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ABSTRACT

Background. There is increasing evidence that microR-
NAs are differentially expressed in many types of cancers.
Despite progress in analyses of microRNAs in several
types of cancers, the functional contributions of microR-
NAs to pancreatic cancer remain unclear.

Methods. In the present study, the expression levels of
specific microRNAs identified by microarray analyses were
examined in a panel of 15 pancreatic cancer cell lines. We
then investigated the functional roles of these microRNAs
in the proliferation and invasion of pancreatic cancer cells.
Results. Based on the microarray data, we found frequent
and marked overexpression of miR-10a, miR-92, and miR-
17-5p in pancreatic cancer cell lines. Microdissection
analyses revealed that miR-I0a was overexpressed in
pancreatic cancer cells isolated from a subset of primary
tumors (12 of 20, 60%) compared with precursor lesions
and normal ducts (P < .01). In vitro experiments revealed
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that miR-10a inhibitors decreased the invasiveness of pancre-
atic cancer cells (P < .01), but had no effect on their
proliferation. Inhibition of HOXAI, a target of miR-10a, pro-
moted the invasiveness of pancreatic cancer cells (P < .01).
Conclusions. The present data suggest that miR-10a is
overexpressed in a subset of pancreatic cancers and is
involved in the invasive potential of pancreatic cancer cells
partially via suppression of HOXAI.

Pancreatic cancer is the fourth most common cause of
tumor-related death in the industrialized world."* Only
10-20% of pancreatic cancer patients are candidates for
surgery at the time of presentation, and fewer than 20% of
patients who undergo curative resection are alive after
5 years.”" Despite recent progress, there are no modalities
for early detection of pancreatic cancer. With the exception
of a few recent reports describing successful use of adju-
vant chemotherapy, there have been no reports of effective
treatments for advanced pancreatic cancer, including local
and metastatic diseases.” To improve the prognosis of
patients with pancreatic cancer, novel effective screening
strategies and/or treatments are needed.

MicroRNAs (miRNAs) are small noncoding RNA gene
products of approximately 22 nucleotides that are found in
a variety of organisms. They play key roles in regulating
the translation and degradation of mRNAs through base-
pairing to partially complementary sites, predominantly in
the 3'-untranslated regions of mRNAs.”® Although the
biologic functions of most miRNAs are not yet fully
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understood, it has been suggested that they are involved in
various biologic processes, including cell proliferation, cell
death, stress resistance, and fat metabolism, through reg-
ulation of gene expression.”

There is increasing evidence that miRNAs are mutated or
differentially expressed in many types of cancers. Expression
of the miRNA /et-7 is often reduced in lung cancers with poor
prognoses, and deletion of miRNAs Mir-15 and Mir-16
occurs in 68% of patients with chronic lymphocytic leuke-
mia.'™"! In addition, expression of miR-143 and miR-145 is
downregulated in colon carcinomas, and expression of the
precursor miR-155 is high in Burkitt’s lymphoma.'*'? The
miR-17-92 cluster has been reported to have oncogenic
functions in human B-cell lymphomas and lung cancers.'*'
These reports are consistent with the hypothesis that miRNAs
play substantial roles in the pathogenesis of human cancers.

Recently, the development of microarrays containing all
known human miRNAs has made it possible to perform
miRNA expression profiling.'® miRNA expression profiles
have been shown to be potential tools for cancer diagno-
sis.!” Several investigators have reported that microarray-
based miRNA profiling identified miRNAs that were
differentially expressed in pancreatic cancer.'®'* However,
it is difficult to conclude that the identified differences in
gene expression accurately reflect the differences between
cancer cells and normal ductal epithelial cells because
these analyses were performed using RNA samples from
primary pancreatic tissues without microdissection.

In the present study, we observed overexpression of
miR-10a in pancreatic cancer cells, and the following data
suggest that miR-10a is involved in the invasiveness of
pancreatic cancer cells partially via suppression of HOXAI,
which was reported to be involved in lung cancer, gastric
cancer, and breast cancer.”’™**

MATERIALS AND METHODS
Pancreatic Cell Lines and Tissues

A total of 15 pancreatic cancer cell lines including
NOR-P1, which was established in our laboratory, and an
immortalized human pancreatic ductal epithelial cell line
(HPDE) were used.”>** All cells were maintained as pre-
viously described.”**> Tissue samples were obtained as
described previously.”® The details are described in the
Supplemental materials.

