ARTICLE

DAPRE MC
' 100
£ g0- KDa
8
D . .
580 Larmin A/C
2
% 404
o
o .
% 20 " Lamin B1
0 .. U -
HA-

75
HA (PADI4S)

HA (PADI4) Merge
ceB
d IP: Flag e
input (Lamin Cs})
HEK293T u-208
Wit Mutant Wi Mutant - +
Lamin G — — o—

RH -~ A-KR RK KK RR ~— B-KRRK KK
PADI4  + + + +

kDa

S S S

Flag (Lamins}

p-Actin

HA {(PADI4)

Mock

<L < [
<M
85 IP: Flag iP: Flag
g3 . P-4
« 2 @ input {Lamins) input  {Lamin C}
g @ o tamin A B1 B2 C A Bl B2 C cC ¢ C¢C
& & &
PADI4 + + + + &+ o+ o+ + Wt Mt W Mt
KDa kDa
i 75
75
Flag (Lamins) Flag {Lamin C}
HA (PADI4) HA {PADl4s)
DAP] cit-Lamin C Merge

ADR

U-2 08/ ADR
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PADI4 (D350A or D473A, or mock plasmid using each anti-Lamin antibody. (¢) HEK293T cells were transfected with the indicated plasmids. Celi
extracts were immurnoprecipitated using anti-Flag antibody, followed by immunoblotting with anti-MC, anti-Flag, or anti-HA antibody. (d) HEK293T celis
were transfected with the indicated plasmids. Cell extracts were immunoprecipitated using anti-Flag antibody, followed by immunoblotting with anti-MC,
anti-Flag, or anti-HA antibody. (&) Whole-cell extracts from PADI4-transfected HEK293T cells or ADR-treated U-2 OS cells were subjected to western
blotting using antibody against citrullinated Lamin C at arginine 571 and arginine 572 residues {(cit-Lamin C), Lamin C, PADI4, or B-actin. Each siRNA was
transfected 10 h before DNA damage treatment. siEGFP was used as a control, (f) Representative image of ADR-treated U-2 OS cells stained with anti-cit-

Lamin C antibody (Alexa Fluor 488). Scale bars, 20 pm.

patients without cit-H4R3 expression (52.7%), although the differ-
ence was not statistically significant (P=0.24 by log-rank test; Fig.
7d). As many of p53 mutations lead to a prolonged half-life of p53
protein, immunchistochemistry of p53 is commeonly used to detect
p33 mutations in various cancers®*%, Interestingly, the positive p53
staining was inversely associated with cit-H4R3 staining (P=0.0079
by Student’s f-test), indicating the regulation of chromatin modifi-
cation by p53 in human carcinogenesis (Table 1).

Discussion
Accumulating evidence indicate that a combination of genetic and
epigenetic alterations contribute to the development and progression
of human cancers®®, Among many genes altered in cancer tissues, the
P53 gene was mutated in nearly half of all tumours>’ 2% however, the
roles of p53 in histone modifications and chromatin structure have
not been characterized. Here we clearly demonstrated the crucial
roles of p53-PADI4 pathway in citrullination of H4R3 and Lamin C
in response to DNA damage as well as in nuclear fragmentation.

A certain type or a combination of histone modifications termed
as ‘histone code™® are translated into a meaningful biological out-
come such as gene expression and chromatin structure. Histone
H2AX is phosphorylated at serine 139 residue (y-H2AX) on exter-
nal damage, and recruits DNA repair complex to promote chromatin
remodelling?h32.

[}

in H2B, which was induced on several apoptotic stimuli including
DNA damage?, was proposed as a ‘death code, but its physiological
significance remains (o be determined. Histone methylation, phos-
phorylation and acetylation are reversible processes that are regu-
lated by histone-modifying enzymes®. In contrast, citrullination
is a chemically stable modification, and decitrullination enzymes
have not yet been discovered®. Therefore, histone citrullination
is considered to be an irreversible cellular process. As histone H4
citrullination is associated with apoptosis of damaged cells as well as
neutrophilic death triggered by NET formation, histone Hd citrulli-
nation could be defined as a functional apoptotic histone code.

Li et al. previously reported that PADI4 negatively regulated the
p21WAFL expregsion through the interaction with p53 at a p21 WA
promoter region in ultraviolet-irradiated U-2 OS cells?®. In
addition, PADI4 was shown to be transactivated in various cancer
tissues?’, and siPADI4 or PADI4 inhibitor (Cl-amidine) suppressed
proliferation of U-2 O8 cells®, suggesting PADI4 to function as an
oncogene. However, the frequent inactivating mutations of PADI4
in cancer cell lines as well as apoptosis-resistance in Padid-null mice
implied the possible role of PADI4 as a tumour suppressor. This
discrepancy could be partially due to the difference in the experimen-
tal conditions. We analysed the effects of PADI4 knockdown using
irradiated mice or ADR-treated cells, whereas Li ef al. analysed U-2

Recently, phosphorylation of serine 14 residjgﬁ / @8 cells under the non-stress condition or after ultraviolet treatment.
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Although ADR- or y-ray-treatment remarkably increased PADI4
expression, ultraviolet-treatment did not induce PADI4 expression
in U-2 OS cells (Supplementary Fig. S8a). In addition, expression
levels of p21"W4/1 in thymus in the Padi4*/* and Padid™/~ mice
after y-ray irradiation were not significantly different (Fig. 6a). Sim-
ilarly, siPADI4 treatment did not affect the expression of p53-target
genes including p21 WAF! in ADR-treated U-2 OS cells (Supplemen-
tary Fig. S8b). Moreover, siPADI4-treated U373MG cells exhibited
resistance to p53-induced apoptosis (Supplementary Fig. $8¢). In
fact, we observed the citrullination of histone H4R3 in 51.5% of
lung cancer tissues, suggesting the activation of PADI4 in a large
proportion of cancer tissues, as suggested in the previous report’’.
However, cancer tissues are persistently exposed to oxidative stress
compared with adjacent normal tissues®®39, activation of PADI4
would be related with cellular stress condition. Taken together,
we assume that PADI4 could predominantly function as a tumour
suppressor thal mediates the apoptotic process of damaged cells.gg /

© 2012 Macmillan Publishers
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Although the molecular mechanism of how PADI4 increases
DNA accessibility was not fully elucidated, loss of positive charge
by citrullination was shown to induce conformational changes
of histone H4 N terminal®. DNA-histone interaction is charge-
dependent, and changes in the charge of the histone tails are con-
sidered to weaken histone-DNA interaction®!. Moreover, we found
that the interaction between core histones and nucleophosmin was
inhibited by citrullination (Supplementary Fig. S8d). Any or all
of these changes can affect the structure and folding of individual
nucleosome that could lead to a more open and permissive chro-
matin environment. The role of PADI4 in chromatin remodelling
was shown in the previous papers®*>*3. We also reported that DNA
damage induced PADI4 expression and the citrullination of various
proteins in our previous study'?. To our knowledge, this is the first
report demonstrating the important role of histone H4R3 citrulli-
nation in human carcinogenesis and the p53-mediated apoptotic

%b way.

