or
Rho varied as the PEGDM ratio changed (Fig. 5a vs. Fig. 5b),
whereas that of DAPI was constant. When the device was sealed
with a P60 cover, the absolute amount released decreased to be-
tween one-fourth and one-eighth in all of the devices compared
to the P100-covered devices, but importantly, the ability to inde-
pendently control the release rates of the molecules was main-
tained (Fig. 5d-f). If the release results were sorted for each
molecule, the release kinetics of each molecule was always depen-
dent on the PEGDM/TEGDM ratio of the pellet (Supplementary
Fig. S.3). These results indicate that the release kinetics can be
tuned via two independent diffusion mechanisms afforded by a
sustained-release formulation and a controlled release cover.

Devices containing a combination of F60/R40/D60 pellets (de-
vice A) or F60/R60/D40 pellets (device B), sealed with a P60 cover,
were implanted onto the rat sclerae. Fig. 6a-h shows the sectional
images for 1 and 4 weeks after implantation. Magnified images
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showed fluorescence at the outer nuclear layer (ONL) in the retina
and the intensity of the fluorescence correlates with device condi-
tion; device A, which releases DAPI at a faster rate than device B,
shows more intense blue fluorescence in the ONL compared with
device B (Fig. 6b and f). On the other hand, device B, which releases
Rho at a faster rate than device A, exhibits more red fluorescence in
the retina than that of device A (Fig. 6d and h). Low magnification
images of the sections showed the local distribution of released flu-
orescents around the implantation site 1 and even 4 weeks after
implantation (Fig. 6a, ¢, e and g). This may indicate that the re-
leased drug is specifically delivered to the retina local to the
implantation site.

The amounts of fluorescence in the sclera/choroid/RPE
(Fig. 7a—=c) and the retina fractions (Fig. 7d-f) at 1, 2 and 4 weeks
after implantation were measured. Because FL was set to release
at the same rate in each device, there was no significant difference
between the amount of FL detected in the fractions for device A or
B (Fig. 7a and d). On the other hand, the amount of Rho in sclera/
choroid/RPE and retinal fractions for device B was higher than for
device A, and at 4 weeks’ implantation a significant difference (p
value: 0.042) can be seen in the sclera/choroid/RPE fraction
(Fig. 7b). Similarly, the amount of DAPI for device A was signifi-
cantly higher than for device B at 4 weeks’ implantation (p value;
0.037) (Fig. 7c). There was no difference between Rho and DAPI
intensities in the retina for the devices (Fig. 7e and f).

4. Discussion

We established a transscleral multi-drug delivery device with
which we demonstrated the transport of low-molecular-weight
compounds into the ocular tissue using fluorescents. The release
of multiple drugs can be tuned by changing the formulations of
the drug as well as the covering. The ability to control the release
of fluorescents from the PEGDM/TEGDM system may be explained
by the results of swelling tests (Fig. 2). The polymers made of short
chains of TEGDM are likely to be compact, with little ability to
swell, and impermeable to low-molecular-weight compounds. On
the other hand, long chains of PEGDM may result in more open
polymer networks, showing a greater tendency to swell, facilitat-
ing permeation of small molecules. Further, the release rate of each
fluorescent differs, even when we used the same pelletized
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Fig. 5. (a-f) Release profiles of a multi-drug delivery device that consists of three types of fluorescent pellets (FL, Rho and DAPI, designated F, R and D, respectively, in the
schematic) made of various PEGDM/TEGDM content, and two types of cover (P100 cover: (a-c), P60 cover: (d-f)). DAPI was pelletized with P100 as a constant release control.
FL and Rho were pelletized with P100, P70 and P60, respectively. Values are mean + SD.
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Fig. 7. The amounts of FL, Rho and DAPI in the sclera/choroid/RPE (a-c) and retinal fractions (d-f) during 4 weeks’ implantation. Values are mean + SD. *p < 0.05 (unpaired

t-test for normally distributed isolated pairs).

conditions (Supplementary Fig. S.2), indicating that the permeabil-
ity may be influenced by the physical characteristics of the sub-
stance, such as lipophilicity, water solubility and acid-base
character; FL and Rho-B are weak carboxylic acids, while DAPI is
a base [33]. Therefore, we need to consider the physical character-
istics of the substances and their interactions when determining
the optimum PEGDM/TEGDM system for the intended drug
release.

The device materials, PEGDM and TEGDM, are bio-inert and can
be easily molded into different substrate shapes by UV curing
[34,35]. We used a microfabrication technique because the shape
and volume of the reservoir can be easily modified by an AutoCAD
design. We have previously reported a reservoir-based protein-
drug-release device sealed with a PEGDM cover including collagen
microparticles, which served as permeation porogen for macro-
molecules [36]. We found that low-molecular-weight molecules
can easily pass through polymerized PEGDM membrane, whereas
polymerized TEGDM is impermeable to them (Fig. 2). Therefore,
we newly developed a controlled release system for low-
molecular-weight drugs using a PEGDM/TEGDM mixture. Some
monomers of unpolymerized PEGDM and TEGDM and photoiniti-
ator were found to elute from the device, but the amount of elution

