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These recent results demonstrated some advantage for
patients treated with GO. In addition, induction mortality
was not increased in these studies. Efficacy was observed,
typically in patients with favorable risk, and sometimes in
intermediate risk. The reason for this has not been eluci-
dated. Molecular analyses concomitant with clinical out-
come data will be needed to address this in the future.

Doses of GO and anthracyclines differed in these stud-
ies. From the recent studies, 3—6 mg/m” of GO for 1 day
and 50-60 mg/m*> of DNR for 3 days may be chosen.
Ongoing and future studies may help to demonstrate the
optimal dosage of these agents in combination chemo-
therapy including GO.

Low-dose AraC (LDAC, 20 mg, twice a day) was
administered randomly with or without GO (5§ mg) in 495
elderly patients with AML [91]. GO improved OR rate, but
not OS, at 1 year. Improvement of OS in elderly AML
remains a challenge for treatments, including GO.

GO for pediatric AML

Reports of results from pediatric patients treated with GO
remain relatively limited. Twelve children with relapsed/
refractory AML received GO (1.8-9 mg/m® at 2-week
intervals for 1-2 doses) [92]. Five children responded to
treatment with blast reduction, but no child achieved CR.
One patient treated GO after HSCT developed reversible
VOD.

Seventeen children with relapsed/refractory AML
received GO (3 mg/m” on days 1, 4 and 7) plus AraC
(100 mg/m2 for 7 days) (GOCYT), and seven of these
received GO-based consolidation [93]. The OR rate was 35
and 53 % after induction therapy and consolidation therapy
with GO, respectively. VOD was not observed.

Thirty children with AML, who were refractory to re-
induction at first relapse, received GO (7.5 mg/m2 at
2-week intervals for 1-2 doses) [94]. The OR rate was
37 %, and 3-year OS was 27 %. Grade 3—4 bilirubinemia
and transient transaminitis were observed in one and two
cases, respectively.

Twenty-nine children with relapsed/refractory AML
received GO (6, 7.50r 9 mg/m2 at 2-week intervals for two
doses) [95]. In 13 (45 %) of them, GO was administered
after HSCT. The OR rate was 97 %. Grade 3 or 4 biliru-
binemia and transaminitis were observed in 7 and 21 %,
respectively. VOD was observed in seven (26 %) patients,
six of whom had received HSCT.

A group of 230 children with untreated AML were
treated with high-dose (18 g/m?) or low-dose (2 g/m?)
AraC, DNR and ETP (ADE; induction 1), followed by
ADE with or without GO (ADE; induction 2) [96]. ADE
plus GO was shown to be feasible. CR was achieved in

80 % after induction 1, and 94 % after induction 2. The
3-year EFS and OS were 63 and 71 %, respectively.

In the Children’s Oncology Group (COG)-AAMLOOP2
trial, the maximum tolerated dose (MTD) of GO in com-
bination with AraC and MIT, and with AraC and l-aspar-
aginase was analyzed, and was concluded to be 3 and
2 mg/m?, respectively [97].

A group of 350 children with previously untreated AML
were enrolled to the COG-AAMLO3P1 [98]. GO (3 mg/m?
on day 6 of the first course) was administrated with che-
motherapy with DNR, AraC, and ETP. The CR rate was
83 % after the first course. The mortality rate after the first
course was 1.5 %. The 3-year EFS and OS rates were 53
and 66 %, respectively.

The Nordic Society of Pediatric Hematology and
Oncology (NOPHO)-AML 2004 trial estimated post-con-
solidation effect of GO (6 mg/m* at 3-week intervals for
two doses) in children with AML. Of a total of 120 patients
randomized, 59 received GO [99]. GO was well tolerated,
but the relapse rate, median time to relapse, the 5-year EFS
and OS were not different between the two groups.

Given these equivocal results, the efficacy of GO in
children with AML remains uncertain.

In vitro efficacy of GO for APL

In ourin vitro study, GO showed equivalent effects on ATRA
and/or ATO-resistant APL cells unless they expressed P-gp
[100]. The cell lines used in our study are NB4, ATRA-
resistant NB4 (NB4/RA), P-gp-positive NB4 and NB4/RA
(NB4/MDR and NB4/RA/MDR) and ATO-resistant NB4
(NB4/As). GO did not exhibit cross-resistance with ATRA-
and ATO-resistance. GO is likely useful for induction ther-
apy after resistance to these drugs has been acquired.

Relapsed and recurrent APL

While ATRA combined with chemotherapy has been the
standard treatment for patients with APL, approximately
20 % undergo relapse [101-103]. Several salvage thera-
pies, including Am80, ATO, and stem cell transplantation,
have been introduced for the treatment of APL [104, 105].
GO was also administered to APL, and the successful use
of this therapy has been reported for patients with newly
diagnosed or relapsed APL [106-108].