Laser Microdissection

Laser microdissection was performed as described pre-
viously.””*® The details are described in the Supplemental
materials.

miRNA Microarray Expression Analysis

Microarray analyses were carried out using a Filgen-
Array miRNA 384 (Filgen, Nagoya, Japan) containing
mirVana miRNA Probe Set ver. No. 1 (Ambion) as shown
in the Supplemental materials.

Quantitative Reverse Transcription-Polymerase Chain
Reaction (qRT-PCR) for Analysis of miRNA Expression

Cells were analyzed by gqRT-PCR with a mirVana gRT-
PCR miRNA Detection Kit (Ambion) or a TagMan Micr-
oRNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA) according to the manufacturer’s instruc-
tions. The details are described in the Supplemental
materials.

Transfections

Cells were transfected by electroporation with a
Nucleofector System (Amaxa Biosystems, Koln, Germany)
as described previously.”® The details are described in the
Supplemental materials.

Cell Proliferation Assay

Cell proliferation was analyzed at various time points by
measuring propidium iodide (PI) incorporation as descri-
bed previously.”” The details are described in the
Supplemental materials.

Invasion Assay

The invasiveness of cancer cells was evaluated by
counting the number of cells invading a Matrigel-coated
transwell as reported previously.”® The details are descri-
bed in the Supplemental materials.

Quantitative Analysis of HOXAI Levels by One-Step
gRT-PCR

One-step qRT-PCR was performed using a QuantiTect
SYBR Green RT-PCR Kit (Qiagen, Tokyo, Japan) with a
Chromo4 Real-Time PCR Detection System (Bio-Rad
Laboratories) as described previously.”® The details are
described in the Supplemental materials.

Inhibition of HOXAI Expression by RNA Interference

Inhibition of HOXAI expression was achieved by RNA
interference with small interfering RNAs (siRNAs) as
described previously.”® The details are described in the
Supplemental materials.
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Western Blot Analysis

Protein expression was analyzed by western blotting as
described previously.”’ The details are described in the
Supplemental materials.

Statistical Analyses

For microarray data analysis, Microarray Data Analysis
Tool Ver. 1.2 was used. For in vitro experiments, values
were expressed as the mean =+ standard deviation (SD).
The details of other analyses are described in the Supple-
mental materials.

RESULTS

miRNA Genes Differentially Expressed Between
CAPAN-1 and HPDE Cells

We used a miRNA microarray to obtain the miRNA
expression profiles of a pancreatic cancer cell line, CA-
PAN-1, and an immortalized human pancreatic ductal
epithelial cell line, HPDE. When we compared the miRNA
expression profiles between these 2 cell lines, 10 miRNAs
showed significant differences in their expression levels
(P < .01, Table 1). Specifically, 8 miRNAs were upregu-
lated and 2 miRNAs were downregulated in CAPAN-I1
cells compared with their levels in HPDE cells. Of these
miRNA genes, 5, namely miR-17-5p, miR-10a, miR-92,
miR-29b, and miR-450, exhibited particularly large differ-
ences in their expression levels (P < .001, Table 1). It has
been reported that miR-17-5p, miR-29b, and miR-92 are
overexpressed in pancreatic cancer, consistent with the
present microarray data.’”

To confirm our microarray data, we subjected 6 of the
differentially expressed miRNAs to qRT-PCR analysis.

TABLE 1 10 miRNAs differentially expressed in CAPAN-1 cells vs
HPDE cells

Probe name Normalized intensity =~ Ratio Type P value
CAPAN-1  HPDE

hsa_miR_16 642.2 2243 287 Up .0021
ambi_miR_7103  329.2 150.8 219  Up .0023
hsa_miR_17_5p 387.6 179.9 2.16 Up .0002
hsa_miR_10a 338.1 164.4 206 Up .0007
hsa_miR_92 355.3 180.3 1.97 Up .0006
hsa_miR_423 308.9 174.7 1.77  Up .0087
hsa_miR_19b 295.7 186.7 1.59 Up 0071
hsa_miR_29b 276.9 179.7 1.55 Up .0002
hsa_miR_450 306.1 556.7 0.55 Down .00002
hsa_miR_205 1743 2715 0.65 Down .0029

