also excluded. SNPs flagged with missingness > 5%, gross depar-
ture from Hardy-Weinberg equilibrium (p value < 1076, except
in the ALSPAC study where a threshold of < 1077 was used), and
minor allele frequency (MAF) < 1% were removed from further
analyses.

Statistical Analysis

For each study, an allele-dosage regression model at each geno-
typed or imputed SNP was conducted to determine its association
with AL as a quantitative trait as well as its association with SE.
Individuals with prior refractive or cataract surgery or other intra-
ocular procedures that could alter refraction were excluded. The
mean of the right and left eyes was taken. When data from only
one eye were available, the AL or SE of this eye was used. Sample
outliers with AL value exceeding four standard deviations from
the mean were excluded at the study level. We assumed an addi-
tive genetic model where the dosage of each SNP is a continuous
variable ranging from 0 to 2 for minor alleles carried. Primary anal-
ysis for AL was adjusted for age, sex, and height (because height
was consistently correlated with AL**®’) and in the case of SE
for age and sex. Additional adjustment for principal components
was carried out according to the population substructure in each
individual study.

The per-SNP meta-analyses were performed by METAL software
with weighted inverse-variance approach, assuming fixed effects,
because for initial discovery purposes, the fixed-effects model is
preferred for increased statistical power.®! A Cochran’s Q test was
used to assess heterogeneity across studies.® Imputation quality
scores were reviewed for the top SNPs reported to ensure good
imputation quality (proper-info of IMPUTE or R% of MACH > 0.3).

Gene-based testing was conducted with VEGAS software®® on
the Furopean ancestry and Asian ancestry meta-analysis results
separately. VEGAS incorporates information from the full set of
markers within a gene and thus can be more powerful than tests
of individual SNPs if there are multiple risk variants within a
gene. VEGAS corrects for LD and gene size by conducting simula-
tions based on the LD structure in the population of interest (here,
European or Asian ancestry). VEGAS was therefore run separately
on all the European and Asian GWAS data, with results for each
gene combined at the end by meta-analysis on the two sets of
gene-based p values by Fisher’s methods. For samples of European
descent, we used the HapMap 2 CEU population as the reference
to estimate patterns of LD. For Asian ancestry groups, we used
the combined HapMap 2 JPT and CHB populations as the refer-
ence population to approximate linkage disequilibrium (LD)
patterns. To include gene regulatory regions, SNPs were included
if they fell within 50 kb of a gene.

VEGAS-Pathway analysis®>°* was carried out with prespecified
pathways from Gene Ontology. Pathways with 10 to 1,000 com-
ponents were selected, yielding 4,628 pathways. Pathway anal-
ysis was based on combining gene-based test results from VEGAS.
Pathway p values were computed by summing c? test statistics
derived from VEGAS p values. Empirical VEGAS-Pathway
p values for each pathway were computed by comparing the
summed c? test statistics from real data with those generated
in 500,000 simulations where the relevant number (according
to the size of the pathway) of randomly drawn c? test statistics
was summed. To ensure that clusters of genes did not adversely
affect results, within each pathway, gene sets were pruned such
that each gene was > 500 kb away from all other genes in the
pathway. Where required, all but one of the clustered genes
was dropped at random when genes were clustered. We

performed meta-analysis on the two sets of pathway p values
by Fisher’s method.

Differential Gene Expression in a Mouse Model

of Myopia

Animal study approval was obtained from the SingHealth Institu-
tional Animal Care and Use Committee (AAALAC accredited). All
procedures performed in this study complied with the Association
of Research in Vision and Ophthalmology Statement for the Use of
Animals in Ophthalmology and Vision Research. Experimental
myopia was induced in B6 wild-type (WT) mice (n = 36) by
applying a —15.0 diopter spectacle lens on the right eye (experi-
mental eye) for 6 weeks from postnatal day 10. The left uncovered
eye served as the contra-lateral control eye. Age-matched naive
mice eyes were also used as independent control eyes n =
36).5%%6 Eye biometry, refraction, tissue collection, RNA extraction,
real-time polymerase chain reaction (PCR) gRT-PCR methods, and
analysis were followed as described previously. 19 QRT-PCR primers
(Table S4) were designed with ProbeFinder 2.45 (Roche Applied
Science) and performed with a Lightcycler 480 Probe Master (Roche
AppliedScience). The experiments were repeated in triplicate. Gene
expression of all identified genes in the control and experimental
groups was quantified by the 27-PPCt method.®” Student’s t test
was performed to determine the significance of the relative fold
difference of mRNA between the myopic eyes of the experimental
mice and the age-matched controls.

