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Introduction

The renin—angiotensin system (RAS) not only plays an
essential role in the regulation of blood pressure and elec-
trolyte balance [1-3], but is also involved in cell growth,
fibrosis, and inflammation in cardiovascular and renal tis-
sues by producing paracrine factors [1-3]. Prorenin, a pre-
cursor of renin, is elevated up to several hundred folds in
patients with diabetes [4] and is a predictive marker of the
onset of microvascular damage. In particular, young dia-
betic patients with high serum prorenin levels are at an
increased risk of developing retinopathy and microalbu-
minuria [5, 6]. The (pro)renin receptor [(P)RR], a specific
receptor for renin and prorenin, was identified as a member
of the RAS by Nguyen et al. [7, 8]. (P)RR is a 350-amino-
acid protein with a single transmembrane domain and is
widely expressed in various tissues, including the brain,
heart, and kidney [8]. When bound to prorenin, (P)RR
activates the angiotensin I (AT-I)-generating activity of
prorenin without cleavage of the prosegment, and directly
stimulates the mitogen-activated protein kinase ERK1/2
pathway independent of the RAS [8, 9]. However, despite
recent elucidation of the disconnected ligand binding sites
of (P)RR and their presence in serum and urine as soluble
(P)RR, the pathophysiology and clinical significance of
serum prorenin and soluble (P)RR in patients with chronic
kidney disease (CKD) are unclear.

Here, we examined the pathophysiological roles of
serum prorenin and soluble (P)RR in CKD by investigating
the influence of renal function, age, hypertension and/or
diabetes mellitus, and soluble prorenin and o-Klotho levels
on serum soluble (P)RR.

Materials and methods

The study protocol was approved by the institutional review
boards of Kochi University Hospital (approve #22-78), Ko-
chi-Takasu Hospital, and Kochi Red Cross Hospital, and all
patients gave written informed consent for their participation
in this study. A total of 374 patients with CKD and no history
of renal replacement therapy were recruited from the afore-
mentioned institutions from November 2010 to September
2012. All patients had proteinuria (>300 mg/g creatinine
[Cr]), in accordance with the CKD criteria. The glomerular
filtration rate (GFR) was calculated using the new Japanese
equation [10]—estimated GFR (eGFR) in mL min~" 1.73 m™>
= 194 x serum creatinine” %* x age %7 x 0.739 (for
women). Serum Cr, blood urea nitrogen (BUN), uric acid
(UA), albumin (Alb) and hemoglobin (Hb) levels, and the
urine protein/Cr ratio were measured at SRL Inc. (Japan) by
using standard methods. Furthermore, these clinical param-
eters were also evaluated using serum and urine sample

collected after 1 year (n = 204). The rate of change of Cr
(ACr) and eGFR (AeGFR) were calculated as [(followed Cr
after 1 year — initial Cr)/initial Cr] and [(followed eGFR
after 1 year — initial eGFR)/initial eGFR], respectively.

Serum soluble (P)RR and prorenin levels were measured
using an enzyme-linked immunosorbent assay (ELISA) kit
(Immuno-Biological Laboratories Co., Tokyo, Japan),
consisting of a solid-phase sandwich ELISA with 2 kinds
of highly specific antibodies [11, 12].

The relationships between initial data of serum soluble
(P)RR, prorenin, and initial and followed data of clinical
parameters on kidney function were then evaluated.

All data are presented as mean =+ standard deviation
(SD). Single linear univariate correlations were evaluated
using Pearson’s correlation coefficient. Groups were com-
pared using 1-way analysis of variance, Dunnett’s test, and
chi-squared test, as appropriate. Multiple regression anal-
ysis with serum prorenin and soluble (P)RR levels as
dependent variables was conducted using a stepwise for-
ward selection method. The F value for the inclusion and
exclusion of variables was set at 4.0. Statistical significance
was defined as P < 0.05. All statistical analyses were
performed using the JMP (Ver. 6) statistical program.