Specifically, we analyzed the expression levels of miR-17-
5p, miR-92, miR-34, miR-200c, miR-203, and miR-10a in
the miRNA fractions obtained from CAPAN-1 and HPDE
cells. The gqRT-PCR analyses revealed a greater difference
in miR-10a expression compared with that observed in the
microarray analysis. In the analyses of the expression
levels of miR-17-5p, miR-34, miR-203, and miR-92, qRT-
PCR showed similar results to the microarray analyses
(Fig. la), while the fold change of miR-203 expression
differed between the microarray and qRT-PCR data.

Comparisons of Cancer-specific miRNA Expression
Levels in 15 Pancreatic Cancer Cell Lines and HPDE
Cells

Next, we compared the expression levels of miR-17-5p,
miR-92, and miR-10a in 15 pancreatic cancer cell lines
using a small RNA-rich fraction. We found that all 15
pancreatic cancer cell lines expressed miR-10a. In partic-
ular, 7 of the 15 pancreatic cancer cell lines expressed
remarkably high levels of miR-10a and 3 cell lines (KP-3,
Suit-2, and Hs766T) expressed moderate levels of miR-
10a, whereas miR-10a was not expressed in HPDE cells
(Fig. 1b). Similar results were obtained for miR-92 and
miR-17-5p (Supplemental Fig. 1a, b).

Overexpression of miR-10a in Microdissected
Pancreatic Cancer Cells and Its Correlation
with HOXA1 Expression

Recently, Weiss et al. reported that miR-10a was an
important mediator of metastasis formation in pancreatic
tumor cells.’’ Therefore, we focused on the expression and
function of miR-10a in pancreatic cancer. To confirm
overexpression of miR-I0a in primary pancreatic cancer
cells derived from resected pancreatic tumors in vivo, we
performed microdissection to isolate pancreatic IDC cells
and normal ductal cells from bulk pancreatic tissues and
measured their levels of miR-10a expression. Recently,
PanIN lesions have been recognized as precursor lesions
for conventional pancreatic cancer.”> Therefore, to inves-
tigate the changes in miR-10a expression during pancreatic
carcinogenesis, we also microdissected PanIN cells
(PanIN-1B from 9 lesions; PanIN-2 from 2 lesions) and
measured their levels of miR-10a expression. We found
that IDC cells expressed significantly higher levels of miR-
10a than PanlIN cells and normal ductal cells (PanIN cells,
P < .01; normal ductal cells, P = .001; Fig. 1c). Further-
more, 14 of 20 IDC samples (70%) expressed higher levels
of miR-10a than any of the normal samples, consistent
with the results for the cultured cells. However, there were
no differences in miR-10a expression between PanIN and
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FIG.1 a Comparisons of microarray and qRT-PCR data. Total
RNAs with miRNA fractions were extracted from CAPAN-1 and
HPDE cells and subjected to qRT-PCR analysis to measure the levels
of indicated miRNAs. Most of the qRT-PCR data are consistent with
the microarray data. b miR-10a expression in 15 pancreatic cancer
cell lines and HPDE cells. ND not detected. ¢ Overexpression of miR-
10a in microdissected pancreatic cancer cells derived from resected

normal ductal cells (Fig. 1c). Taken together, overexpression
of miR-10a was found in invasive cancer cells but not in
early precursor lesions or normal ductal cells.

Recently, miR-10a was rteported to downregulate
HOXAI mRNA in the human chronic myeloid leukemia
blast crisis cell line K562.% Therefore, to investigate the
correlation between miR-10a and HOXAI expressions in
vivo, we measured the miR-10a and HOXAI expression
levels in IDC cells microdissected from primary pancreatic
cancer tumors and found an inverse correlation between
miR-10a and HOXAI expressions (P = .018, r = .833;
Fig. 1d). We also measured HOXAI expression in PanIN
cells (n = 4) and normal ductal cells (n = 3), but did not
detect any measurable levels of HOXAI expression.

pancreatic tumors. IDC cells were isolated from 20 pancreatic tumor
sections, as well as PanIN cells from 11 sections and normal epithelial
cells from 10 sections with the histologic appearance of normal
pancreas. d There is a significant inverse correlation between miR-
10a and HOXAI1 expressions in IDC cells microdissected from
primary pancreatic tumors (P = .018, r = .833; Spearman rank
correlation test)

Effects of miR-10a on Cancer Proliferation
and Invasion

In a preliminary study, we found that the expression of
miR-10a changed depending on the degree of confluence of
cultured cells. Hwang et al. also reported that cell-cell
contact globally activates microRNA biogenesis.”* These
data suggest that expression of miR-10a is also regulated in
a confluence-dependent manner.