Gene Expression in Human Tissues

Adult ocular samples were obtained from normal eyes of an
82-year-old female of European ancestry from the North Carolina
Eye Bank (Winston-Salem, NC). All adult ocular samples were
stored in QIAGEN’s RNAlater within 6.5 hr of collection and
shipped on dry ice overnight to the lab. Isolated tissues were
snap-frozen and stored at —280°C until RNA extraction. RNA
was extracted from each tissue sample independently by the
Ambion mirVana total RNA extraction kit. The tissue samples
were homogenized in Ambion lysis buffer with an Omni Bead
Ruptor Tissue Homogenizer per protocol. Reverse transcription
reactions were performed with Invitrogen SuperScript III First-
Strand Synthesis kit. The expression of the identified genes was
assessed by running 10 ni reactions with QIAGEN'’s PCR products
consisting of 1.26 m HO, 1.0 nd 103 buffer, 1.0 nh dNTPs, 0.3 m
MgCl, 2.0 nk Q-Solution, 0.06 m taq polymerase, 1.0 m forward
primer, 1.0 ni reverse primer, and 1.5.0 ni cDNA. The reactions
were run on a Eppendorf Mastercycler Pro S thermocycler with
touchdown PCR ramping down 1°C per cycle from 72°C to 55°C
followed by 50 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C
for 30 s with a final elongation of 7 min at 72°C. All primer sets
were designed by Primer3.%® Products were run on a 2% agarose
gel at 70 V for 35 min. Primer sets were run on a custom tissue
panel including Clontech’s Human MTC Panel [, Fetal MTC Panel
I, and an ocular tissue panel.

Results

We analyzed 2.5 million genotyped and imputed SNPs
(Table S2). The genomic control inflation factor (1) for
individual studies (Table S2) as well as for the meta-analysis
(lgc = 1.06) and quantile-quantile plots (Figure S1)
showed little evidence for inflation.
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Figure 1. Summary of Meta-analysis Re-
sults for Genome-wide Association to
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! Data of both directly genotyped and
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| p values for association with axial length,
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VRS Sapep S

and the x axis represents chromosomes
and base-pair positions based on human
genome build 36. The horizontal red line
indicates the genome-wide significance
level of p < 5.0 3 1078 The horizontal

(rs994767 [ZC3H11B, p = 0.013], rs11073058 [G/D2, p =
1.66 3 107%], and 1512193446 [LAMA2, p = 3.58 3 1071°
1), with directions of the SE association being consistent
with AL. For example, the risk allele T of 1511073058 in
GJD2 was associated with both longer AL and more myopia
(more negative SE). In gene-based tests, only CD55 (p =
4.53 107° and ALPPL2 (p = 8.3 3 10~3) were associated
with SE (Table 5).

SNPs close to CD55 had reached genome-wide signifi-
cant association with SE in the meta-analysis of all CREAM
cohorts (i.e., with and without AL measures).?® There was
an association with SE at CHRNG, along with a less signif-
icant independent hit near ALPPL2 (125 kb away).”’ Our
AL gene-based results showed a genome-wide significant
signal at ALPPL2 but not at CHRNG. There was also an
association with SE at RDHS5,%° on the same chromosomal
band as the AL signal at MIP (MIM 154050), but RDH5 and
MIP are 727 kb apart without LD between them, suggesting
that they are independent signals.