Results
Patient characteristics

Patients were subdivided into 5 stages according to their eGFR,
and their characteristics are presented in Table 1. The age of the
patients ranged from 15 to 93 years (mean age 61.6 +
17.5 years). The mean serum Hb level was 12.0 £ 2.1 g/dL,
Cr 1.9 + 1.6 mg/dL, BUN 27.0 £ 16.8 mg/dL, UA 6.5 &+
1.9 mg/dL, eGFR 45.4 + 30.2 mL min~" 1.73 m™2, and the
urine protein/Cr ratio was 1.3 £ 2.1 mg/g Cr. The causes of
CKD were primary chronic glomerulonephritis in 27.8 % of the
patients, nephrosclerosis in 21.1 %, and diabetic nephropathy
in 14.2 %; other types of diseases or unknown cause constituted
36.9 %.

Soluble (P)RR levels in CKD at stages 1-5

The association between serum levels of soluble (P)RR and
Cr, eGFR, BUN, UA, age, CKD stage, and the urine protein/
Cr ratio were analyzed. Soluble (P)RR levels were posi-
tively associated with the levels of serum Cr (P < 0.0001,
r = 0.262) (Fig. 1), CKD stage (P < 0.0001; r = 0.313)
(Fig. 2), BUN (P < 0.0001, r = 0.264), UA (P < 0.005,
r = 0.167) and age (P < 0.001, r = 0.177) (Fig. 3), and
inversely associated with eGFR (P < 0.0001, r = —0.276)
(Fig. 1) and Hb (P <0.005, r= —0.159) (Fig. 3).
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Table 1 Patient characteristics

Variables Total Stage 1 Stage 2 Stage 3A Stage 3B Stage 4 Stage 5
eGFR >90 90 > eGFR > 60 60 > eGFR > 45 45 >eGFR > 30 30>eGFR > 15 eGFR <15
Number of 374 35 78 50 68 83 60
patients (n)
Age (years) 61.6 £ 175 319 + 134 53.4 + 15.9*% 64.9 + 12.7+* 68.8 + 12.3%* 70.0 & 12.7%%t 67.0 + 12.7+*
Male (n, %) 206 (55.1) 10 (28.6) 37 (47.4) 30 (60.0) 39 (57.4) 50 (60.2) 40 (66.7)
Hypertension 203 (54.3) 7 (20.0) 43 (55.1) 30 (60.0) 51 (75.0) 48 (57.8) 24 (40.0)
(n, %)
Diabetes 53 (14.2) 2 (5:7) 13 (16.7) 5(10.0) 14 (20.6) 14 (16.9) 5 (8.3)
mellitus (n, %)
ARB (n, %) 147 (39.3) 8 (22.9) 32 (41.0) 22 (44.0) 37 (54.4) 28 (33.7) 20 (33.3)
Hb (g/dl) 12.0 £ 2.1 13.0£71.5 13.6 £ 2.0 13.0 + 1.8% 12.0 + 1.4° 11.0 + 1.8 102 + 1.4*
Cr (mg/dl) 19 416 0.6 0.1 0.8 £0.1 1.0 £ 0.27 1.3 + 0.2° 22 +05° 5.0+ 1.5%
BUN (mg/dl) 27.0 £ 16.8 11.1 £3.0 13:6 & 3.7 17.6 + 4.37 23.9 + 6.9° 352 + 10.1% 53.8 £ 16.0*
UA (mg dl) 65 %19 45+ 1.6 5.7 & 1.3% 61+ 1.6 6.8 + 1.3° 7.2 & 1.6 7.8 £2.2%
eGFR (ml/m 454 £+ 30.2 110.0 £+ 14.4 71.3 & 8.3* 51.3 + 427 37.5 + 4.1¢ 223 +4.0° 10.0 £+ 2.8*
in/1.73 m?)
The ratio of 13+21 0.5 £ 0.9 0.6 £0.9 1.3 £3.0 12 4+ 2.1% 1.9 + 227 24 4+ 234
urine protein/
urine Cr
(mg/g Cr)
a-Klotho 626.6 & 452.3 1153.5 4+ 10859 645.6 &+ 244.1* 674.5 + 536.6* 542.8 £ 170.1* 513.5 & 153.4° 505.7 £ 152.9¢
(pg/ml)
Prorenin (ng/ml) 2.2 + 3.5 1.8 £22 1.5+24 14+ 15 2.8 £3.7 3.0+ 54 2.1 £29
(P)RR (pg/ml) 22.8 £ 11.2 193 £ 8.4 19.3 + 10.4 19.0 £ 11.3 24.7 £ 10.7¢ 26.7 &+ 10.4° 273 4 9.7*
# P < 0.05 vs Stage 1; P < 0.05 vs Stage 2; TP < 0.05 vs Stage 3A; *P < 0.05 vs Stage 3B; *P < 0.05 vs Stage 4
T P < 0.05 vs Stage 1-2; *P < 0.05 vs Stages 1-3A; *P < 0.05 vs Stages 1-3B; P < 0.05 vs Stages 1-4
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= = e e .
2 CERT N R A ’
0  EhNS s A e i A i e o e B Y G 0.-':*5’-1“! T T T T T
0 102030405060708090 110 130 150 0 1 2 2 4 5 6 7 8 9