Next, we investigated the functional role of miR-10a in
pancreatic cancer cells by performing inhibition analyses in
vitro. We inhibited miR-10a activity using an antisense
oligonucleotide (anti-miR-10a inhibitor) specific for miR-
10a. To clarify the specific activity of miR-10a, we also
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analyzed the effects of a nonsense miRNA inhibitor (neg-
ative control inhibitor) and an anti-miR-92 inhibitor. First,
we examined the effects of the anti-miR-10a inhibitor on
miR-10a activity in pancreatic cancer cells by measuring
the levels of HOXAI mRNA. CAPAN-1 and PANC-1 cells
expressing high levels of miR-10a, SUIT-2 cells expressing
moderate levels of miR-10a, and MIA PaCa-2 cells
expressing very low levels of miR-10a were transfected
with the nonsense inhibitor, anti-miR-10a inhibitor, or anti-
miR-92 inhibitor, cultured for 3 days, and harvested at the
same culture condition (90% confluence) for analysis of
HOXAI mRNA expression. HOXAI! mRNA expression
was remarkably increased in the 3 pancreatic cancer cell
lines highly or moderately expressing miR-10a after
transfection of the anti-miR-10a inhibitor (Fig. 2), consis-
tent with the results of a previous study.*® The nonsense
inhibitor did not affect the expression of HOXAI. To
investigate the effect of the anti-miR-/0a inhibitor on

Fold change in
HOX A1 expression

3 I §
’ T
n R B

B Nonsense inhibtor
Anti-miR-10a inhibitor

CAPAN-1 PANC-1 SUIT-2
Nonsense miR-10a HOX A1 B-actin
inhibitor inhibitor (fold change)

HOX Al 20 PANC-1 cells

) R - 1.6
B-actin , M - .
1.2
HOX A2 “—m—" o
B-actin 04 ;
PANC-1 cells Nonsense miR-10a
inhibitor inhibitor
Nonsense miR-10a Nonsense miR-10a
inhibitor inhibitor inhibitor inhibitor
B : 4
HOX A1 : : i
B-actin me

SUIT-2 cells CAPAN-1 cells

FIG. 2 Effects of an anti-miR-10a inhibitor on HOXAI expression.
The indicated cells were harvested at 3 days after a second
transfection with an anti-miR-/0a inhibitor or a nonsense inhibitor.
Total RNA and protein were extracted from the cells and subjected to
gRT-PCR and western blotting to measure the HOXAI mRNA and
protein expressions, respectively. HOXAI mRNA expression was
normalized to the corresponding 78S rRNA expression

HOXAI protein expression, we performed western blotting
and found an increase in HOXAI protein expression after
transfection of the anti-miR-10a inhibitor (Fig. 2). These
data suggest that transfection of the anti-miR-10a inhibitor
efficiently suppressed miR-10a activity in the present
study. In contrast, there were no significant changes in
HOXAI expression in low-miR-10a-expressing MIA PaCa-
2 cells after transfection of each inhibitor. Furthermore, we
investigated the effect of the anti-miR-10a inhibitor on
HOXA2 expression and found no changes in HOXA2
expression (Fig. 2).

Next, we investigated the effects of miR-10a on the
proliferation of pancreatic cancer cells. High-miR-10a-
expressing CAPAN-1 and PANC-1 cells, moderate-miR-
10a-expressing SUIT-2 cells, and low-miR-10a-expressing
MIA PaCa-2 cells were transfected with the nonsense
inhibitor, anti-miR-10a inhibitor, or anti-miR-92 inhibitor,
seeded in 24-well plates at densities of 2-5 x 10 cells/
well and cultured for 1-4 days. Proliferation activity was
assessed by measuring PI incorporation at the indicated
times after the transfection. The anti-miR-10a inhibitor had
no significant effects on the growth of SUIT-2, PANC-1,
CAPAN-1, or MIA PaCa-2 cells (Supplemental Fig. 2),
although it appeared to slightly promote the proliferation of
PANC-1 cells. We also performed colony formation and
soft agar assays to evaluate the effects of the miR-10a
inhibitor on cell growth at very low densities or anchorage-
independent growth and found no effects.