(the highest amount is 504 ng ml~!) was significantly less than
cytotoxically active levels (more than 391 pg ml~?), and no more
monomers and photoinitiator eluted after incubation in PBS for
15 days (Supplementary Fig. S.4). The PEGDM/TEGDM polymer
shows almost no biodegradation 19 months after implantation on
the rabbit sclera (Supplementary Fig. S.5). Additionally, the long-
term implantation of the device over 4 weeks did not affect retinal
function assessed by electroretinograms (Supplementary Fig. S.6).
Thus, the device would appear to be stable and biocompatible for
at least 1 year, and can be used to safely administer drugs by the
transscleral approach without disturbing intraocular tissues.
Fluorescents were used for the analysis of drug transport into
the eye from the device. Although fluorescence was observable in
the ocular tissues during 4 weeks’ implantation and distributed lo-
cally around the implantation site, the fluorescein concentration in
the retina seemed to be almost the same in spite of the difference
in the release profiles of the devices (Figs. 4f and 7e and f). This
may be due to the blood-retinal barrier restricting drug transport
through the RPE to the retina. Pitkanen reported that the perme-
ability through the RPE depended on the lipophilicity and molecu-
lar weight of drugs [37]. Additionally, transporters in the RPE
probably have a greater role in ocular pharmacokinetics {38]. In
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fact, we observed FL accumulation around the RPE (Fig. 4d), indi-
cating that the drug transport was restricted here. This may be
one of the reasons for the constant amount of fluorescents in the
retina. Additionally, this behavior might be due to the availability
of fluorescents at the retina, because transport and penetration
through the sclera, choroid and RPE may vary between molecules
[37]. The clearance rate by blood vessels may also be different
for hydrophobic and hydrophilic molecules [15]. Our device has a
low-molecular-weight-impermeable reservoir that can release
drugs unidirectionally to the sclera, making it less susceptible to
drug elimination by conjunctival lymphatic/blood vessel clearance,
so the choroid may be the primary route of clearance. Further
study is needed to elucidate the factors influencing drug availabil-
ity to the retina. Given that the distribution of fluorescents was
concentrated at the RPE and adjacent regions, our device may be
effective, especially for lesions in the vicinity of the RPE.

One of the limitations of this study is the lack of a study proving
retinal neuroprotective effects of our device using clinical drugs.
Previous reports show potent effective drugs, such as edaravone
[39], geranylgeranylaceton [40] and unoprostone [41] against
retinal degeneration in animals, whereas these drugs are adminis-
tered via systemic route, topical eye drop or intravitreal injection.
We are planning to perform an animal study using the clinical
drugs to investigate the efficacy of our controlled transscleral
multi-drug delivery system on retinal neuroprotection.

5. Conclusion

A polymeric system which can administer multiple compounds
with distinct kinetics to the posterior segment of the eye was man-
ufactured. The release of multiple compounds can be tuned by
changing their formulations as well as the device covering. Fur-
thermore, our system can be used to safely administer drugs by
the transscleral approach without disturbing intraocular tissues.
Strict local delivery of the drugs through our device may facilitate
the administration of the drugs that would not be suitable for sys-
temic use due to side-effects. Additionally, prolonged sustained
drug release using our device would be suitable for the treatment
of chronic retinal diseases. Thus, our polymeric system provides
prolonged action and less invasive intraocular administration,
and is expected to provide new tools for the treatment of posterior
eye diseases with new therapeutic modalities.
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PURPOSE: To evaluate the efficacy of combined
25-gauge microincision vitrectomy surgery (MIVS)
and toric intraocular lens (IOL) implantation with
posterior capsulotomy.

METHODS: Noncomparative, interventional case se-
ries performed at a single center. Twelve patients
with vitreoretinal disease and cataracts, with pre-
existing regular corneal astigmatism greater than 1
diopter, underwent 25-gauge MIVS and toric IOL
implantation with posterior capsulotomy.

RESULTS: The toric IOL was successfully implanted
in each case. At 6 months postoperatively, mean
axis rotation was 5.7° = 3.1°. At 1 month postopera-
tively, mean uncorrected and best corrected visual
acuity improved; the improvement was maintained
after 6 months. The absolute residual refractive cyl-
inder was significantly lower postoperatively than
the pre-existing regular corneal cylinder (P = .003).
There were no surgical complications except a tem-
porary posterior irissynechia in one case.

CONCLUSIONS: Combined 25-gauge MIVS and toric
IOL implantation with posterior capsulotomy is a
practical and safe method to treat vitreoretinal dis-
ease and cataracts with pre-existing corneal astig-
matism.

[Ophthalmic Surg Lasers Imaging Retina. 2013;44:XX-XX.]

INTRODUCTION

Recent advanced sutureless vitrectomy techniques
have hastened visual recovery, with reduction in post-
operative astigmatism, conjunctival injection, pain,
and discomfort.’” The correction of refractive errors,
including corneal astigmatism, has thus become a
consideration in vitrectomy combined with cataract
surgery. Toric intraocular lenses (IOLs) have been im-
planted in patients worldwide, and their feasibility
has been demonstrated.®? Over 30% of eyes indicat-
ed for cataract surgery have corneal astigmatism of at
least 1.00 diopter (D).** Nevertheless, because of the
technical difficulty of vitreous surgery and the em-
phasis on retinal disease control, toric IOLs have not
been combined with vitrectomy surgery.

Twenty-five-gauge  microincision  vitrectomy
surgery (256G MIVS) was first reported in 2002, and
this technique is commonly used throughout the
world.’?13 Some patients (fewer than 1%) should
forego MIVS or only undergo it with caution;** how-
ever, the indications for 25G MIVS have expanded to
diseases including proliferative diabetic retinopathy
(PDR), thegmatogenous retinal detachment, giant reti-
nal tear, intraocular foreign body, and IOL disloca-
tion.?®?® The increase in popularity of 25G MIVS has
been enhanced by studies that have demonstrated its
advantages for postoperative quality of vision. This
is because intraoperative suturing is not required.’”
Recently, to prevent postoperative posterior capsule
opacification (PCO) in patients with vitreoretinal
disease who must have a vitrectomy combined with
cataract surgery, a primary posterior capsulotomy
technique using a 25-gauge vitreous cutter has been
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