Limited. All rights reserved.
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Figure 7 | Involvement of PADI4 in carcinogenesis. (@) Whole-cell extracts from HEK293T cells transfected with wild-type or mutant PADI4 were
subjected to western blotting using anti-citrullinated Lamin C (cit-Lamin C), anti-citruliinated nucleophosmin (cit-NPM), anti-citrullinated histone H4R3
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wild-type PADI4 (lower panel). (b) MDA-MB-231and MDA-MB-435S cells were infected with adenovirus vector expressing p53 (Ad-p53). Histones were
subjected to western blotting using anti-cit-H4R3 (left panel). Representative images of Ad-p53-infected cells stained for cit-H4R3 is shown in right panel.
Scale bars, 20um. (¢ cit-H4AR3 or p53 expression in NSCLC tissues (magnification X10). (d) Kaplan-Meier analysis of survival in patients with NSCLC

according to the exprassion of cit-H4AR3 (P=0.24, log-rank test),

Methods

Cell culture and transfections. Cell lines were purchased from American Type
Cutlture Collection, Lonza Biologics, or Japanese Collection of Research Biore-
sources. Cells were transfected with plasmids using FuGENEG (Roche). Replication-
deficient recombinant viruses Ad-p53 or Ad-LacZ, expressing p53 or Laci, respec-
tively, were generated and purified, as described previously®. siRNA oligonucleotides,
commercially synthesized by Sigma Genosys, were transfected with Lipofectamine
RNAIMAX reagent or Lipofectamine 2000 reagent (Invitrogen). Sequences of
oligonucleotides are shown in Supplementary Table S3. For treatment with calcium
ionophore, cells were incubated with 5 M of 423187 (Calbiochem) for 1h at 37°C.

Plasmid construction. Complementary DNA fragments of Lamin A, Lamin B1,
Lamin B2 and Lamin C were amplified and cloned into pCAGGS vector. PADI4
expression plasmids were previously described V. Plasmids expressing mutant
PADI4 or Lamin C were generated using the inverse PCR methods or by using the
reverse primer containing point mutation at either or both of arginine 571 and
572 residues, respectively. The primer sequences for doning and mutagencsis are
shown in Supplementary Table §3.

Knockout mice. We amplified a 5,837 bp fragment containing exon 1 and exon 2
of Padi4 using C57BL/6 genomic DNA as a template. The targeting vector was
designed to replace exon 1 and 2, including the transcription initiation site, by
mouse PGK-1 promoter and the neomycin-resistance gene (Supplementary

Fig. S$5a). We introduced the linearized targeting vector by electroporation into
embryonic stem cells, and identified two independent targeted 12951 embry-

onic stem cell clones by Southern blot analysis. We generated chimeric males by
the aggregation method and crossed them with C57BL/6 females, and verified
germline transmission by Southern blot analysis (Supplementary Fig. S5b,c). All
Padi4 =/~ mice used in this study had been backerossed for ten generations into
the C57BL/6 background. We used RT-PCR to determine the presence of the
Padi4 transcript {(Supplementary Fig. $5d). p53-deficient mice were provided from
RIKEN BioResource Center (Ibaragi, Japan)™. Genotypes were confirmed by PCR
analysis. The primer sequences are indicated in Supplementary Table $3. All mice
were maintained under specific pathogen-free conditions and were handled in ac-
cordance with the Guidelines for Animal Experiments of the Institute of Medical
Science (University of Tokyo, Tokyo, Japan).

8

DMA damaging treatment. For treatment with genotoxic stress, cells were
continuously incubated with 2figmi~! ADR for 2 b, y-irradiated using a Cs-137
source {Gamma cell-40, Atomic energy of Canada), ultraviolet-irradiated using an
ultraviolet cross-linker (X1-1500, Spectronics corporation), or X-irradiated using
an X-ray irradiation system (MBR-1520R-3, Hitachi). Mice were also y-irradiated
using a Cs-137 source (Gamma cell-40, Nordion) or X-irradiated using an X-ray
irradiation system (MBR-1520R-3, Hitachi).

Quantitative real-time PCR. Peripheral blood mononuclear cells were obtained
by separating blood cells in a Ficoll gradient (Amersham). Peripheral blood
mononuclear cells were incubated with phytohaemagglutinin for 72h and exposed
to an X-ray irradiation. Total RNA was isolated from mouse tissue or human cells
using RNeasy spin column kits (Qiagen) according to the manufacturer’s instruc-
tion. Blood RNA of irradiated mice was prepared using Mouse RiboPure-Blood
RNA Isolation Kit (Ambion). Complementary DNAs were synthesized with the
SuperScript Preamplification System (Invitrogen). Quantilative real-time PCR
was conducted using the SYBR Green T Master on a LightCyder 480 (Roche). The
primer sequences are indicated in Supplementary Table §3.

immunoprecipitation. Cell extracts from HEK293T cells transfected with
plasmids encoding Flag-Lamins and/or HA-PADI4s were prepared by adding
HBST buffer {10mM HEPES at pH 7.4, 150 mM NaCl and 0.5% TritonX-100).
Extracts were precleared by incubation with protein G-Sepharose 4B (Zymed) and
mouse IgG at 4°C for Lh. Precleared cell extracts were then incubated with anti-
Flag affinity gel (Sigma) at 4°C for 2h. The beads were washed 4 times with 1 ml
of ice-cold HBST buffer, and immunoprecipitated proteins were released from the
beads by boiling in sample buffer for 2Zmin.

Western blotting. To prepare whole-cell extracts, cells ox tissues were Iysed in
chilled HBST butfer for 30 min on ice and centrifuged at 16,000g for 15 min.
Histones were purified in acidic condition as previously described®. Samples were
subjected to SDS-PAGE and immunoblotting using standard procedures. To detect
citrullinated proteins, blots of deiminated proteins were treated with medium for
chemical modification at 37°C for 3L, and, then, modified citrulline residues were
detected with an anti-modified citrulline antibody (anti-MC antibody, Upstate}.

100 / If’gsis were quantified by the Image J software.
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Total cit-H4R3 Pvalue
n=309 Positive  Negative Positive versus
negative
a=159 n=150
Gender
Male 214 100 14 0.0138"¢
Female a5 59 36
Age (years)
<65 135 &7 68 NS (0.6463)
=65 174 92 82
Histological type
ADC 192 10 82 0.0099*
SCC 82 35 47
Others 35 14 21
Smoking status
Never 90 60 30 3.0007*
Smoker 219 99 120
pT factor
Ti 132 80 52 0.0136™"
T2+T3 177 79 S8
pN factor
NO 204 104 100 NS (0.9044)
T+ N2 105 55 50
p53
Positive 130 55 75 0.0079™*
Negative 179 104 75
Abbreviations: ADC, adenocarcinara; NS, no significance: 5CC, squamous-celi carcinoma;
Qthers, large-cell carcinoma pius adenosquamous-cell carzinoma.
T*P<0.05 (Fisher's exact test).