We investigated the effects of miR-10a on the inva-
siveness of pancreatic cancer cells using an in vitro
invasion assay. PANC-1, CAPAN-1, SUIT-2, KP-2, and
MIA PaCa-2 cells were transfected with the nonsense
inhibitor, anti-miR-/0a inhibitor or anti-miR-92 inhibitor,
seeded in Matrigel-coated inner wells at a density of
1 x 10° cells/well and cultured for 2472 h. The number
of invading PANC-1 cells transfected with the anti-miR-
10a inhibitor was remarkably lower than the numbers of
invading PANC-1 cells transfected with the nonsense
inhibitor or anti-miR-92 inhibitor (Fig. 3a), and the dif-
ference was significant (P < .01, Fig. 3b). Similarly, the
number of invading SUIT-2 cells transfected with the anti-
miR-10a inhibitor was lower than the numbers of invading
SUIT-2 cells transfected with the nonsense inhibitor or
anti-miR-92 inhibitor (Fig. 3a), and this difference was also
significant (P < .01, Fig. 3b). Similar results were obtained
for the invasiveness of CAPAN-1 cells transfected with the
anti-miR-10a inhibitor (P < .01).

Subsequently, we performed the same experiments
using another type of miR-10a inhibitor, namely a miR-
CURY LNA knockdown probe (LNA-10a). We found
similar inhibitory effects of LNA-10a on the invasion of
PANC-1 cells. These data suggest that miR-10a may have a
specific role in the invasion of pancreatic cancer cells. In
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FIG. 3 Effects of an anti-miR-/0a inhibitor or a miR-10a precursor
on the invasive potential of pancreatic cancer cells. After the second
transfection with indicated inhibitors, the cells were seeded into the
inner wells coated with Matrigel and incubated for 24-72 h. The
numbers of cells invading the Matrigel-coated membranes were
counted. a Representative photomicrographs of PANC-1 and SUIT-2
cells (original magnification, x40; right lower insets, x200) treated

contrast, there were no differences in invasiveness between
low-miR-10a-expressing MIA PaCa-2 cells and KP-2 cells
transfected with any of the inhibitors.

We further investigated the effects of a miR-10a pre-
cursor on the proliferation and invasion of low-miR-10a-
expressing KP-2 cells. The miR-10a precursor significantly
increased the number of invading KP-2 cells compared
with the control precursor (P < .01, Fig. 3c, upper),
although there were no differences in the proliferation of
KP-2 cells transfected with the miR-10a precursor or
control precursor (Supplemental Fig. 3). We also investi-
gate the effects of a miR-10a precursor on the invasion of
moderate-miR-10a expressing SUIT-2 cells and found
similar results (Fig. 3c, lower).

Involvement of HOXAI in miR-10a-Induced
Invasiveness of Pancreatic Cancer

In the present study, we confirmed that HOXAI was a
target of miR-10a (Fig. 2). To investigate the involvement

e v

miR-10a precursor Control precursor ~ miR-10a precursor

with the indicated inhibitors. b The anti-miR-10a inhibitor suppresses
the invasion of PANC-1 (upper) and SUIT-2 (lower) cells ("P < .01).
¢ The miR-10a precursor was transfected into KP-2 cells expressing
low levels of miR-10a and SUIT-2 cells expressing moderate levels of
miR-10a. The cells were seeded for invasion assays at 2 days after
transfection and the numbers of invading cells were counted at 36
hours after seeding