Pathway Analysis

We conducted pathway analysis with VEGAS-Pathway®*®*
by combining the gene-based p values for 4,628 prespeci-
fied pathways. The most significant pathway was the
“Wnt receptor signaling” pathway (p = 2.9 3 107°). The
Bonferroni corrected p value was 0.13 (for the total num-
ber of 4,628 pathways tested). However, Bonferroni correc-
tion is an overcorrection, because many of the pathways
have overlapping genes. The identification of the Wnt
signaling pathway, even if only nominally associated, is
of interest because the pathway involves two genes identi-
fied from the per-SNP tests. Also among the top ten path-
ways were “lens development in camera-type eye” (p =
2.4 3 107* and “collagen” (p = 5.1 3 10~*) pathways
(Table S7). The collagen pathway was implicated in a
recent meta-analysis of corneal thickness.®*

Gene Expression
Differential expression of the nearest genes in the six
implicated loci from per-SNP meta-analysis (Table S4) was

I UM U N S0 N T

B g blue line indicates the suggestive signifi-

cance level of p < 1.0 3 107°. The previ-
ously described locus for axial length is
labeled in black. Other loci reaching
genome-wide significance identified from
the per-SNP meta-analysis are labeled in
red. The genes identified in gene-based
tests are labeled in blue.

assessed by measuring mRNA levels in minus-lens-induced
myopia mouse models.®>%® The mRNA levels of all six
genes had a 2-fold difference in the induced myopic eyes
as compared to the control eyes in most of the tissues
tested: sclera, retinal pigment epithelium (RPE), and neural
retina (Figure S6).

In human ocular tissue, we have previously shown that
ZC3H11B is expressed in neural retina, RPE, and sclera,'?
LAMAZ is expressed in sclera and optic nerve, and CD55
is expressed in retina, choroid, and cornea, and GJD2 is
less abundant in sclera and other ocular tissues.”® In this
study, we measured the mRNA expression levels of the
other genes in adult ocular tissues via reverse-transcriptase
PCR. We found that C30rf26, ZNRF3, and TIMELESS were
expressed in most ocular tissues and the expression of
RSPO1, ALPPL2, and MIP was less strong and/or more
restricted (Table S8).

Discussion

We identified five AL loci (RSPO1, C3orf26, LAMA2, GJD2,
and ZNRF3) and confirmed the previously described locus
(ZC3H11B) via per-SNP tests. In addition, three loci (CD55,
ALPPL2, and TIMELESS/MIP/SPRYD4/GLS2) were identified
by gene-based tests. Therefore, a total of nine AL loci were
identified in this meta-analysis. Seven of the nine AL loci
are located within the genomic region of protein-coding
genes (Tables 2 and 3). Of note, two of them (RSPOI and
ZNRF3) encode proteins that are directly involved in the
Wnt signaling pathway. RSPO1 is a member of a family
of secreted proteins that act as stem-cell growth factors
by enhancing the Wnt signaling pathway.”® On the other
hand, ZNRF3 is a membrane-bound protein that acts as a
negative regulator of the Wnt signaling pathway by medi-
ating degradation of the Wnt receptor complex compo-
nents Frizzled and LRP6.”" The two proteins have recently
been shown to interact, RSPO1 enhancing Wnt signaling
through inhibition of ZNRF3.”’ The Wnt signaling was
the most significant pathway in our analysis, further
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Figure 2. Regional Association Plots and Recombination Rates of the Loci Associated with Ocular Axial Length

Data are shown for association at chromosome (A) 1p34.3 (RSPO1), (B) 1g41 (ZC3H11B), (C) 3q12.1 (C30rf26), (D) 6q22.33 (LAMA2), (E)
15914 (GJD2), and (F) 22q12.1 (ZNRF3) in the combined meta-analysis. Data of both directly genotyped and imputed SNPs are pre-
sented. In each panel, the genotyped SNP with the most significant association is denoted with a purple diamond. The color coding
of all other SNPs indicates LD with the lead SNP, estimated by CEU 12 from phase Il HapMap: red, R 0.8; yellow, 0.6 % 2< 0.8; green,
0.4% 1*< 0.6;cyan, 0.2% 12 < 0.4; blue, 1* < 0.2; and gray, 1 unknown. The left y axis represents —log; o p values for association with
axial length, the right y axis represents the recombination rate, estimated from the International HapMap Project, and the x axis repre-
sents base-pair positions along the chromosome based on human genome build 36. Gene annotations are taken from the University of
California Santa Cruz (UCSC) genome browser. The plots were created with LocusZoom.