eGFR (ml/min/1.73 m?)

Interestingly, soluble (P)RR levels were significantly higher
at stages 3B, 4, and 5 than at stages 1-3A (P < 0.05)
(Fig. 2; Table 1). The urine protein/Cr ratio was positively
associated with serum Cr and eGFR (data not shown).
Soluble (P)RR levels were positively associated with the
urine protein/Cr ratio (P < 0.01, r = 0.157) (Fig. 3).

@ Springer

Cr (mg/ml)

Relationship between soluble (P)RR levels
and angiotensin II (AT-II) receptor blocker (ARB)

therapy

With respect to antihypertensive drugs, soluble (P)RR
levels were significantly lower in patients treated with an
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ARB (n = 147) than in those without ARB therapy calcium channel blockers (n = 95), B-blockers (n = 18),
(n = 227) (P < 0.005) (Fig. 4). No significant differences and diuretics (n = 41) (P > 0.05).
in soluble (P)RR levels were noted between patients with

or without other antihypertensive drugs, including angio-
tensin-converting enzyme inhibitors (ACEIs) (n = 19), Relationship between soluble (P)RR levels and diabetes
mellitus and/or primary hypertension in CKD patients

* Soluble (P)RR levels were significantly lower in CKD
patients with diabetes mellitus (n = 53) than in nondia-
betic patients (n = 321) (P <0.05) (Fig.5a). CKD
patients with primary hypertension (n = 203) had signifi-
cantly lower levels of soluble (P)RR than those without
primary hypertension (n = 171) (P < 0.05) (Fig. 5b).
Moreover, CKD patients with both diabetes mellitus and
hypertension had significantly lower levels of soluble
(P)RR than those without these both conditions (P < 0.05).
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Fig. 4 Relationship between soluble (P)RR levels and ARB treat-
ment in CKD patients. Soluble (P)RR concentration was significantly
lower in patients treated with ARB than in those without ARB therapy
(P < 0.005)

Serum prorenin levels in CKD patients with diabetes
mellitus and/or primary hypertension

Serum prorenin levels were significantly higher in patients
with diabetes mellitus (n = 53) than in those without
(n =321)(4.23 £ 6.78 vs 1.82 £ 2.52, P < 0.05). Between
patients with (n = 203) and without (n = 171) hypertension,
the levels of serum prorenin showed no significant differences
(244 £ 425vs1.83 + 2.43, P = 0.09). Furthermore, serum
prorenin levels showed no significant differences between
patients treated with (n = 147) and without ARB therapy
(n = 227) (P = 0.862).