Antibodies. To develop an antibody against Cit571-572 Lamin C, a Lamin C
peptide (LHHHHVSGSCitCit) was chcmimiiy synthesized and used to immunize
rabbits. The positive antisera were further punhui by immune-affinity purification
using a Lamin C Cit371-572 peptide. Anti-citrullinated nucleophosmin (NPM)
antibody was prepared as previously described !, Polyclonal anti-MC antibody
(17-347) and anti-citrullinated arginine 3 of histone H4 antibody (07-596) were
purchased from Upstate. Anti-B-actin monoclonal antibody (A5441) and Anti-Flag
monoclonal (F3165) and polyclonal (F7425) antibodies were purchased from
Sigma. Anti-p53 monoclonal antibody (OP140) and anti-Lamin B antibody
(NA12) were purchased from Calbiochem. Anti-HA monoclonal {sc-7392) and
polyclonal (sc-805) antibodies were purchased from Santa Cruz Biotechnology.
Anti-HA rat monoclonal antibody (3F10) was purchased from Roche. Anti-6xHis
monoclonal antibody (631212) was purchased from Clontech. Anti-PADI4 poly-
clonal antibody (ab50332), anti-citrullinated histone H3 antibody (ab5103) and
anti-mono methy! histone H4 antibody (ab17339) were purchased from Abcam.
Anti-Lamin A/C antibody (#2032 or #4777), anti-caspase-3 antibody (#9662} and
anti-cleaved caspase-3 (#9661) were purchased from Cell signaling. List of antibod-
ies and the concentrations used are shown in Supplementary Table $4.

in vifre citrullination assay. Recombinant histone proteins were purchased from
Millipore. Glutathione S-transferase (GST) fusion PADI4 and NPMI proteins were
generated as previously described 0. His-tagged proteins were generated by cloning
of their coding sequences into pET21a or pET28a vector (Novagen). Proteins were
expressed in Escherichia coli and purified on Ni-NTA agarose {Qiagen) by standard
methods. Deimination reactions were carried out as previcusly described®,

GST pull-down assay. Core histores were purified from HEK293T cells using
Histone Purification Kit (Active motif). GST-NPM (1 ug) and core histones (I 1g)
were separately incubated with PADI4 (1 ptg) or PADI4-D350A (1pg) for Lhat
7°C with 1 mM of CaCl2. PADI4-treated NPM1 and histones were mixed and
stored on ice for 1h. The mixture was incubated at 4°C for 2h with 20l of a
glutathione-Sepharose 4B bead suspension (Amersham Pharmacia}. After the
beads were washed extensively, proteins were eluted from the beads by incubation
with SDS sample buffer, separated by SDS~PAGE, and visualized by silver staim'r@.l

§ 31676  DOL: 10.3038/ncomms1676 | www.nature.com/naturecommunications

Immunocytochemistry. Immunocytochemistry was performed as previously
described!®, Before incubating with anti-MC antibody, cells were treated with
medium for chemically modifying citrulline residues at 37°C for 3h. For co-stain-
ing of TUNEL and citrullinated proteins, cells were immunostained followed by
TUNEL reaction for 1h at 37 °C using the kit {In Situ Cell Death Detection Kit,
Fluorescein, Roche). Quantification was performed by counting around 100 cells
from more than 4 independent fields.

immunohistochemistry. Frozen sections of mouse thymus were used for im-
munohistochemistry and TUNEL staining, Immunchistochemistry was performed
using the immunohistochemistry BnVision (Dako) method. TUNEL staining was
performed using Apoptosis in situ Detection Kit (Wako) according to the manu-
facturer’s instruction. Tissue microarrays were constructed in our laboratory, and
staining and statistical analysis were performed as previously described?,

Mutation analysis. Genomic DNA was purified from 80 cancer cell lines by stand-
ard protocol®. The list of celi lines is shown in Supplementary Table S1. 16 coding
exons of the PADI4 gene were amplified, purified and sequenced. The sequences of
primers used in this analysis are indicated in Supplementary Table §3.

Chromatin fractionation. S1, 52 and P chromatin fractions from HEK2937T cell
nuclei were prepared according to previously described procedures’ with minor
modifications. HEK293T cells were transfected with PADI4-expressing plasmid.
‘The collected cells were incubated in cell homogenization buffer (10 mM Tris at
pH 8.0, 10mM MgCl,, 0.5% NP40 and 1 mM DTT) on ice for 10min. The nuciear
pellet was obtained by centrifugation and resuspended in MNase digestion buffer
(15mM Tris pH 7.4, 15mM NaCl, 60 mM KCl, .25 M sucrose, 1 mM CaCly). The
pellet was then treated with MNase (New England Biolabs) for 2 min at 37 °C. The
solution was centrifuged to obtain the supernatant {S1). The pellet was resus-
pended in 0.1 mM EDTA, incubated at 4 °C for 30 min, and centrifugated to obtain
the chromatin fraction (P) and supernatant ($2}. The proteias contained in each
fraction were separated by 15% SDS-PAGE and detected by western blotting.

MNase assay. The nuclear pellet (Input} was treated with MNase as shown above,
The reaction was terminated by adding the stop solution (0.5mM EGTA, 25mM
EDTA}. After centrifugation at 14,000g for 5 min, DNA was extracted from the
agueous phase and analysed on agarose gel. Histone proteins collected from the
agueous phase (Sup) and pellet (Ppt) were separated by SDS-PAGE.

Cell death assay. Cells were infected with 20 multiplicity of infection (MOT) of
Ad-p53 at 7 h after transfection of siRNA oligonucleotide. 60h after infection cells
were incubated with TUNEL reaction mixture for Lh at 37 °C using the kit {In Situ
Cell Death Detection Kit, Fluorescein, Roche). Apoplotic cells were quantified by
fluorescence-activated cell sorting analysis.
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Carcinogenesis by Deregulating PCNA Expression
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Astract

Although the physiologic significance of lysine methylation of histones is well known, whether lysine
methylation plays a role in the regulation of nonhistone proteins has not yet been examined. The histone lysine

methyltransferase SETDS is overexpressed in various types of cancer and seems to play a crucial role in S-phase
progression. Here, we show that SETD8 regulates the function of proliferating cell nuclear antigen (PCNAJ protein
through lysine methylation. We found that SETD8 methylated PCNA on lysine 248, and either depletion of SETDS
or substitution of lysine 248 destabilized PCNA expression. Mechanistically. lysine methylation significantly
enhanced the interaction between PCNA and the flap endonuclease FENT. Loss of PCNA methylation retarded the
maturation of Okazaki fragments, slowed DNA replication, and induced DNA damage, and cells expressing a
methylation-inactive PCNA mutant were more susceptible to DNA damage. An increase of methylated PCNA was
found in cancer cells, and the expression levels of SETD8 and PCNA were correlated in cancer tissue samples.
Together, our findings reveal a function for lysine methylation on a nonhistone protein and suggest that aberrant
lysine methylation of PCNA may play a role in human carcinogenesis. Cancer Res; 72(13); 3217-27. ©2012 AACR.