supporting its prominent role in vertebrate eye develop-
ment.”? Indeed, overexpression of a dominant-negative
variant of human ZNRF3 in zebrafish embryos induces
small eye or loss of eyes.”!

Remodeling of extracellular matrix in sclera plays an
important role in changes of eye size during myopia devel-
opment. LAMAZ encodes the alpha 2 chain of laminin, a
major extracellular protein of the basement membrane.
We used HaploReg”® to search for evidence of a functional

role for variants at the LAMAZ2 locus, because it has the
largest per-allele effect on AL. The intronic lead SNP
1512193446 lies within the promoter and enhancer histone
marks as well as DNase hypersensitive sites. Analysis with
RegulomeDB2’* suggested that rs12193446 occurs in a
region that binds EP300, TCF4, STAT3, GATA2, and
RFX4. Four of these interactions (EP300, TCF4, STATS3,
and GATA2) were predicted by HaploReg”® to be affected
by the genotype at rs12193446. Mutations in the cognate
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Table 3.

Loci Associated with Ocular Axial Length in Gene-Based Tests

Pgene-based Value

Gene MIM Number Chr Start Position® End Position® European Ancestry Cohorts Asian Cohorts Combined”
CD55 125240 1 205561439 205600934 1.33 10°° 9.63 10™* 233 1077
ALPPL2 171810 2 232979795 232983669 6.43 107° 1.73 1073 183 10°°
g]}i\g{‘ESSMIP/SPRYD-I/ 603887 12 55097173 55168448 203 1077 7.33 1072 283 1077

The following abbreviation is used: Chr, chromosome.

Position is based on NCBI human genome build 36. Note this is the start and stop position of the gene. For gene-based tests, 50 kb was added to either side to

account for possible regulatory variants that fall outside the gene boundaries.

bGene-based genome-wide significance was defined asp < 2.80 3 107%. Only loci that were genome-wide significant in gene-based testing but not genome-wide

significant in per-SNP testing are shown.

STIMELESS was the most significant gene in the region. Because of the 5 50 kb added to the definition for each gene and the close proximity of the genes, MIP,
SPRYD4, GLS2, and TIMELESS all had similar gene-based p values (ranged from 1.4 3 1076 t0 2.8 3 1077 for the combined analysis), and thus p value and MIM

number for only TIMELESS is presented.

gene for TCF4 cause Pitt-Hopkins syndrome (PTHS [MIM
610954]), the predominant ocular feature of which is
high-grade myopia.”® Interestingly, common genetic
variants in TCF4 (MIM 602272) have also been associated
with Fuchs corneal dystrophy, suggesting the pleiotropic
effects of TCF4 on ocular diseases.”®

Gene-based testing implicated the TIMELESS/MIP/
SPRYD4/GLS2 region, although determining which of
these genes are functionally relevant is difficult because
there are multiple association signals in the region. MIP
is an interesting candidate gene because it is expressed in
the ocular lens and is required for correct lens function.””
CDS55, implicated here in AL and previously in SE,*° is
known to elevate cytosolic calcium ion concentration.