Several ideas have been proposed to explain the efficacy
of GO for APL [100, 109]. First, a large amount of CD33 is
commonly expressed on the surface of APL cells. Second,
the level of P-gp on the surface of APL cells is lower than
that of AML. Third, APL cells are highly sensitive for free
calicheamicin.
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Several investigators have reported the clinical efficacy
of GO for patients of relapsed APL (Table 5). Lo-Coco
et al. [107] reported that 14 of 16 patients with molecularly
relapsed APL achieved molecular remission (MR) after GO
monotherapy (6 mg/m* at 2-week intervals for three
doses). Of 14 responders, seven (50 %) remained in sus-
tained MR for a median of 15 months. GO was adminis-
tered again in two patients with relapse, and both obtained
a new MR.

We treated patients, who were in a third morphologic
relapse with a considerable number of APL cells, by GO
monotherapy (9 mg/m” on days 1 and 15). They developed
prominent DIC after GO treatment [108]. Both patients
achieved CR. One of the patients was treated with con-
solidation chemotherapy, but the other was not. Both
patients had a considerably long remission period. GO may
represent another treatment option if stem cell transplan-
tation is not being considered in the near future. Treatment
with GO may transiently increase the severity of DIC, as
APL cells collapse rapidly.

Aribi et al. [109] reported the efficacy of a combination
therapy consisting of ATO, ATRA, and GO in eight
patients with APL in first recurrence. Patients were treated
with ATO until CR, and then received the consolidation
therapy including ATO, ATRA and GO (9 mg/m?) once a
month for 10 months. The second CR was longer than the
first CR in 75 %. All patients achieved MR. There were no
grade 3 or 4 non-hematological toxicities.

GO (3-6 mg/m2 for two doses) was administered in
three elderly patients with APL who had molecular relapse
and were deemed unfit for intensive chemotherapy [110].
All of the patients achieved second MR, and did not
relapse. The study suggested that low-dose GO is effective
to treat MR in elderly APL patients.

In a Japanese post-marketing study of GO for APL,
whose results were partially described in the previous
section [76], remission duration of first CR and number of
relapses influenced CR rates, but previous usage of ATO
did not. Treatment-related adverse events (grade 3 or 4) in
APL were similar to those seen in AMIL.. GO may be more
effective in APL compared to AML, and relatively safe in
relapsed/refractory APL.

These reports show that GO is effective for APL patients
with molecularly relapsed and advanced relapsed forms of
the disease. These data also support the use of GO treat-
ment for newly diagnosed APL.

Newly diagnosed APL
In the US study, 19 newly diagnosed patients with APL

were treated with GO (9 mg/mz) [106]. Patients received
eight additional courses (once every 4-5 weeks) of GO and
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ATRA after CR was achieved. GO was shown to be fea-
sible. CR and MR were achieved in 84 and 74 %,
respectively. All patients tested during the study were
PCR-negative 24 months from CR.

In another study, 19 untreated patients with high-risk
APL were treated with GO (9 mg/m? on day 1) in addition
to ATRA plus ATO as induction therapy [111]. Fifteen
(79 %) out of 19 cases achieved CR, three cases relapsed.
The authors suggested that GO was still effective for high-
risk APL treated with ATRA and ATO.

In a third study, 82 newly diagnosed APL patients were
treated with ATRA, ATO and GO [112]. The first cohort
included 65 patients, who received ATRA followed by
ATO. GO (9 mg/m? on day 1) was administered in high
risk. The second cohort included 17 patients, who received
ATRA and ATO simultaneously. GO (9 mg/m?) was added
on high risk or increase of WBC count above 30 x 10°/L
during induction. CR was achieved in 95 and 81 % cases
with low-risk and high-risk APL, respectively; 3-year OS
was 85 %. The addition of GO to ATRA plus ATO may
represent a promising initial therapy for high-risk APL.

Larger clinical studies of GO for the treatment of
relapsed/refractory APL are warranted to obtain clearer
clinical evidence. The results may suggest how GO will be
integrated into the management of APL. The Japan Adult
Leukemia Study Group (JALSG) has also launched pro-
spective studies for APL that include GO.

GO has introduced a new perspective into the treatment
of AML. However, the second evaluation of this treatment
did not yield positive results. Recent studies have shown
the efficacy of GO in AML, with favorable risk in APL as
well. Subsequent evaluations should focus on the efficacy
of GO in core binding factor (CBF) leukemia and its
mechanism of action, which may lead to the re-approval of
GO.
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