introduction

Protein methylation is recently considered an important
posttranslational modification and is predominantly found on
lysine and arginine residues. Lysine methylation involves the
addition of 1 to 3 methyl groups on the amino acid's e-amine
group, to form mono-, di-, or tri-methyllysine. Its function is
best understood in histones {1). With the exception of Dot/
DOTI1L, all histone lysine methyltransferases (HKMT) contain
a SET domain of about 130 amino acids, and so far nearly 40
SET domain-containing HKMTs or potential HKMTs have
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been identified (2). While our knowledge of the physiologic
functions of HKMTs is growing, their involvement in human
diseases including cancer is still not well understood.
Proliferating cell nuclear antigen (PCNA) is an evolutionally
well-conserved protein found in all eukaryotic species from
veast to humans, as well as in archaea. PCNA functions are
related to vital cellular processes such as DNA replication,
chromatin rernodeling, DNA repair, sister chromatid cohesion.
and cell-cycle control (3). PCNA was originally reported as an
antigen for autoimmune disease in patients with systemic
lupus erythematosus, detected only in the proliferating cell
populations (4). Thereafter, it was shown that expression levels
of PCNA during cell cycle are differential and associated with
proliferation and transformation (5, 6). In the following years, a
number of experiments have been done to uncover the role of
PCNA in DNA replication, and one of the first functions
clarified was a sliding clamp for DNA polymerase & (7, 8).
Meanwhile, the progress in the field not only strengthened the
importance of PCNA, but also even placed PCNA at the
crossroad of many essential pathways. Importantly, PCNA is
posttranslationally modified in several ways, which affects its
function, So far, it has been reported that PCNA s ubiquiti-
nated, phosphorylated, acetylated, and even SUMOylated (3).
One of the well-documented posttranslational modifications
of PCNA is ubiquitination. In response to DNA damage, PCNA
is monoubiquitinated at the lysine 164 residue by the E2 Ub-
conjugated enzyme Rad6 and the E3 Ub ligase Rad18 {(Rad6/
Radl8 complex; ref. 9). Rad18 not only binds to Rad6 and PCNA,
but also to DNA (10). Thus, Rad18 recruits the ubiquitination
machinery to the chromatin-bound target, PCNA. In addition
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to ubiquitination, it is estimated that approximately 6% of
chromatin-bound PCNA is subjected to phosphorylation on
Tyr 211 (11). It has been considered that phosphorylation of
Tyr 211 on PCNA may stabilize chromatin-bound PCNA, as
opposed to polyabiquitination. Furthermore, acetylation is
another modification detected on PCNA (12}, and in yeast, a
poly-SUMOylation on PCNA has been described (13). However,
functions of lysine methylation on PCNA have never been
elucidated.

In this study, we showed that the histone methyltransferase
SETDS methylates Lys 248 on PCNA and regulates functions of
PCNA. in cancer cells. This is the first report to describe the
significance of lysine methylation on PCNA.

Mnterials and Methods
Cell line

MRC-5, CCD-18C0, 5637, SW780, SCaBER, UMUC3, RT4, 124,
HT-1376, A549, H2170, HCT116, LoVo, and 2937 cells were
from American Type Culture Collection in 2001 and 2003 and
tested and authenticated by DNA profiling for polymorphic
short tandem repeat (STR) markers, except for SW780. The
SW780 line was established in 1974 by A. Leibovitz from a grade
I transitional cell carcinoma. RERF-LC-AT and SBCS5 cells were
from Japanese Collection of Research Bioresources (JCRB) in
2001, and tested and authenticated by DNA profiling for
polymorphic short tandem repeat (STR) markers, 253] and
253}-BV cells were from Korean Cell Line Bank (KCLB) in 2001,
and tested and authenticated by DNA profiling for polymor-
phic STR markers. EJ28 cells were from Cell Line Service (CLS)
in 2003, and tested and authenticated by DNA profiling for
polymorphic STR markers, ACC-LC-319 cells were from Aichi
Cancer Center in 2003, and tested and authenticated by DNA
profiling for single-nucleotide polymorphism, mutation, and
deletion analysis.

Tissue samples and RNA preparation

Bladder tissue samples and RNA preparation were described
previously {14-17). Uroplakin is a marker of urothelial differ-
entiation and is preserved in up to 90% of epithelially derived
tumors (18). Use of tissues for this study was approved
by Cambridgeshire Local Research Ethics Committee (Ref
03/018).

Quantitative veal-time PCR

Specific primers for all human GAPDH (glyceraldehyde-3-
phosphate dehydrogenase: housekeeping gene), SDH (house-
keeping gene), SETD8, and PCNA were designed (primer
sequences in Supplementary Table S1). PCR reactions were
conducted with the LightCycler 480 System {Roche Applied
Secience) following the manufacturer’s protocol.

siRNA traunsfection

siBNA oligonucleotide duplexes were purchased from Sig-
ma-Genosys for targeting the human SE7D8 transcript.
siEGPP, siFFLuc, and siNegative control (siNC), which is a
mixture of 3 different oligonucleotide duplexes, were used as
control siRNAs. The siBNA sequences are described in Sup-

plementary Table $2. siRNA duplexes (100 nmol/L final con-
centration) were transfected into bladder and lung cancer cell
lines with Lipofectamine 2000 (Life Technologies) for 72 hours,
and cell viability was examined by Cell Counting Kit-8
(Dojinda).

Fesulls
SETDS is overexpressed in various types of cancer and
regulates the growth of cancer cells

T'o investigate roles of a HKMT' in human carcinogenesis, we
had examined expression levels of several HKMTs in a small
subset of clinical bladder cancer samples and found a signif-
icant difference in expression levels of SE7D8 between normal
and cancer cells {data not shown). We then analyzed 124
bladder cancer samples and 28 normal control samples and
confirmed the significant elevation of SETD§ expression in
tumor cells compared with normal cells (Supplementary Table
$4). Expression levels partly correlated with the grade of
malignancy in bladder cancer (Supplementary Fig. S1A). We
also found overexpression of SETD8 in both non-small cell
lung carcinoma (NSCLC) and small cell lung carcinoma
(SCLC; Fig. 1A). Subsequent immunohistochemical analysis
using anti-SETDS8 antibody identified strong SETDS staining
mainly in the nuclel of malignant cells, but no staining in
nonneoplastic tissues (Fig. 1B). In addition, our expression
profiling analysis indicated the upregulation of SETDS in
chronic myelogenous leukemia, hepatocellular carcinoma, and
pancreatic cancer {(Supplementary Fig. $2 and Table $5).
Furthermore, a high level of SETD8 was identified in various
cancer cell lines than in a normal lung cell line SAEC (Sup-
plementary Fig, $3).

To investigate the role of SETDS in the growth of cancer
cells, we conducted a knockdown experiment using 2 inde-
pendent siRNAs against SETDS (siSETD8#1 and #2) and 2
control siRNAs (siEGEP and siFELuc). We transfected each
of these siRNAs into SW780 bladder cancer cells and found
that SETDS8 expression was efficiently suppressed by either
of the 2 different siRNAs targeting SETDS, compared with
control siRNAs (Supplementary Fig. S1B). Using the same
siRNAs, we conducted cell growth assays and found signil-
icant growth-suppressive effects on 1 bladder cell line
(SW780) and 2 lung cancer celf lines (RERF-LC-Al and $BCS),
whereas no effect was observed when we used control
siRNAs (Fig. 1C). Detailed cell-cycle analysis using flow
cytometry indicated that the cell populations of cancer cells
lacking SETDS had a significant increase in the amount of $-
phase and sub-G, phase cells and a concomitant reduction
in the proportion of G, cells (Fig. 1D). Furthermore, we
showed that in bromodeoxyuridine (BrdUrd) incorporation
analysis, the amount of newly incorporated BrdUrd in cancer
cells was significantly decreased after treatment with
siSETDS (Fig. 1E), implying that knockdown of SETDS8
results in the retardation of DNA replication in cancer cells.
These results indicated that SETD8 might play an important
role in the regulation of cancer cell growth, especially in §-
phase, and knockdown of SETDS would cause apoptosis of
cancer cells.
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Figure 1. SETDS is overexpressed in human cancer and regulates the proliferation of cancer cells. A, expression of SETDS is significantly increased in tumor
tissuies compared with normal Japanese patients. Signal intensity for each sample was analyzed by cDNA microarray. B, immunochistochemical staining of
SETD8 in lung tissues. Clinical information for sach section is represented above histologic pictures. Original magnification, x 100. HE, hematoxyiinand eosin,
C, effects of SETD8 siRNA knockdown on the viability of bladder {(SW780) and lung (RERF-LC-Al and SBCS) cancer cell lines, Relative cell numbers were
normalized to the number of siEGFP-treated cells (SIEGFP = 1): resuls are the mean = 8D of 3 independent experiments. P values were calcuiated using
Student ttest (*, P<0.05; ', P<0.01; "7, P< 0.001). D, effect of SETDS knockdown on cell-cycle kinetics in cancer cells. Cell-cycle distribution was analyzed
by flow cytometry after staining with propidium iodide {PI}. Left, representative histograms of SBCS cells stained with Pl. Right, numerical analysis of
fluorescence-activated celi-sorting (FACS) results in SBCS cells, classifying ceils by cell-cycle status. Results are the mean = SD of 3 independent
experiments. P values were calculated using Student ¢ test (**, P < 0.01; 7, P < 0.001). E, detailed cell-cycle kinetics in SBCS cells after treatment with
SISETD8. Ceil-cycle distribution was analyzed by flow cytometry after coupled staining with fluoresceln isothiocyanate (FITC)-conjugated anti-BrdUrd and

