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FIGURE 4 | SSVEP power during calibration. (A) Particular frequency
spectra of EEG signals from Oz while fixating on the LED flicker at 6 Hz.
Solid and dotted lines indicate the A1 and A2 results, respectively. The A1
spectrum revealed an increased frequency power at 12 Hz (i.e., a harmonic
of 6 Hz), but A2 showed increases at both 6 and 12 Hz. (B,C) Mean spectral
power of each electrode. Left, center, and right pair bars indicate the peak
values of PQ7, Oz, and PO8, respectively. Compared with the peak values
during the non-fixation phase {white bars), those during the fixation phase
(black bars), especially Oz, showed strengthening. Error bars indicate SE
across participants. *p < 0.1, *p < 0.05, **p < 0.01.

was the principal SSVEP signal source (i.e., exhibiting a high
SNR), relative to PO7 and POS8. In our efforts to construct a user-
friendly BMI system, we sought to use as few electrodes as possi-
ble. Therefore, we used the EEG signal from Oz (only) to calibrate
SVM and to perform online classification in BOTAS-assisted
trials.

Classification accuracy

To evaluate the performance of the SSVEP-BMI system, we cal-
culated the classification accuracy of EEG signals in BOTAS-
assisted trials. Depending on the first classification into frequency
classes (6, 7, or 8 Hz) during the fixation phase (phases B or D),
we determined whether the classification in each trial was cor-
rect. If SVM first classified the EEG signal into any class other
than the target frequency class-for example, despite a partic-
ipant fixating on the LED flicker at 6 Hz, SVM classified the
EEG signals into the 7 or 8 Hz class-the trial was defined as
false.

The classification based on SVM was 80-90% accurate, on
average, under all LED settings used (Figure 5). Only one par-
ticipant (A10) yielded a poor classification accuracy (less than
70%, on average, across all LED settings) but most partici-
pants (8 of 12) exhibited good performance, with 90-100%
classification accuracy (Table2). To clarify the dependence
of LED frequency and location on SVM performance, we
performed Two-Way ANOVA (frequency of LED flickering
x position of LED flickers). No significant main effect or
interaction was apparent [frequency: F(y, 22) = 0.49, p = 0.62;
position: F(y 22y = 0.95, p = 0.40; interaction: F(4, 44y = 1.36,
p=0.26].

[Iwrist LED
‘ Upper target LED
B 1 ower target LED
100,

S

@ 80'

ey

g 60

®

o

2 401

g

2 201

®©

©

0% 8
LED frequency (Hz)

FIGURE 5 | Classification accuracy in BOTAS-assisted trials based on
EEG signals from Oz. Accuracy was not dependent on the frequency or
location of the LED flickers. Error bars indicate SE across participants.

Delay in SSVEP detection
Figure 6A shows the mean delay in SVM classification after par-
ticipants fixated on any LED flicker in phases B or D. These delays
indicate the time from LED fixation to driving of BOTAS. The
results in Figure 6A are evaluation of only correct trials. The
proportion of correct trials with respect to all trials was 88.5%.
Using the LED setting associated with the shortest delay (fre-
quency of LED flickering: 8 Hz, position of the LED flicker: lower
target), SVM required about 2 s to classify the EEG correctly. At
other LED settings, SSVEP also functioned correctly in less than
3s. To clarify the dependence of LED frequency and location
on SVM performance, repeated Two-Way ANOVA (frequency
of LED flickering x position of the LED flickers) was used to
analyze the delays (Figure 6A). ANOVA indicated that only the
position of the LED flickers was significant [frequency: F; 27y =
0.23; p = 0.79; position: Fy, 22y = 4.35, p < 0.05; interaction:
Fi4, 44y = 0.45, p = 0.77]. Additional analysis revealed a signif-
icant difference between the wrist and lower target LEDs (p <
0.05, Bonferroni test).

When participants fixated on any LED flicker during phases
B or D, the detection rate increased with time (Figure 6B). The
solid line indicates the detection rate in correct trials and the dot-
ted line in all trials, included false trials. At 2's after fixating, the
detection rate increased sharply and the SVM classification for the
grasping or reaching movement was success, 90.1% of correct tri-
als and 85.8% of all trials within 5 s. Individual delays are shown
in Table 2.