Relationship between soluble (P)RR, prorenin,
and soluble o-Klotho levels

The relationship between soluble (P)RR and levels of
a-Klotho—a possible biomarker of CKD—and prorenin
was examined. Soluble (P)RR levels were inversely asso-
ciated with o-Klotho levels (P < 0.005, r = —0.154)
(Fig. 7a); however, no correlation was seen with serum
prorenin levels (Fig. 7b).

Relationship between soluble (P)RR levels and various
clinical variables

The relationship between soluble (P)RR level and serum
levels of Hb, Cr, BUN, UA, prorenin, and a-Klotho, as well
as diabetes mellitus, primary hypertension, ARB therapy,
and the patient’s sex and age was examined using stepwise
multiple regression analysis. Soluble (P)RR levels corre-
lated well with eGFR (f = —0.248, F = 21.546). ARB
therapy (f = 0.148 and F = 8.754) and diabetes mellitus
(f = 0.112, F = 4.984) also correlated with soluble (P)RR
levels (Table 2).

Relationship between initial soluble (P)RR levels
and the followed rate of change of serum Cr and eGFR
for 1 year

The clinical parameters, including serum Cr and eGFR
levels, from 204 patients could be followed after 1 year.
We analyzed the correlation between basal soluble (P)RR
level and the change in serum Cr level (ACr) and eGFR
(AeGFR) in these patients after 1 year. The results showed
that basal soluble (P)RR levels were positively associated
with ACr (P < 0.05, r = 0.159) and inversely correlated
with AeGFR (P < 0.05, r = —0.148) (Fig. 8).

Discussion

This study demonstrated that soluble (P)RR levels corre-
lated positively with serum Cr, BUN, UA, and the urine
protein/Cr ratio, and inversely with the eGFR and Hb
levels. Notably, soluble (P)RR levels were significantly
higher in CKD patients at stages 3B, 4, and 5 than in
patients at stages 1-3A. The serum levels of soluble (P)RR
were significantly lower in CKD patients with diabetes
mellitus or primary hypertension than in those without
these conditions. Furthermore, serum soluble (P)RR con-
centrations were significantly lower in CKD patients trea-
ted with ARBs. Interestingly, basal soluble (P)RR levels

Fig. 5 Relationship between A B *
soluble (P)RR levels and 1 ey
diabetes mellitus and/or primary *p<0.05
hypertension in CKD patients. . 407 ~ 40+
Soluble (P)RR levels were E £
significantly lower in patients 2 30 g 30 4
with diabetes mellitus or E’ o
primary hypertension than in T 204 T 5
those without these conditions o o
(P < 0.05) % i % e
- -
)
2 0 : : ? o . :
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were positively associated with ACr and inversely associ-
ated with AeGFR for 1 year. To the best of our knowledge,
our study is the first to demonstrate a relationship between
serum soluble (P)RR levels and disease severity and pro-
gression, coexisting diabetes mellitus, and ARB treatment
in patients with CKD.

Soluble (P)RR levels in CKD stages 1-5
This is the first report to show that serum soluble (P)RR

levels are positively correlated with the CKD stage. The
expression of (P)RR in the kidneys raised the possibility

104

Table 2 Stepwise regression analysis of soluble (P)RR levels in
CKD

Variables Soluble (P)RR

B F P
eGFR —0.248 21.546 <0.001
ARB therapy 0.148 8.754 0.003
Diabetes mellitus 0.112 4.984 0.026

Stepwise multiple regression analysis was conducted with soluble
(P)RR level as the dependent variable. F values for the inclusion and
exclusion of variables were set at 4.0 per step

Total R? = 0.1543, P = 0.0001

@_ Springer



854

Clin Exp Nephrol (2013) 17:848-856

Fig. 8 Relationship between
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initial soluble (P)RR levels and
the followed rate of change of
serum Cr and eGFR for 1 year.
Basal soluble (P)RR levels were
positively associated with ACr
(P <0.05, r = 0.159) (a) and
inversely associated with
AeGER (P < 0.05, r = —0.148)