7-amino-actinomycin D (7-AAD} as described in Materials and Methods.

SETDS methylates lysine 248 of PCNA both in vifre and
in vivo

As PC is known to be a key regulator of cell-cycle
progression and SETDS is a component of the PCNA complex
(19, 20), we examined the functional relationship between
SETDS8 and PCNA. Immunoprecipitation assay showed that
3xFLAG-tagged SETDS bound endogenous PCNA (Fig. 2A). We
also confirmed the interaction between endogenous PCNA and
SETD8 proteins (Fig 2B} endogenous SETDS and PCNA
proteins were colocalized in HeLa cells (Fig. 2C). Immunopre-
cipitation using deletion mutants of SETD8 showed that its
N-terminal region of SETDS8 is essential for binding to PCNA
(Fig. 2D), and this portion contains a PCNA-interacting protein
(PIP) box (Supplementary Fig. S4A). Because histone methyl-

transferases have been found to methylate nonhistone sub-
strates, we evaluated a possibility of PCNA to be a substrate of
SETDS. First, we conducted an in vitro methyltransferase assay
and confirmed that PCNA was methylated in a dose-dependent
manner (Fig. 2E). The amino acid analysis detected a single
tysine methylation site in PCNA following this reaction (Sup-
plementary Fig, 85). To verify in vivo SETD8-dependent PCNA
methylation, we labeled 293T cells after transfection with
FLAG-PCNA {WT) and hemagglutinin (HA)-mock or HA-
SETDS (1-352) expression vectors with t-{methyl-*H] methio-
nine and found that SETD8 could methylate PCNA in vivo
(Supplementary Fig. S6A). Subsequent liquid chromatography/
tandem mass spectrometry (LC/MS-MS) analysis identified
monomethylation at lysine 248 on PCNA by SETDS (Fig. 2F). To
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samples were immunacbiotted with anti-monomethylated K248 PCNA, anti-FLAG, and anti-HA antibodies. SAHH, S-adenosyl- -homacysteine hydrolase.

validate this result, we constructed the plasmid (PCNA-K2484)
that was designed to substitute lysine 248 of PCNA protein to
alanine and conducted in vitro methyltransferase assay (Sup-
plementary Fig. S68). The intensity of the band corresponding
to PCNA methylation in PCNA-K248A was significantly dimin-
ished compared with that of the wild-type PCNA (PCNA-WT).
These data show that lysine 248, which is highly conserved in
the PCNA ortholog from green alga to human (Supplementary
Fig. $4B), is the primary target of SETD8-dependent methyl-
ation (Fig. 2G). On the basis of this result, we generated an

antibody against a methylated K248 synthetic peptide (Sup-
plementary Fig. S7A) that showed high affinity and high
specificity by ELISA (Supplementary Fig. $7B). Western blot
analysis using this antibody confirmed that it specifically
recognizes K248-methylated PCNA (Fig. 2H and Supplemen-
tary Fig. $7C and $§7D), and this specific signal was dependent
on the methyltransferase activity of SETDS8 (Fig. 2I}. Impor-
tantly, the methyltransferase activity of N-terminal-deleted
SETDS protein, which lacks the PIP box domain, was signif-
icantly low than that of wild-type SETDS protein (Fig. 2}). This
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result indicates that the N-terminal region of SETDS8 contain-
ing PIP box domain seems to be important for SETDS-depen-
dent PCNA methylation. This antibody was used to examine
the methylation status of PCNA in vivo after treatment with
siSETDS8 (Supplementary Fig. $8). Monomethylation of PCNA
at lysine 248 diminished after knockdown of SETDS in SBC5
cells, implying SETD8-dependent PCNA K248 methylation
oceurs both in vitro and in vivo.

SETDS stabilizes PCNA protein through the methylation
of lysine 248

To clarify the physiologic significance of PCNA methylation
by SETDS, we examined protein expression levels of PCNA in
SW780 cells 48 hours after knockdown of SETDS using 2
independent siRNAs (Fig. 3A). Knockdown of SETDS decreased

PCNA protein, suggesting involvement of SETDS in regulating
PCNA stability in cancer cells. To further validate this result. we
examined the cell-cycle dependency of SETDS and PCNA
protein expression levels after aphidicolin synchronization
(Fig. 3B). Intriguingly, when we treated with SETD8 siRNAs.
PCNA protein expression decreased in both G, and S-phases
according to the levels of SETDS, indicating that SETDS is likely
to be a key regulator of PCNA protein expression at G, and S-
phases. Because quantitative real-time PCR analysis implied
that PCNA mRNA level was not affected by treatment with
siSETDS (Fig. 3B), the regulation of PCNA expression by SETD&
was not at the transcriptional level but at the protein level. To
examine that this regulation is mediated by SETDS-dependent
methylation, we examined PCNA (WT) or PCNA (K248A)
protein expression levels in 2937 cells transfected with mock
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or SETDS expression vectors after cycloheximide treatment.
Although wild-type PCNA was significantly stabilized by
SETD8 expression, methylation-inactive mutant PCNA
(PCNA-K248A) was unstable (Fig. 3C). Furthermore, we exam-
ined the PCNA stability in endogenous level after depletion of
SETDS and found that the degradation rate of PCNA in cells
treated with siSETDS8 more rapidly than siEGFP (Supplemen-
tary Fig. 89). Taken together, SETD8-dependent methylation is
crucial for PCNA stabilization. Then, we validated the effect of
SETD8-dependent methylation on ubiquitination of PCNA
proteins. The PCNA (WT) or PCNA (K2484) expression vector
was cotransfected into 2937 cells with a vector expressing
either the full-length or N-terminal region of SETDS, and
ubiquitination and methylation status of PCNA was examined
(Fig. 3D). As we expected, the status of ubiquitination and

methylation on PCNA showed the inverse correlation. Hence,
we consider that methylation of PCNA inhibited its ubiquiti-
nation. We also examined the phosphorylation status of Tyr
211 on PCNA, which is known to influence the stability of PCNA
(11), but no significant relationship between methylation and
phosphoryvlation status was observed (data not shown). These
data show that PCNA protein is stabilized through inhibition of
the ubiquitination by its SETDS-dependent methylation.