For all six of the genes identified in our per-SNP meta-
analysis, we found evidence for differential expression
in a mouse model of myopia. Differential expression
was observed in the mouse sclera and retina as well as
RPE cells, suggesting a role for these genes in myopia.
Further strengthening our results, the expression data
showed that all but one of these genes expressed in the

Table 4. Association with Spherical Equivalent of the SNPs Most
Strongly Associated with Axial Length in Each Genomic Locus in
Independent Cohorts

Effect
Lead SNP Nearest Gene Allele Beta® SEM  p Value
154074961  RSPOI (MIM T 0.004 0.023 0.84
609595)
15994767 ZC3H11B A 0.054 0.022 133 1072
1s9811920  C3orf26 A -0.022 0.022 031
1512193446 LAMA2 MIM A -0.242 0.039 3.63 1071
156225)
1s11073088  GJD2 (MIM T -0.121 0.022 173 1078
607058)
1512321 ZNRF3 (MIM Cc ~0.004 0.021 0.86

612062)

Abbreviations are as follows: SNP, single-nucleotide polymorphism; SEM, stan-
dard error of the mean.
2Effect sizes on spherical equivalent are in diopters.

adult human eye. These data potentially provide insights
into the complexity of AL elongation and myopia at the
biological level. Some genes, namely ZC3H11A, GJ/D2,
and LAMAZ2, showed changes in expression that are
consistently in the same direction across the different
eye sections analyzed, whereas others, namely RSPOI,
C3orf26, and ZNRF3, showed variable directions of differ-
ential expression. These results, together with the
pathway analysis results, suggest that the genetic mecha-
nisms of myopia are complex, involving more than one
eye component.

We have previously shown that up to 50% of the varia-
tion in SE is due to shared genetic factors with AL.”® Thus,
we undertook further analyses and found that five of the
nine AL loci are also associated with SE. Furthermore, we
looked up the association of AL with the SNPs discovered
from the recent CREAM GWAS meta-analysis on SE in 32
cohorts*® and observed that 23 of the 29 SNPs identified
with SE have significant effects on AL (p < 0.05; Table
S9). This has important implications. First, it confirms
the previous findings in twins’® that there are common
genetic determinants of the two traits, such as variants
in GJD2, LAMA2, CD55, and ALPPL2. Second, it indicates
that some genetic variants for AL do not influence SE,
suggesting that they regulate the coordinated scaling of
eye size.”? For example, the SNP in RSPOI showed the
strongest evidence of association with AL, yet it had no
association with refractive error. In eyes without refractive
error, AL and corneal curvature are carefully scaled relative
to one another and have a high phenotypic correlation
between them.® Therefore, genes like RSPOI might
mediate a compensatory mechanism through changes in
corneal curvature or optical power, thereby balancing
their effects on SE.

Shorter axial length is a major risk factor for angle
closure glaucoma. A recent GWAS on primary angle closure
glaucoma identified three genome-wide significant loci
located at PLEKHA7 (MIM 612686), COL11A1 (MIM
120280), and PCMTD1-5T18.%' However, none of the com-
mon variants in the three loci were significantly associated
with AL in our meta-analysis (Table S10). This suggests that
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Table 5. Association of the Axial Length Genes Identified in Gene-
Based Tests with Spherical Equivalent in Independent Cohorts

Gene

MIM Number Chr pgenebasea Value®

CD55 125240 1 453 10°°
ALPPL2 171810 2 8331073
TIMELESS/MIP/SPRYD4/GLS2° 603887 12 0.14

Abbreviation is as follows: Chr, chromosome.

®The association with spherical equivalent was assessed in 17 European
ancestry cohorts of the 18 independent cohorts, with the HapMap 2 CEU
Eopulation as the reference to estimate patterns of LD.

Because of the 5 50 kb added to the definition for each gene and the close
proximity of the genes, MIP, SPRYD4, GLS2, and TIMELESS all had similar
gene-based p values (ranged from 0.14 to 0.20 for the combined analysis),
and thus p value and MIM number for TIMELESS only is presented.

susceptibility genes do not overlap between primary angle
closure glaucoma and eyes with shorter axial length.

In summary, we identified nine loci associated with AL.
They fall into two groups, one also influencing common
refractive error variation, and the other, which includes
two genes in the Wnt signaling pathway, uniquely deter-
mining eye size with little effect on natural refractive
status. Further elucidation and characterization of the
causal variants underlying the growth of ocular compo-
nent dimensions and the development of myopia may
enable new pathway and target identification, leading to
potential prevention and treatment development.
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