PATIENTS WITH UPPER CERVICAL SCi

Patients in this study did not have spasticity in the left arm; how-
ever, their arm joints showed narrower ROMs compared with the
able-bodied participants. When patients participated in this task,
we defined the task space based on the limited ROM.
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Table 2 | Individual performances across all LED settings in able-bodied participants.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 ATl A12
CA (%) 98.3 98.3 80.0 96.7 90.0 917 93.3 98.3 75.0 65.0 96.7 78.3
Delay (s) 3.1 2.8 4.3 25 2.5 2.3 2.7 2.6 29 4.0 25 2.8

CA, Classification accuracy.

DISCUSSION

We prepared life-size robot arms BOTAS that can assist the
wearer’s goal-directed movements of the upper limb, such as
reaching or grasping. To control the motion of the BOTAS, we
recorded EEG signals. SSVEP was elicited, especially from Oz,
during fixation on a LED flicker. In BOTAS-assisted trials, both
able-bodied participants and patients with upper cervical SCIs
successfully controlled the grasping-a-ball and carrying-the-ball
movements in a high proportion of trials.

A 45 T dwrist LED

Upper fargst LED

ASYNCHRONOUS CONTROL OF GOAL-DIRECTED MOVEMENTS

'7' 5 8 0{} 5 4 6 8 10 We developed the SSVEP-based BMI assist suit for the whole arm

LED frequency (Hz) Delay (s) and fingers to support goal-directed actions involving multiple

body parts, so that the devices could be used for movements

FIGURE 6 | Delay in initiation of BOTAS movement. (A) Mean delay such as those involved in OT training. Goal-directed activity
from initiation of fixating on the LED flicker to driving BOTAS. These has greater success in helping patients with paresis organize
results were calculated based on correct trials. The delay was of their movements effectively, compared with an exercise with no

slightly longer duration when the LED was attached to the participant’s goal (I\{Ia and Trombly, 2002; Pillastrini et a]., 2008). Previous

wrist. Error bars indicate SE across participants. (B} SSVEP detection . T . . .
rate after fixation on the LED flicker (i.e., phases B and D). The results studies made use of rehabilitation robots with relatwely hlgh

indicated by solid and dotted lines represent data calculated from DOFs for shoulder and elbow motions (Sanchez et al., 2006;
correct trials and all trials, respectively. The BOTAS system began to Ball et al., 2009; Dolce et al, 2009; Staubli et al, 2009) or
detect SSVEP 2s after initiation of fixating on the LED flicker. finger motions (Schabowsky et al., 2010). However, providing

Participants successfully initiated grasping or reaching motions within

: ! a useful series of actions, such as reaching and grasping, was
5s in more than 85% of all trials.

not easy using these robots. In this study, both able-bodied
participants and patients with upper cervical SCIs successfully
performed the grasping-a-ball and carrying-the-ball movements,
Table 3 | Performance of patients in BOTAS-assisted trials. which require not only shoulder and elbow motions but also
wrist and finger motions, thus representing a purposeful and

Participant (Age, C'aSSificatiO" Mean Detection .1 directed movement. The effectiveness of movements used
g?::{e:; }-::Ielz":;ff acouracy (%) delay (s) ;a:(?c;:;'thm in rehabilitation training must be studied further, but our
! : BOTAS system is suggested to be potentially useful for reha-
P1 (42, M, 16y, C6) 80.0 3.8 775 bilitation of patients with upper limb disabilities. In terms of
P2 (40, M, 19y, C3) 83.3 3.9 73.5 clinical evaluation, it would be wise to evaluate user satisfac-
P3 (51, M, 24y, C6) 80.0 3.7 82.3 tion (e.g., by applying the Quebec instrument evaluating sat-
isfaction with assistive technology; QUEST 2.0) (Zickler et al,,

2011).