(b)

soluble (P)RR (pg/ml)

the rate of change of Cr (ACr)
[followed Cr - initial Cr)/initial Cr]

that prorenin may be able to generate AT-I from angio-
tensinogen by binding to (P)RR. The subsequent overpro-
duction of AT-II may then stimulate inflammation and
fibrosis in the renal interstitial space. Alternatively, (P)RR
may play a role in the tubular transport of water and
electrolytes, including H* [13]. A previous report showed
increased expression of (P)RR in the remnant kidneys of 5
of 6 nephrectomized rats [14]. In a study conducted by
Ichihara et al. [15], a (P)RR blocker administered to rats
with streptozotocin-induced diabetes or spontaneous
hypertension was able to inhibit the development and
progression of end-organ damage in these animals, and
showed greater benefit than conventional inhibitors in
relation to the RAS in diabetic AT-II type la receptor-
deficient mice. Recently, it has been known that (P)RR
functions in a renin-independent manner as an adaptor
between Wnt receptors and the vacuolar H'—adenosine
triphosphatase (V—ATPase) complex. Moreover, (P)RR
and V-ATPase were required to mediate Wnt signaling
[16]. If soluble (P)RR levels could reflect the (P)RR level
in kidney tissue,v the increased levels of soluble (P)RR
might promote the progression of kidney injury and fibrosis
in CKD. One might ask whether it is possible that the
increased levels of soluble (P)RR were simply due to
decreased GFR. A recent report suggested that soluble
(P)RR in the renal medulla is stimulated during AT-II-
dependent hypertension and that this form of the (P)RR is
secreted into the tubular fluid [17]. This finding indicates
that soluble (P)RR levels might be influenced by decreased
GFR in rats. However, human studies have yet to address
this possibility and further research is required. Although
(P)RR-mediated signaling is believed to be involved in the
development of glomerular diseases, the expression of
(P)RR in podocytes and its function in autophagy suggests
a physiological, rather than a pathological role in the kid-
neys [18]. At present, the function of (P)RR in CKD
remains poorly understood. On the basis of our findings, we
hypothesized that elevated serum levels of (P)RR may
promote the development of renal failure.
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Soluble (P)RR levels in patients with diabetes mellitus
or primary hypertension

We noted that serum levels of soluble (P)RR were signif-
icantly lower in CKD patients with diabetes mellitus;
however, the reason for this discrepancy is unknown.
While relatively few studies have described the regulatory
mechanisms of (P)RR expression, studies by Unger et al.
[14, 19] suggest that (P)RR expression may be regulated by
renin through a negative feedback loop. In fact, it has been
reported that upregulation of renal renin and downregula-
tion of renal (P)RR were observed after angiotensin-con-
verting enzyme inhibition and change to a low-salt diet
[20]. Renin downregulates (P)RR expression by a process
involving the transcription factor promyelocytic zinc finger
protein [19]. As such, whether the increased expression of
(P)RR in CKD is a result of a negative feedback signal in
the form of decreased intrarenal renin, remains to be
clarified.

Soluble (P)RR levels in CKD patients with ARB
therapy

A significantly lower level of serum soluble (P)RR was
observed in patients treated with ARBs, consistent with the
findings of a previous study by Siragy et al. [21], which
showed that AT-I receptor blockade with valsartan signif-
icantly inhibits the renal expression of (P)RR mRNA and
protein in diabetic rats. The AT-I receptor regulates renin
production through a short-loop negative feedback mech-
anism that results in decreased renin production during the
stimulation of this receptor [22]. One possibility may be
related to the increased AT-II production and expression of
AT-I receptors in diabetes [23, 24], leading to enhanced
oxidative stress through an increase in NADPH oxidase
activity [25]. Blockade of AT-I receptors reduces oxidative
stress and superoxidase production in the kidney of strep-
tozotocin-induced diabetic rats [26]. Direct renin inhibition
using aliskiren may also exert a similar effect by reducing
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the levels of AT-II. Ferri et al. [27] demonstrated that
aliskiren reduces (P)RR expression and activity in cultured
human aortic smooth muscle cells. An indirect mechanism
by which aliskiren reduces (P)RR expression was postu-
lated by Feldman et al. [28] after the administration of
aliskiren in diabetic TG(mRen-2)27 rats. By blocking the
catalytic activity of renin, aliskiren markedly reduced not
only AT-II levels and signaling through AT-I and AT-II
receptors but also the negative feedback by which AT-II
inhibits prorenin transcription [28] and renin release [29,
30]. In our study, the decreased serum (P)RR levels in
CKD patients treated with ARBs suggest that ARBs may
slow the progression of CKD. On the other hand, in the
present study, there were no significant differences in sol-
uble (P)RR levels between patients with (n = 19) or
without ACEIs (n = 351) (p = 0.37). However, we might
not be able to meaningfully evaluate the relationship
between soluble (P)RR and CKD patients treated with
ACEIs because only a limited number of patients were
treated with ACEIs.