Methylation of lysine 248 on PCNA affects its interaction
with FEN1

We conducted immunoprecipitation analysis to further
investigate the significance of PCNA methylation, using
wild-type and methylation-inactive mutant PCNA proteins,
and identified a partner protein, FEN1, which interacted with
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monomethylated K248 PCNA antibodies. B, double-strand DNA breaks were detected by Western blotting using an anti-yH2AX antibody (05-636, Millipore).
Lysates from 2937 cells transfected with a FLAG-PCNA (WT) or a FLAG-PCNA (K248A4) and were immunoblotted with anti-FLAG {F7425), ariti-
monomethylated K248 PCNA, anti-yH2AX (06-636), and anti-H2AX (07-827, Millipore) antibodies. Signal intensity was quantified by imageJ. Results are the
mean of 2 independent experiments. C, subcellular localization of PCNA and FENT in S-phase. Hela cells transfected with a FLAG-PCNA (WT) vector or a
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in a methylation-dependent manner. Methylation of
significantly enhanced the interaction between PCNA
and FEN1 (Fig, 4A). To validate the effect of PCNA methylation
on the interaction with FENI in more detail, we conducted an
in vitro binding assay using methylated PCNA and unmethy-
lated PCNA with FENI recombinant protein. SETD8-depen-
dent lysine methylation of PCNA significantly enhanced the
interaction between PCNA and FEN1 in vifro (Supplementary
Fig. S10). FEN1 is a structure-specific nuclease with both 5’ flap
endonuclease and §'-3’ exonuclease activities (21), During DNA
replication, this enzyme is responsible for RNA primer removal
during Okazaki fragment processing and was identified as the
factor responsible for the completion of replication in vitro (22).
Yeast cells lacking the FENI gene {also called RAD27) are viable

but are unable to grow at high ltemperatures, indicating
defective DNA replication (23). To examine the effect of PONA
methylation on FENI1 function, we measured levels of the
phosphorylated form of H2AX histone variant (YH2AX), an
early marker of the cellular response to DNA breaks. In the
absence of any exogenous source of DNA damage, basal levels
of phosphorylated YH2AX in 2937 cells expressing methyla-
tion-inactive mutant PCNA (PCNA-K248A) were higher than
those in 293T cells expressing wild-type PCNA (Fig. 4B). This
implies the accumulation of DNA double-strand breaks result-
ing from methylation-inactive mutant PCNA expression. Dur-
ing the S-phase of the cell cycle, FENT is recruited to DNA
replication loci through the interaction with PCNA. Disruption
of the FEN1-PCNA interaction impairs such localization (24).
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If methylation of PCNA were important for interacting with
FENI, failure in methylation would lead to a defect in FENY's
localization to replication foci. FENI could be colocalized with
PCNA at replication foci in cells when PCNA was a wild-type.
However, FEN1 was unable to localize to the foci in cells in
which methylation-inactive mutant was present (Fig, 4C).
These data suggest that PCNA methylation is important for
regulation of FENVs subnuclear localization. Because phos-
phorylation of FEN1 has been shown to abolish its PCNA
interaction {25}, we examined FEN1 phosphorylation status
in cells expressing wild-type and methylation-inactive mutant
PCNA, but found no significant difference in phosphorylation
status of FENI between wild-type and methylation-inactive
mutant PCNA-expressing cells (Fig. 4D). This implies that
the different affinity between PCNA and FENI seems to be
regulated not by phosphorylation status of FENT but by
methylation status of PCNA {as shown in Fig. 4A and C).
Furthermore, an Okazaki fragmenlt maturation assay was
conducted using the deoxynucleotide triphosphate mixture
containing radiolabeled dCTP and a model substrate contain-
ing an RNA-DNA flap, which mimicked the Okazaki fragment
maturation intermediate. The assay simulates the sequential
reactions of gap filling, RNA primer removal, and DNA ligation
during Okazaki fragment maturation. When the assay was
conducted in vitro, nuclear extracts from PCNA-K248A-

expressing cells showed significant decrease in removing RNA
primer flaps and some extent of defect in DNA ligation (Fig. 4E),
indicating that the methylation defect of PCNA retarded
Okazaki fragment maturation. Defects in the Okazaki fragment
maturation process during DNA replication or defects in
ligation during DNA repair could lead to accumulation of DNA
double-strand breaks {26, 27). To examine the levels of double-
strand breaks, 293 cells expressing wild-type and methylation-
inactive mutant PCNA were treated with 11,0, to determine
the survival rate (Supplementary Fig. S11). Consistent with
previous data, methylation-inactive mutant PCNA~-expressing
cells were more sensitive to H,0,.

SETDS and PCNA are coexpressed in lung cancer tissues,
and lysine 248 methylation of PCNA promotes the
proliferation of cancer cells

We then compared the methylation of endogenous PCNA in
normal and cancer cell ines. PCNA was significantly methyl-
ated in various types of cancer cell lines, whereas no detectable
level of PCNA methylation was found in normal cell lines (Fig.
5A). We subsequently conducted the immunopathologic anal-
ysis on clinical lung tissues, analyzing the correlation between
SETDS and PCNA protein expression levels (Fig. 5B). Clinical
information and staining patterns of clinical tissues are
described in Table I and Supplementary Table $6. We found

Table 1. Associgtion between SETDS and PONA In lung cancer Hissues and palients’ characterisiics
(N B4
SETD8 SETDB PCNA PCNA
Number expression expression expression expression
of cases positive negative positive negative
n = 64 o A2 no 22 i 48 =16
Gender 62 40 22 46 16
Male 40 25 15 32 8
Female 22 15 7 14 8
Age, vy 62 40 22 46 16
<65 42 28 14 32 10
=65 20 12 8 14 8
Histologic type 64 42 22 48 18
ADC 14 10 4 10 4
SCC 30 17 13 20 10
Others® 20 15 5 18 2
pT factor 63 42 21 48 15
pTo 4 3 1 3 1
pTt 7 7 0 7 0
pT2 41 25 16 29 12
pT3 1 7 4 9 2
pN factor 59 40 19 44 15
NO 48 33 15 34 14
N1 11 7 4 10 1
M factor 61 41 20 46 15
MO 59 40 19 44 15
M1 2 1 1 2 0
Abbreviations: ADC, adenocarcinoma; ASC, adenosquamous-cell carcinoma; LCGC, large cell carcinoma; SCC, squamous cell
carcinoma.
“0thers include SCLC, LCG, and ASC.
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a correlation factor (o) of 0.55378 with P value of 2.068 x 10 °
(by Spearman correlation coefficient) in a cohort of 64 cases
(Fig, 5C}); lung adenocarcinoma showed a stronger correlation
{p=
SETD8 overexpression stabilizes and increases the PCNA
protein expression in cancer cells. Finally, we examined the
effect of PCNA methylation on the growth of cancer cells
(Fig. 5D and E). Methylation-inactive-type PCNA-expres-
sing Hela cells {Hela-PCNA-K248A) showed a slower
growth rate than those with wild-type PCNA-expressing
HeLa cells (HeLa-PCNA-WT). Furthermore, to exclude the
effect of endogenous PCNA proteins, we first knocked down
PUNA gene expression. and then, conducted a clonogenecity
assay of HeLa cells overexpressing wild-type PCNA and
methylation-inactive-type PCNA (Supplementary Fig, $12).
Consistent with our previous data, wild-type PCNA showed
higher growth promoting effects than methylation-inactive
type PCNA. Taken together, these results imply that meth-
viation of PCNA is likely to play a crucial role in the growth
promotion of cancer cells.