In rehabilitation training using BMI technologies, an arti-

Table 3 shows the SVM performances of three patients with  ficial closed-loop between the brain and the impaired body
upper cervical SCI. Because Oz impedance in P1 did not decrease  part(s) facilitates brain plasticity (Lebedev and Nicolelis, 2006;
over time, the calibration and BOTAS-assisted trials featured Gomez-Rodriguez et al., 2011). Additionally, synchronization
high impedance. Classification accuracy and mean delay were between user intent and the action of the external device is
slightly lower performance vs. those of the able-bodied par- important in BMI-based rehabilitation training. Recent invasive
ticipants. Accuracies were not less than 80% and delays were BMI technologies have succeeded in the asynchronous con-
shorter than 4s. We confirmed that the patients with upper trol of robot arms for useful series of actions, such as reach-
cervical SCI operated the BOTAS system successfully. They suc- ing and grasping (Hochberg et al., 2012). Several studies have
cessfully grasped the ball and transferred it to the goal position used non-invasive BMI technologies to control assistive robots
in a high proportion of trials (P1: 18/20 trials, P2: 29/30 tri- according to user intent (Muller-Putz and Pfurtscheller, 2008;
als, P3: 28/30 trials). No patient reported discomfort during task Horki et al,, 2010, 2011; Pfurtscheller et al, 2010b; Ortner
performance. et al., 2011). In this study, we prepared a pre-recorded series of
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useful actions-a grasping-a-ball movement and a carrying-
the-ball movement—and provided asynchronous control using
SSVEP signals. A SSVEP signal was used to trigger the grasping-
a-ball movement and another SSVEP signal was used to trigger
the carrying-the-ball movement. Although we did not attempt
to directly decode user intention, participants fixated on LED
flickers when they wished to start movement. Also, the hand
and arm were visible when movements were made; this may
have contributed to closed-loop sensory feedback. Asynchronous
BMI systems using SSVEP may be useful for closed-loop reha-
bilitation approaches that make use of repetitive movement tasks
(Horki et al., 2010; Diez et al,, 2011; Ortner et al., 2011). Recent
studies have further suggested that synchronization enabled by
BMI between “motor intention of a wearer” and “motion of
external device” render rehabilitation training effective (Ramos-
Murguialday et al., 2013). In the BOTAS system, a wearer fixates
on a LED flicker when she/he wants to drive motion, and BOTAS
then comes into play. Thus, motor intention and BOTAS motion
are synchronized. Previous studies suggest that our system will
be effective in rehabilitation training, although further work is
needed.

SSVEP FEATURES IN THE BOTAS SYSTEM

To construct a user-friendly BMI system, it is important that
REG signals are recorded using only a few electrodes (Luo and
Sullivan, 2010). Many BMI systems in previous studies used mul-
tiple electrodes to detect SSVEP (Muller-Putz and Pfurtscheller,
2008; Horki et al., 2011; Ortner et al, 2011). Although use
of multiple electrodes may facilitate detection of EEG signals
and increase classification accuracy (Bin et al., 2009; Grave De
Peralta Menendez et al,, 2009; Bakardjian et al., 2010), multi-
ple electrode placement requires considerable time, may burden
users, and may be difficult to apply in rehabilitation train-
ing. Thus, practical BMI systems using small numbers of elec-
trodes are potentially useful and may reduce user discomfort
(Zickler et al., 2011). When recording EEG signals with a few
electrodes, brain areas in which SSVEP is strongly induced
should be focused on exclusively. SSVEP was not strong in
lateral areas (for example, PO7 and PO8). Placement of elec-
trodes in the central area, such as Oz, ought to be effective
for SSVEP-BMIs (Pastor et al, 2003; Bin et al, 2008, 2009).
Indeed, we found that the classification accuracy was over 80%
using the EEG signal from Oz alone, but it would be valuable
to further improve classification accuracy and decrease delay
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Real-time magnetoencephalography (rtMEG) is an emerging neurofeedback technology that
could potentially benefit multiple areas of basic and clinical neuroscience. In the present study,
we implemented voxel-based real-time coherence measurements in a rtMEG system in which
we employed a beamformer to localize signal sources in the anatomical space prior to com-
puting imaginary coherence. Our rtMEG experiment showed that a healthy subject could
increase coherence between the parietal cortex and visual cortex when attending to a flickering
visual stimulus. This finding suggests that our system is suitable for neurofeedback training
and can be useful for practical brain—machine interface applications or neurofeedback reha-
bilitation.