of HOXAI in the mechanism of miR-I0a-induced inva-
siveness of pancreatic cancer cells, we evaluated the effects
of inhibiting HOXAI expression on the invasiveness of
pancreatic cancer cells. We inhibited HOXAI expression
using siRNAs targeting HOXAI (siRNA-1 and siRNA-2),
which reduced the HOXAI mRNA levels in PANC-1 cells
to less than 20% of the control level from 24-48 hours after
transfection. We also found that these siRNAs significantly
decreased the protein levels of HOXAl (Supplemental
Fig. 4). We performed cell proliferation and invasion
assays using these siRNA-transfected cells. The siRNAs
targeting HOXAI significantly increased the numbers of
invading cells compared with a control siRNA (P < .01,
Fig. 4a), but had no effect on proliferation. We further
investigated the effects of these siRNAs on the invasive-
ness of SUIT-2 cells and found similar results (Fig. 4a).
We also investigated whether the effects of miR-10a
were mainly or partially exerted through inhibition of
HOXAI expression. As shown in Fig. 4b, miR-10a inhibi-
tor-suppressed invasion of PANC-1 and SUIT-2 cells was
partially recovered at 36 hours after transfection of the
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FIG. 4 Effects of a siRNA targeting HOXAI, a target gene of miR-
10a, on the invasive potential of pancreatic cancer cells. a The cells
were subjected to invasion assays at 24 h after transfection with
100 pmol of siRNA and cultured for an additional 24 h. Represen-
tative micrographs of PANC-1 (upper) and SUIT-2 (lower) cells

HOXA]I-targeting siRNAs (PANC-1, P < .0l; SUIT-2,
P < .05).

DISCUSSION

In the present study, we have provided the evidence that
a cancer-specific miRNA, miR-10a, regulates the inva-
siveness of pancreatic cancer cells and that miR-10a is
overexpressed in primary pancreatic cancer cells micro-
dissected from a subset of resected pancreatic tumors.
Recently, several investigators have also reported that miR-
10a and miR-10b, which is a close relative of miR-10a,
positively regulates metastasis and/or cell invasion in
pancreatic cancer or breast cancer.’’”” These findings
suggest that both miR-10a and miR-10b may play
important roles using similar mechanisms during cancer
progression.
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(original magnification, x40) transfected with a control siRNA or a
siRNA targeting HOXAI. b PANC-1 (upper) and SUIT-2 (lower)
cells were transfected with the HOXAI-targeting siRNA or control
siRNA after transfection with a miR-I0a inhibitor or a nonsense
inhibitor and seeded for invasion assays

Bloomston et al. revealed that miR-10a, miR-92, and
miR-221 are overexpressed in pancreatic cancer.'® Simi-
larly, Szafranska et al. demonstrated that miR-16, miR-
196a, miR-130b, and miR-221 are overexpressed in pan-
creatic cancer.'” These data are partially consistent with the
present results. In the present study, we used immortalized
human pancreatic ductal epithelial cell line HPDE for
comparison. Although HPDE cells are derived from normal
cells, they have been immortalized by transfection with
papilloma virus-derived E6 and E7 genes. Therefore,
HPDE cells may exhibit changes in the expression levels of
some cancer-related genes. Hence, the present miRNA
profiles only provide a partial list of the miRNAs differ-
entially expressed in pancreatic cancer, but provide useful
reference information for analyses of primary tissues.

Garzon et al. reported that miR-/0a inhibits HOXAI
expression, consistent with the present results.”> We also
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found that inhibition of HOXA promoted the invasiveness
of pancreatic cancer cells and that 60% of microdissected
pancreatic cancer samples expressed miR-10a without
HOXAI expression, while pancreatic normal duct and
PanIN-1A cells did not express significant levels of
HOXAI. These data suggest the possibility that HOXA] is
upregulated at the late stage of carcinogenesis and then
downregulated at the more invasive stage, although further
studies are required to identify the roles of HOXA1 during
each stage of pancreatic carcinogenesis and cancer pro-
gression. It has been reported that HOXA! is decreased in
lung cancer and transcriptionally silenced by CpG island
hypermethylation in lung adenocarcinoma and gastric
cancer.””?* On the other hand, it has been reported that
HOXALI increases the proliferation and survival of mam-
mary carcinoma cells.”*” Taken together, HOXA1 may
play different roles in carcinogenesis and cancer progres-
sion depending on the tumor types. In 2009, Weis et al.
reported that miR-10a promoted the invasion of pancreatic
cancer cells through suppression of HOXB1 and HOXB3
using other pancreatic cancer cell lines with zebrafish
models.”! Therefore, HOXB1 and HOXB3 may be
involved in miR-10a-regulated invasion in our models,
although further examination is needed.