Bisoussion

Histone lysine methylation plays a central epigenetic role
in the organization of chromatin domains and the regula-
tion of gene expression. We previously reported that the
HKMT SMYD3 stimulates cell proliferation through its
methyltransferase activity and plays a crucial role in human
carcinogenesis (28, 29). Of the various posttranslational
protein modifications, the role of protein methylation
in signal transduction has not been well characterized.
While the carboxyl group and arginine methylation have
been implicated in several cellular responses, including
receptor signaling, protein transport, and transcription
(30), lysine methylation has been considered to be histone
specific (31). In the present study. we found that the
HKMT SETDS is overexpressed in various types of cancer
and regulates PCNA functions through the methylation of
lysine 248. This is a new mechanism revealing the impor-
tance of lysine methylation in nonhistone proteins in
human cancer.

PCNA was originally reported to be a DNA-sliding clamp for
replicative DNA polymerases and is an essential component of
the eukaryotic chromosomal DNA replisome (32, 33). It inter-
acts with multiple partners including proteins involved in
Okazaki fragment processing, DNA repair, DNA synthesis,
DNA methylation, chromatin remodeling, and cell-cycle reg-
ulation (34). PCNA has been reported to be modified by
ubiquitination, SUMOylation, phosphorylation, and acetyla-
tion {9, 11, 12, 35. 36) but its Iysine methylation has never
been. These kinds of protein modifications are vital for a wide
variety of PCNA functions. As reported here, PCNA protein is
stably overexpressed in various types of cancer cells, together
with SETDS protein, indicating that SETD8-dependent meth-
vlation of PCNA enhances its biologic activity. Knockdown of
SETDS significantly suppressed the growth of cancer cells by
diminishing PCNA methylation and reduction of its protein
levels. It has been recently reported that knockdown of

SETDS leads to several aberrant phenotypes, including DNA
damage, S-phase arrest, and global chromosome condensation
{20, 37, 38), cousistent with our findings. which suggest that
these abnormalities is likely to be caused by dysfunction of the
PCNA protein.

PCNA is also considered to be the crucial factor in main-
taining the balance between survival and cell death. For
instance, PCNA displays an apoptotic activity through inter-
action with proteins belonging to the Gadd4s family (Gadd45,
Myd118, and CR6), which was involved in growth control,
apoptosis, and DNA repair {39, 40). Lack of SETDS induces
an increase of the sub-G, population of cancer cells (Fig, 1), so
it is possible that apoptosis may be induced by SETDS deple-
tion through dysfunction of PCNA, Furthermore, we clarified
that methylation of PCNA is critical for the interaction with
FENT1. It has been reperted that FEN1 forms distinct protein
complexes for DNA replication and repair. Through its inter-
action with PCNA, FENT is recruited to the replication foci for
RNA primer removal and to repair sites for DNA base excision
repair {41}, Recently, the FENI-PCNA interaction has been
implicated in coordinating the sequential action of polymerase
& (Pol 8), FENL and DNA ligase 1 (Ligl) during Okazaki
fragment maturation {24). Disruption of PCNA-FENT interac-
tion impairs Okazaki fragmeunt ligation (24). We showed that
methylation-defective PCNA retards both Okazaki fragment
maturation and DNA replication, and induces DNA damages.
Cells expressing methylation-inactive mutant PCNA were
more sensitive to DNA damage. Because deregulation of FEN1
nuclease has also been reported to be linked to human cancer
(42). it is possible that abnormal interactions between FEN1
and PCNA may cause human carcionogenesis. Intriguingly,
Guo and colleagues recently showed that methylation of FEN1
suppresses nearby phosphorylation and facilitates PCNA bind-
ing (43). Together with our result, this implicates methylation
as the crucial player in the interaction between PCNA and
FENT1 proteins.

In conclusion, as expression levels of SETD8 in normal
tissues are significantly low (Supplementary Fig. S13). an
inhibitor targeting its enzymatic activity might be an effective
drug for cancer therapy. Further functional analysis will
explore the SETD8-dependent PCNA methylation pathway as
a therapeutic target in various types of cancer.
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Abstract. Genome-wide gene expression profile analyses using a
cDNA microarray containing 27,648 genes or expressed sequence
tags identified MMS22L (methyl methanesulfonate-sensitivity
protein 22-like) to be overexpressed in the majority of clinical
lung and esophageal cancers, but not expressed in normal
organs except testis. Transfection of siRNAs against MMS22L
into cancer cells suppressed its expression and inhibited cell
growth, while exogenous expression of MMS22L enhanced the
growth of mammalian cells. MMS22L. protein was translocated
to the nucleus and stabilized by binding to C-terminal portion
of NFKBIL2 [nuclear factor of kappa (NFKB) light poly-
peptide gene enhancer in B-cells inhibitor-like 2]. Expression
of a C-terminal portion of NFKBIL2 protein including the
MMS221-interacting site in cancer cells could reduce the levels
of MMS22L in nucleus and suppressed cancer cell growth.
Interestingly, reduction of MMS22L. by siRNAs in cancer cells
inhibited the TNF-u-dependent activation of RelA/p65 in the
NFKB pathway and expression of its downstream anti-apoptotic
molecules such as Bel-XL and TRAFI. In addition, knockdown

of MMS22L expression also enhanced the apoptosis of cancer

cells that were exposed to DNA-damaging agents including
5-FU and CDDP. Our data strongly suggest that targeting
MMS22L. as well as its interaction with NFKBIL2 could be a
promising strategy for novel cancer treatments, and also improve
the efficacy of DNA damaging anticancer drugs.

Introduction

Lung cancer is the most common cause of cancer-related
death, and the worldwide annual death by lung cancer was
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estimated to be 1.3 million (1). Esophageal squamous cell
carcinoma (ESCC) is one of the most common gastrointestinal
tract cancers in Asian countries (2). Although a huge body of
knowledge about the biology of lung or esophageal carcinogen-
esis has been accumulated, the development of novel cancer
therapeutics remains inefficient to improve patients with these
cancers (3). In fact, in spite of development of various molecular
targeted therapies, a limited proportion of patients can receive
clinical benefit from them (4).

Through genome-wide gene expression analysis of lung and
esophageal cancers, we have isolated a number of oncogenes
that were involved in the development and/or progression of
cancer (5-41). Among the genes upregulated in these cancers,
we focused on MMS22L (methyl methanesulfonate-sensitivity
protein 22-like) which is highly expressed in the majority
of clinical lung and esophageal cancers. Our original gene
expression profile database also revealed that this gene is
highly expressed in clinical cervical cancers, but scarcely
expressed in normal tissues except testis, suggesting that
MMS22L encodes a cancer-testis antigen that can be defined
by predominant expression in various types of cancer and
undetectable expression in normal tissues except germ cells
in testis or ovary (4). Cancer-testis antigens are considered to
be good candidate molecular targets for developing new thera-
peutic strategies for cancers.

Constitutive activation of the NFKB pathway is involved
in some forms of cancer such as leukemia, lymphoma,
colon cancer and ovarian cancer as well as inflammatory
diseases (42-45). The main mechanism of this pathway is
reported to be the inactivation of IkB proteins by mutations as
well as amplifications and rearrangements of genes encoding
the NFKB transcription factor subunits (42-45). However, more
commonly it is thought that changes in the upstream pathways
that lead to NFKB activation are likely to be aberrantly upregu-
lated in cancer cells (45). Recently some reports suggested
that MMS22L-NFKBIL2 interaction could be essential for
genomic stability and homologous recombination in immortal-
ized cell lines, suggesting MMS22L to be a new regulator of
DNA replication in human cells (46-49). However, no study has
indicated critical roles of activation of MMS221. and NFKBIL2
in clinical cancers and investigated their functional importance
in carcinogenesis. Here, we report that MMS22L is involved
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in NFKB pathway in cancer cells through its interaction with
NFKBIL2 and might be a promising target for development of
novel cancer therapy.