Keywords: Real-time MEG; beam forming; imaginary coherence; neurofeedback.

1. Introduction

Real-time feedback of brain activity is potentially useful in multiple areas of basic
and clinical research such as in rehabilitation and more recently, in brain—machine
interfacing. Real-time neurofeedback of brain activity was first studied in the late
1960s to induce voluntary control of electroencephalogram (EEG) components at
specific frequency bands (Kamiya, 1968) and also to control slow cortical potentials
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(Birbaumer et al., 1990). EEG neurofeedback has been used to treat patient groups
such as children with attention deficit hyperactivity disorder (ADHD) (Konrad &
Eickhoff, 2010); however, limited spatial resolution is a drawback of this technique.

The development of blood oxygen level-dependent (BOLD) functional magnetic
resonance imaging (fMRI), which has high spatial resolution (on the scale of a few
mm), and new data acquisition and processing techniques enabled research into real-
time fMRI-based neurofeedback (Caria et al., 2012; Weiskopf et al., 2003; Shibata
et al., 2011). fIMRI neurofeedback studies use the data of real-time brain activity from
specific regions of interest (ROI) for the feedback. However, because fMRI measures -
the hemodynamic response to neural activity based on changes in blood oxygenation,
the temporal resolution of the signals is limited.

The temporal signal features of the magnetoencephalogram (MEG) are similar
to those of the EEG and have been used in neurofeedback studies (Mellinger et al.,
2007; Buch et al., 2008; Sudre et al., 2011; Sacchet et al., 2012). Most MEG-based
neurofeedback protocols employ the MEG signals at the sensor level, i.e., without
source models. However, since the MEG sensors are relatively distant from the
sources and not all sensor types show the maximum sensitivity to sources right
beneath them, and the signal at the sensor position does not directly correspond
to neural activity in the specific brain area, thus, sensor-level analysis of MEG is
limited in terms of the localization of neural activity. Feedback based on the activity
in a specific, anatomically-defined ROI would be most desirable for neurofeedback
studies.

The present real-time MEG (rtMEG) study employed a linearly-constrained
minimum-variance (LCMV) beamformer, a form of spatial filtering (Van Veen &
Kevin, 1988; Van Veen et al., 1997), to improve the localization of neural activity
beyond sensor-level analysis. The combination of the beamformer and anatomical
MRIs allowed us to estimate neural currents in the individual gray matter. Thus,
sensor-level signals were transformed into cortical source-level signals that are bound
to anatomical brain structures.

Human cognition is considered to result from the interaction of multiple brain
areas. Thus, understanding functional connectivity is necessary to understand cog-
nitive processing (Siegel et al., 2012). Here, we specifically focused on imaginary
coherence to estimate functional connectivity between brain regions (Nolte et al.,
2004). The rationale of using imaginary coherence comes from the fact that linear
synchronization measures may report false correlations due to spatial leakage of
the source estimate. However, the “true” correlation among brain regions often
contains a lag due to neural transmission. Thus, omitting the real part of coherency is
expected to remove false correlations (Nolte et al., 2004).

The present study is the first to report a novel rtMEG system in which real-time
beamformer processing, used to improve localization of the signal source beyond
what can be reached in sensor-level analysis, was combined with imaginary coherence
estimation.
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2. Materials and Methods
2.1. System structure and signal processing chain

The hardware structure of the system and the flow chart of real-time signal processing
are shown in Figs. 1 and 2, respectively. The MEG scanner was a 306-channel Elekta,
Neuromag system (Elekta Oy, Helsinki, Finland). MEG signals were transferred from
the system electronics to a workstation (Hewlett—Packard 64-bit, running Red Hat
Linux) via an Ethernet-based TCP/IP connection (not shown in the figure). On the
workstation, signal-space projection (SSP) was applied to reduce external interference
and the signals were accumulated in the Field Trip real-time buffer (Sudre et al., 2011;
Oostenveld et al., 2011) and then transferred using transmission control protocol
(TCP) to a notebook computer (MacBook Pro, Apple Inc., Cupertino, CA, USA).
The SSP operator was determined by applying principal component analysis (PCA)
to data acquired in the absence of any subject and selecting four principal components
for the magnetometer channels and 5 s for the planar gradiometer channels.