In conclusion, we used a microarray strategy to iden-
tify a specific miRNA, miR-10a, that is overexpressed in a
subset of pancreatic cancers and involved in the invasive
potential of pancreatic cancer cells. Strategies to reduce
miR-10a expression may be useful for limiting tumor
invasion for high-miR-10a-expressing pancreatic cancers.
In addition, we demonstrated that HOXAI, a target gene
of miR-10a, is involved in tumor cell invasion. Identi-
fication of such target genes may provide valuable
insights into the mechanisms of cancer invasion as well as
novel diagnostic or therapeutic approaches for pancreatic
cancer.
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Abstract

Purpose The role of gastrectomy for patients with posi-
tive peritoneal cytology, but a negative macroscopic peri-
toneal implant (P—/cy—+), remains unclear. The aim of this
study was to evaluate laparoscopic gastrectomy for P—/
cy+ patients.

Methods This study reviewed a prospectively maintained
gastric cancer database of gastric-cancer patients those
underwent surgical resection. P—/cy+ gastric cancer that
had invaded the subserosa, or deeper layers, of the stomach
wall without distant organ metastases was considered
operable in this institution. P—/cy+ patients underwent
either open or laparoscopic gastrectomy with D2 lym-
phadenectomy. The short-term results were examined to
assess differences in outcome between the two groups.
Results  Eighteen P—/cy+ patients without distant organ
metastases underwent surgery between 2000 and 2010.
Laparoscopic gastrectomy was performed in nine patients
and open gastrectomy in nine patients. The estimated blood
loss was significantly smaller, the resumption of food
intake earlier, and the length of postoperative hospital stay
shorter in the patients that underwent laparoscopic gas-
trectomy than in the patients that underwent open gas-
trectomy. There were no significant differences in the
2-year survival rates between the groups.
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Conclusion Laparoscopic gastrectomy for P—/cy+
patients is a minimally invasive and safe oncologic pro-
cedure with good short-term results.
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Introduction

Although gastroscopic examinations are now widely per-
formed, a large number of gastric cancers are still only
diagnosed at an advanced stage. A primary tumor that has
invaded into the subserosal or serosal layers of the gastric
wall is likely to spread into the peritoneal cavity and,
consequently, become implanted within the peritoneum
(peritoneal dissemination). Free cancer cells in the perito-
neal cavity that originate from either the primary lesion or
metastatic lymph nodes are thought to be the main cause of
peritoneal dissemination (P+). Therefore, positive perito-
neal cytology (cy+) is a predictor of a poor prognosis [1-
5]. However, Boku et al. [6] reported a 3-year survival rate
after gastrectomy in patients with positive peritoneal
cytology, but negative macroscopic peritoneal implantation
(P—/cy+), to be 25 %, and Miyashiro et al. [7] reported a
survival rate of P—/cy+ patients after radical gastrectomy
to be significantly longer than that of P4 patients.
Although the role of gastrectomy as a treatment for P—/
cy+ patients remains unclear, it may provide a prognostic
benefit by allowing the early induction of chemotherapy
[8—-12]. Extraperigastric (D2) lymphadenectomy is also
performed when P—/cy+ patients undergo gastrectomy [7].
However, radical gastrectomy, including D2 lymphade-
nectomy, is extremely invasive and may thus be detri-
mental to P—/cy+ patients.
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Laparoscopy has gained widespread clinical acceptance
for the treatment of gastric cancer [13-18]. This approach
offers important advantages in comparison to open surgery,
including reduced intra-operative blood loss, reduced
postoperative pain and accelerated recovery, an earlier
return to normal bowel function with an earlier resumption
of oral intake, early discharge from hospital, and lower
financial costs [14, 19]. The advantages of laparoscopic
gastrectomy for early gastric cancers have been evaluated
and have now been broadly accepted, but laparoscopic
gastrectomy for advanced cancers remains limited to only a
few institutions because of the technical difficulty associ-
ated with D2 lymphadenectomy and questions associated
with the oncologic adequacy of such laparoscopic proce-
dures [20]. Moreover, the advantages of laparoscopic
gastrectomy in comparison to open gastrectomy for
P—/cy+ patients have not yet been reported. Therefore,
laparoscopic gastrectomy for P—/cy+ gastric cancer can
only be accepted as a safer alternative to open surgery, if it
results in an equivalent postoperative course.