One might ask whether the effect of ARBs on soluble
(P)RR levels in patients with diabetes or hypertension was
excluded in this analysis. We could not completely exclude
the effect of ARBs on soluble (P)RR levels in patients with
diabetes or hypertension, because the majority of these
patients had been treated with ARBs. In the future, we need
to prospectively study the effect of ARBs on soluble (P)RR
levels in healthy subjects and patients with diabetes or
hypertension before treatment.

Several limitations to the present study warrant mention.
First, we did not include healthy volunteers and were
therefore unable to examine soluble (P)RR levels in heal-
thy individuals for comparison. Age may also be associated
with changes in soluble (P)RR levels, and we hope to
investigate this possibility in future studies. Second, our
study is retrospective cross-sectional in nature, and we did
not examine possible changes in soluble (P)RR levels over
time. Monitoring the levels of soluble (P)RR over time in
CKD would be useful in assessing its potential role as a
biomarker of renal disease progression. Additionally, our
present study is a retrospective cross-sectional study, and
monocytes or lymphocytes from the patients at different
stages of CKD were not preserved; therefore, we could not
measure monocyte or lymphocyte (P)RR levels from these
patients at the time of inclusion into our study. Based on
the results of the present study, we would like to determine
the relationship between soluble (P)RR and the (P)RR
levels in monocytes or lymphocytes and kidney tissue in a
future prospective study. Third, we were unable to examine
renin activation levels because the samples had been pre-
served before testing; this information would have given
further insight into the role of soluble (P)RR in the RAS.

In summary, our findings indicate that serum levels of
soluble (P)RR are correlated with renal function in CKD.
We speculate that serum soluble (P)RR might influence the
progression of renal injury in patients with CKD. Previous
studies with animal disease models that block the function
of (P)RR have suggested that (P)RR is involved in the
pathogenesis of diabetes mellitus and hypertension, and
that prorenin/(P)RR is involved in the onset and progres-
sion of organ damage. Therefore, further investigation of
prorenin/(P)RR in CKD may clarify the progression of
disease and the potential role of soluble (P)RR as a marker
of CKD progression. Further studies are necessary to gain a
clearer understanding of the function of soluble (P)RR in
CKD and its role in the pathogenesis of renal injury.
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Summary

Megalin and CKD

Shoji Kuwahara*, Michihiro Hosojimax* *,
Akihiko Saito=*

The kidneys are one of the most important organs in
regulation of homeostasis. Proximal tubules play a central
role for this function. Megalin, a giant protein belonging
to the low density lipoprotein receptor family, is ex-
pressed in proximal tubule cells and is involved in recep-
tor-mediated endocytosis. Megalin not only acts to reab-
sorb many ligands, including albumin, but also acts to
regulate functions of various receptors and transporters.
It is also likely to be involved in intracellular signal trans-
duction. Recently, it has been revealed that excessive
megalin-mediated endocytosis results in damage to the
proximal tubule cells. Therefore, megalin is postulated to
be a unique target for diagnosis and treatment of CKD,

Key words : Megalin, Endocytosis, CKD, diabeticnephropathy
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