The MEG signal was reconstructed into an anatomical-location-based signal in
the notebook computer by applying a spatial filter based on the LCMV beamformer
(Van Veen & Kevin, 1988; Van Veen et al., 1997) as described. The putative func-
tional connectivity between two ROIs was estimated by calculating the imaginary

MacBook Pro

sinuhe

Fig. 1. The hardware structure of the system. The MEG signals were sent to the data acquisition
workstation (“sinuhe”) via a TCP/IP connection on Ethernet from a real-time computer (internal com-
ponent of the MEG system; not shown) and accumulated into a buffer in a shared memory segment. The
signals were then transferred in packets of 10,000 samples using TCP on Ethernet to a notebook computer
(MacBook Pro) in which the functional connectivity was estimated and the visual feedback was generated
based on those estimates. Visual feedback was then sent to the projector and displayed to the subject.
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Imaginary
Raw MEG signal B SSP - Bezla—n?pg:/mer | Coherence
between 2 ROIs
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Fig. 2. (a) MEG signal processing. First, the raw MEG signals were processed using SSP for noise
reduction. Then, the source time courses of each region of interest (ROI) were obtained using the LCMV
beamformer and their imaginary coherence was computed to estimate the putative functional connec-
tivity between the two ROIs. The feedback stimuli were then generated based on the calculated
imaginary coherence. (b) Source locations were distributed across the gray matter (crosses). The yellow
crosses indicate the source location for the right posterior parietal cortex (PPC) ROI. Each ROI location
was determined as per Van Dijk et al. (2010).

coherence between them. The parameters (e.g., the radius of the circle) for the visual
feedback stimuli were calculated based on the obtained imaginary coherence and
then transmitted via a network link based on user diagram protocol (UDP) to the
visual stimulation program (PsychoPy (Peirce, 2007) Version 1.73.04, University of
Nottingham, UK). The program generated the visual stimuli based on the received
parameters and transmitted them to the image projector. The data projector dis-
played the visual stimuli on a screen located in front of the subject, who was sitting in
the MEG system.

2.2. LCMYV beamformer

In this system, the MEG signal was reconstructed into an anatomical-location-based
signal by applying the LCMV beamformer spatial filter (Van Veen & Kevin, 1988;
Van Veen et al., 1997). The combination of the LCMV beamformer spatial filter
and the reconstruction of the cortical mantle from MRI anatomical image allowed
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the estimation of neural activity in the individual gray matter sheet. The LCMV
beamformer spatial filter W was derived from the following formula:

W(g) = [H (q)C(z)H(q)] "HT (g0) C 7 (=),

where ¢ is a location within the gray matter, C' is the noise covariance matrix, z is
MEG data for covariance matrix and H is the lead field matrix. An in-house
MATLAB script was utilized to calculate W.

The lead field matrix was created using the following procedures. First, two T1-
weighted images of the head of the subject were acquired and submitted to the
FreeSurfer (Fischl et al., 2001, 1999) cortical reconstruction process to obtain a
surface model. A surface-based source space was created from the obtained surface
model using MNE software (http://www.martinos.org/mne, Version 2.7.3 Build
3268 MacOSX-i386). For the volume conductor model, boundary element method
(BEM)-meshes were created from the MRI T'1 anatomical image. The position of the
head in the MEG scanner was determined using four head position indicator (HPI)
coils attached to the subject’s head. The fiducial points were semi-automatically co-
registered using “mne_analyze” (a tool in the MNE software) by manually identifying
the left and right pre-auricular points and the nasion, and then optimizing the
alignment of all digitized points with respect to the scalp surface. Finally, the lead-
field matrix was calculated using MNE.