Materials and methods

Cell lines and clinical samples. The 12 human lung-cancer
cell lines used for in this study included nine NSCLC cell lines
(A549, NCI-H1373, LC319, NCI-H1781, PC-14, NCI-H358,
NCI-H2170, NCI-H520 and LU61) and three small-cell lung
cancer (SCLC) cell lines (SBC-3, SBC-5 and DMSI14). The
9 human esophageal carcinoma cell lines used in this study were
as follows: eight SCC cell lines (TEl, TE3, TES, TE9, TE10,
TEI12, TE1I3 and TEI5) and one adenocarcinoma (ADC) cell
line (TE7). A cervical cancer cell line Hel.a was also included
in the study. All cells were grown in monolayers in appropriate
media supplemented with 10% fetal calf serum (FCS) and were
maintained at 37°C in an atmosphere of humidified air with
5% CQO,. Human airway epithelial cells, SAEC (Cambrex Bio
Science Inc.), were also included in the panel of the cells used
in this study. Primary lung and esophageal cancer samples had
been obtained earlier with informed consent (5-10). This study
and the use of all clinical materials mentioned were approved
by individual institutional ethics committees.

Semiquantitative RT-PCR. We prepared appropriate dilutions
of each single-stranded cDNA prepared from mRNAs of clinical
lung and esophageal cancer samples, taking the level of f-actin
(ACTB) expression as a quantitative control. The primer sets for
amplification were as follows: ACTB-F (5-GAGGTGATAGCA
TTGCTTTCG-3") and ACTB-R (5-CAAGTCAGTGTACAGG
TAAGC-3") for ACTB, MMS22L-F (5-GTCTCACCTTGGAC
AGATGG-3") and MMS22L-R (5-CCAAGGATCCTATTACA
CAGTTGC-3" for MMS22L. All reactions involved initial dena-
turation at 95°C for 5 min followed by 22 (for ACTB) or 30 (for
MMS22L) cycles of 95°C for 30 sec, 56°C for 30 sec, and 72°C for
60 sec on a GeneAmp PCR system 9700 (Applied Biosystems).

Northern blot analysis. Human multiple-tissue northern blots
(16 normal tissues including heart, brain, placenta, lung, liver,
skeletal muscle, kidney, pancreas, spleen, thymus, prostate,
testis, ovary, small intestine, colon, leukocyte; BD Biosciences
Clontech) were hybridized with a **P-labeled PCR product of
MMS22L. The partial-length cDNA of MMS22L was prepared
by RT-PCR using primers MMS22L-F1 (CTGGAAGAGGCA
GTTGAAAA) and MMS22L-R1 (ATCGCCCAATATACTG
CTCA). Prehybridization, hybridization, and washing were
performed according to the supplier's recommendations. The
blots were autoradiographed with intensifying screens at -80°C
for 7 days.

Anti-MMS22L antibody. Synthesized peptide with the amino
acids sequence of CLGOMGQDEMOQRLENDNT [1227-1243]
(Cysteine was added to the N-terminal) was inoculated into
rabbits; the immune sera were purified on affinity columns
according to standard methodology. Affinity-purified anti-
MMS22L antibodies were used for western blot as well as
immunocytochemical analyses. We confirmed that the antibody
was specific to MMS22L on western blots using lysates from cell
lines that had been transfected with MMS22L. expression vector
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as well as those from lung and esophageal cancer cell lines that
endogenously expressed MMS22L. or not.

Western blot analysis. Cells were lysed in lysis buffer; 50 mM
Tris-HCI (pH 8.0), 150 mM NaCl, 0.5% NP-40, 0.5% deoxycho-
late-Na, 0.1% SDS, plus protease inhibitor (Protease Inhibitor
Cocktail Set I1T; Calbiochem). We used ECL western blot
analysis system (GE Healthcare Bio-Sciences), as described
previously (11).

Immunocytochemical analysis. Cultured cells were washed
twice with PBS(-), fixed and rendered permeable in 1:1 acetone:
methanol solution for 10 min at -20°C. Prior to the primary
antibody reaction, cells were covered with blocking solution
[5% bovine serum albumin in PBS(-)] for 10 min to block
non-specific antibody binding. After the cells were incubated
with a rabbit polyclonal antibody to human MMS22L, (gener-
ated to synthesized peptide MMS22L.; please see above) or a
mouse monoclonal antibody to human NFKBIL2 (Abnova), the
Alexa Fluor 488-labelled donkey anti-rabbit secondary anti-
body (Molecular Probes) or Alexa Fluor 594-labbelled donkey
anti-mouse secondary antibody (Molecular Probes) was added to
detect endogenous MMS22L. or NFKBIL2, individually. Nuclei
were stained with 4',6-diamidino-2-phenylindole (DAPI). The
antibody-stained cells were viewed with a laser-confocal micro-
scope (TSC SP2 AOBS; Leica Microsystems).

RNA interference assay. Two independent siRNA oligonucle-
otides against MMS22L were designed using the MMS22L
sequences (GenBank accession no: NM198468). Each siRNA
(600 pM) was transfected into two NSCLC cell lines, L.C319
and A549 or a cervical cancer cell line HeLa using 30 pl of
lipofectamine 2,000 (Invitrogen) following the manufacturer's
protocol. The transfected cells were cultured for seven days.
Cell numbers and viability were measured by Giemsa staining
and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay in triplicate (cell counting kit-8 solution;
Dojindo Laboratories). The siRNA sequences used were as
follows: control-1 (si-LUC: luciferase gene from Photinis
pyralis), 5-CGUACGCGGAAUACUUCGA-3'; control-2 (CNT:
On-TARGETplus siControl non-targeting siRNAs of a pool of
four oligosnucleotides: 5-UGGUUUACAUGUCGACUAA-3,
5-UGGUUUACAUGUUUUCUGA-3% 3-UGGUUUACAUG
UUUUCCUA-3"; and 5-UGGUUUACAUGUUGU GUGA-3");
siIRNA-MMS22L-#1 (si-MMS22L-#1: 5'-CCGCCAAUAUCA
UCUCUAAUU-3"; siRNA-MMS22L-#2 (si-MMS22L-#2:
5-GAA CCUGCAAUACAUGGUAUU-3"). Downregulation of
endogenous MMS22L. expression in the cell lines by siRNAs
for MMS22L, but not by controls, was confirmed by semiquan-
titative RT-PCR and western blot analyses.

Cell growth assay. COS-7 or HEK293 cells that express endog-
enous MMS22L at a very low level were transfected with mock
or MMS22L -expressing vectors (pCAGGSn-3xFlag-MMS22L)
using lipofectamine 2,000 transfection reagent (Roche).
Transfected cells were incubated in the culture medium
containing 0.8 mg/ml neomycin (Geneticin, Invitrogen) for
7 days. Expression of MMS22L as well as viability and colony
numbers of cells were evaluated by western blot analysis, and
MTT and colony-formation assays at day 7.
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