The purpose of the present study was to compare the
short-term results of gastrectomy using either a laparo-
scopic or open approach in P—/cy+ gastric cancer patients,
to elucidate the safety and feasibility of laparoscopic pro-
cedures for this patient group.

Methods

The study reviewed a prospectively maintained gastric
cancer database of gastric cancer patients those underwent
surgical resection. Two-hundred and twenty-four patients
underwent surgery for gastric cancer that had invaded the
subserosa or deeper layers of the stomach wall, between
January 2000 and December 2010, at the Department of
Surgery and Oncology, Graduate School of Medicine,
Kyushu University. The pouch of Douglas was washed with
100 ml of physiologic saline solution immediately after
laparotomy or the insertion of the laparoscope. The fluid
was collected and immediately centrifuged at 2000 rpm for
3 min. The sediment was smeared onto four glass slides.
The slides were stained using the Giemsa and Papanicolaou
methods and a diagnosis was made by cytologists blinded to
the clinical information. The results were classified as
positive when at least one cancer cell was detected. A
suspicion of malignancy was classified as negative. The
identification of cancer cells was based on the nuclear size
[including the nuclear/cytoplasm (N/C) ratio], anisokaryo-
sis, membrane pattern, nucleoli pattern, and chromatin
density [21]. Positive peritoneal cytology without macro-
scopic peritoneal dissemination (P—) and distant organ
metastases was considered operable. The patients with
massive ascites, suspected to be peritoneal dissemination,
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were excluded from surgery. Gastrectomy removed the
distal two-thirds of the stomach or the entire stomach, and
D2 lymphadenectomy was performed. Splenectomy was
indicated when the tumor was located at the greater cur-
vature of the upper stomach, or involved lymph nodes
around the left gastroepiploic or short gastric arteries.
A partial resection of the transverse-colon was indicated if
the tumor had invaded the transverse mesocolon. The
specimens were inserted into a retrieval bag, withdrawn
through the extended port-site, and then the intraperitoneal
space was washed with 20 L. of physiologic saline before
closing the abdomen [10]. Laparoscopic gastrectomy with
D2 lymphadenectomy has been performed for P—/cy+
patients without tumor invasion to adjacent organs since
January 2008. The macroscopic and cytological results
showed that there were 19 P—/cy+ patients without distant
organ metastases (13 males and 6 females; mean age
64.6 £ 17.2 years; range 22-89 years). The cytological
results were confirmed to be consistent with the final
pathology results after surgery. Radical gastrectomy was
performed in 18 patients, and pancreatoduodenectomy (due
to invasion of the pancreas) was performed in one patient
(this patient was excluded from the study). The choice of
surgical procedure (open versus laparoscopic) was based
solely on the patient’s individual decision after being
informed of the methods and risks involved. All patients
provided their informed written consent. The performance
status was evaluated with the scale of the Eastern Cooper-
ative Oncology Group (ECOG) [22]. Patients underwent
preoperative chemotherapy when peritoneal metastasis was
suspected by preoperative examinations. P—/cy+ patients
with a good performance status (ECOG score 0 or 1)
received postoperative chemotherapy with either 80 mg/m?
S-1 divided into two daily doses for 28 days repeated every
42 days after 2008 or infusional 500 mg/m* fluorouracil
plus 10 mg/m? cisplatin for 120 h repeated every week
before 2008 within eight postoperative weeks.

The study protocol was approved by the local ethics
committee, and contained a critical pathway program to
avoid any possible bias. The clinical stage and pathological
features of the primary tumors were defined according to
the criteria of the American Joint Commission on Cancer
[23].

Statistical analysis

The clinicopathological characteristics, duration of sur-
gery, number of resected lymph nodes, estimated blood
loss, postoperative complications and length of postoper-
ative hospital stay, time to recovery of bowel function
(time to first flatus) and resumption of food intake, induc-
tion rate of postoperative chemotherapy, and 2-year overall
survival time were examined to assess differences in the