2.3. Imaginary coherence

The imaginary coherence was used to estimate the functional connectivity between
two brain areas (Nolte et al., 2004). Application of linear correlation or coherence
metrics may result in false correlations reflecting spatial spread of a single source, the
“true” correlation among brain regions usually contains a lag due to the finite speed
of neural transmission. Thus, omitting the real part of the coherence is expected to
remove false correlations. Imaginary coherence was defined as follows:

Sy(f) = (z:(f)z; ()

where Sj;(f) is a cross—spectrumyof signals ¢ and j. When i = j, S is the power spec-
trum and it is a real number. Coherency is defined as:

Sy(f)
Oij (f ) = 1
(Szz(f)S]](f)) 2
Coherence is the absolute value of coherency, that is,
Cohy(f) = |Cy(f)]-

An in-phase spectral component is a real number, whereas, an out-of-phase spectral
component is a complex number. Thus, retaining only the imaginary part of the
cross-spectrum allows extraction of the lagged correlation component (Nolte et al.,
2004). This is called imaginary coherence. Namely,

ImCohy(f) = [imag(Cy;(f))]-
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2.4. MEG experiment

We conducted a MEG experiment in one subject to validate our set-up. The subject
was neurologically healthy and right-handed according to the Edinburgh inventory
(Oldfield, 1971). The present study received approval from the Institutional Review
Board of the National Rehabilitation Center for Persons with Disabilities, Tokorozawa,
Japan. The subject provided written informed consent according to institutional
guidelines. The subject sat comfortably in the MEG system in the upright position.
A 2-min resting-state dataset was recorded for estimating the noise covariance
matrix required for the construction of the LCMV beamformer spatial filter W. The
sampling rate was 1000 Hz.

The visual stimuli were displayed in front of the subject (Fig. 3) and consisted of
a circular green-and-blue checkerboard patch on the left, the fixation point inside
the green feedback circle in the middle of the screen and a circular green-and-blue
checkerboard patch on the right. The checkerboard patches flickered at 5 Hz or 6 Hz;
when one checkerboard patch flickered at 5Hz, the other flickered at 6 Hz. The
number of trials at each frequency was counterbalanced. The subject was instructed
to press a button (HHSC-2x4-C, {ORP932, Current Designs Inc., Philadelphia, PA,
USA) with his right index finger when focusing on the right checkerboard stimulus
under the attend-right condition and to push the button with his left index finger
when focusing on the left checkerboard stimulus under the attend-left condition. The
subject was instructed to attend to the stimulus until an auditory cue was presented
(at least 10s), and he then rested for 10s. During the experiment, the green circle in
the center of the screen provided visual feedback; the radius changed according to
the imaginary coherence between the right posterior parietal cortex ROI and left
visual cortex ROI. Forty trials were performed under both the right- and left-attend
conditions.

Fig. 3. Visual stimuli used in the MEG experiment. Green/blue checkerboard circles flickered at a
specific frequency (5 Hz or 6 Hz). The green circle in the center provided the visual feedback and changed
its radius according to the estimated functional connectivity between the right PPC and the left visual
cortex.
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Each ROI location was determined as by Van Dijk et al. (2010) (the posterior
parietal cortex ROI was in the intraparietal sulcus) and was taken as a 3D sphere of
1 cm in radius. The value of each ROI at any time point was taken as the mean value
of the vertices within the ROI. The imaginary coherence of the two time series with a
temporal window size of 5 s was computed and integrated over frequencies 0—45 Hz,
and the integrated value, multiplied by a constant, was used as the radius of the
feedback circle.

The integrated imaginary coherence evaluated during the 10 s following the button
press was used to index the difference in imaginary coherence between the two ROI
pairs (right posterior parietal cortex (PPC) and left visual cortex, right (PPC) and
right visual cortex). FFT window size was 2000 ms and the windows overlapped
1000 ms. Additionally, we used the right PPC and the left or right middle temporal
cortex (V5/MT) as additional ROI pairs in the post-acquisition analysis.

3. Results

The present study investigated the putative functional connectivity between ROI
pairs when the subject attended to the right flickering checkerboard stimulus. The
ROI pairs consisted of the right PPC and the left or right visual cortex. Figure 4
shows the estimated functional connectivity based on the imaginary coherence of the

Imaginary coherence
*

0.0851
0.081

0.0751

0.07

0.065+

0.061

(Arbitrary Unit)

0.055+

0.05-

0.045+ —_

—_—

Right PPC and Right PPCand
left visual cortex right visual cortex

Fig. 4. Estimated functional connectivity according to the imaginary coherence of each ROI pair (the
right PPC and the left and right visual cortex). The imaginary coherence (integrated over 0—45 Hz)
between the right PPC and left visual cortex was greater than that between the right PPC and right
visual cortex when the subject attended to the right checkerboard stimulus ( T3 = 2.5233, p = 0.0158).
The edges of each boxes are the 1st and 3rd quantiles, the whisker extends to ¢3 + 1.5(¢3 — ¢1) and
gl — 1.5(¢g3 — ¢q1) where, ¢gn is the nth quantile.
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two ROI pairs. The imaginary coherence between the right PPC and left visual
cortex was greater than that between the right PPC and right visual cortex when the
subject attended to the right checkerboard stimulus (739 = 2.5233; p = 0.0158).

Additionally, we investigated the right PPC and the left or right middle temporal
cortex (V5/MT) as ROI pairs. The imaginary coherence between the right PPC and
left V5/MT was greater than that between the right PPC and right V5/MT
(T39 = 3.2129; p = 0.0026; not shown in the figure.) Although the p-values were
uncorrected, they remained significant after Bonferroni correction.

These findings indicate that functional connectivity between right PPC and left
visual cortex changed when the subject attended to the right flickering checkerboard
stimulus.

4. Discussion

We studied functional connectivity in the human brain by computing source-level
coherence estimates in real-time from MEG data. We employed a beamformer to
target specific brain regions (right PPC and visual cortices) and then evaluated
functional connectivity between them by computing imaginary coherence between
the corresponding source-level time series and provided visual feedback to the subject
about the coherence estimate. Our rtMEG experiment showed that a healthy subject
could increase coherence between the right PPC and the visual cortex while attend-
ing to a flickering visual stimulus.

4.1. Methodological considerations

We combined the beamformer technique and imaginary coherence for rttMEG neuro-
feedback. This combination allows estimation of the functional connectivity between
two or more brain areas without the false correlations easily introduced by linear
methods. In addition, this technique may reduce artifacts resulting from marked
changes in head position within the sensor helmet over multiple neurofeedback
training sessions as well as, improve generalization across multiple subjects and
developmental changes in the brain during longitudinal studies in children.

4.2. Neurophysiological background

Increased putative functional connectivity, as measured by imaginary coherence,
between the right PPC and the left visual cortex and between the right PPC and the
left middle temporal area (MT/V5) was observed when the subject attended to the
visual stimulus in the right hemifield. Our results are consistent with a previous {MRI
experiment reporting functional connectivity between the primary visual cortex and
MT/V5 and between the PPC and MT/V5 (Buchel & Friston, 1997). However,
further investigation is necessary to explore the neurophysiological role of these brain
areas in visual attention.
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4.3. Future applications

rtMEG may have future applications in the context of brain—machine interface
(BMI) or brain—computer interface (BCI) technologies. In BMI, one uses neuro-
physiological signals from the brain to control machines or computers. The tech-
nology has become wide spread in the past decade as a result of technical and
mechanical improvements (Wolpaw et al., 2002; Birbaumer & Cohen, 2007; Kansaku,
2011; Cichocki et al., 2008). For rtMEG-based BMI, there are several potential
applications such as training subjects to modulate specific spatial and dynamic fea-
tures of their neural activity (Sudre et al., 2011).

Moreover, rtMEG may be useful for neurofeedback training. Treatment using
neurofeedback has been reported for psychiatric disorders such as ADHD (Fuchs
et al., 2003; Lofthouse et al., 2012) and autism v(Coben et al., 2010). Functional and
structural connectivity have been reported to be abnormal in the ADHD brain
(Konrad & Eickhoff, 2010), and meta-analytic evidence suggests that neurofeedback
treatment may be effective for children with ADHD (Arns et al., 2009). Furthermore,
neurofeedback training has been used in stroke rehabilitation (Soekadar et al., 2011).
The combination of beamformer techniques and imaginary coherence may provide
the basis for effective neurofeedback training in which the patient is able to regulate
the functional connectivity between two or more brain areas.
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