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Key points

= Whole-exome and whole-genome sequencing have provided a comprehensive
and high-resolution view of somatic genomic alterations in liver cancer

= Global epigenetic analyses have further identified both unique and
complementary molecular alterations in liver cancer

= Somatic mutational signatures of the liver cancer genome are complex
and tend to be associated with epidemiological backgrounds

= Integration of genetic and epigenetic alteration profiles has elucidated
core oncogenic pathways, potential therapeutic targets and new molecular
classifications in liver cancer.

Table 1 | Amplified and deleted genes in HCC

Gene name Locus Function

Recurrently amplified genes in HCC

MDM4 1932.1 p53 pathway
BCLS 1g921.1 WNT pathway
ARNT 1gq21.2 Xenobiotics metabolism
ABL2 1q25.2 Proliferation
MET 7931.2 Proliferation
COPS5 8q13.1 Proteolysis
MTDH 8g22.1 Metastasis
COX6C 8q22.2 Mitochondria
MYC 8q24.21 Proliferation
CCND1 11q13.2 Proliferation
FGF19 11913.2 WNT pathway
RPS6KB1 17g23.1 Proliferation
EEF1A2 20g13.33 Translation

Recurrently deleted genes in HCC

TNFRSF14. 1p36.33 Immune response
CDKN2C 1p36.11 Cell cycle

ARIDIA 1p36.11 Chromatin remodelling
TNFAIP3 6026 NF-«xB pathway
CSMD1 8p23.2 Immune response
DLC1 8p22 Small GTPase
SORBS3 8p21.3 Migration

WRN 8p21.3 DNA repair
SH2D4A 8p21.2 Proliferation
PROSC 8p11.2 Unknown

CDKN2A 9p21.3 Cell cycle
CDKN2B 9p21.3 Cell cycle

PTEN 10q23.31 Proliferation
SPRY2 13g31.1 Proliferation
BRCA2 13q13.1 DNA repair

RB1 13q14.3 Cell cycle

XPO4 1311 Nuclear export
SMAD4 18g21.31 TGF-p signalling

alteration profiles of 87 HCC tumours, including HBV-
associated and HCV-associated cases. Two molecu-
lar subgroups were identified that are associated with
virus status, the presence of intrahepatic metastasis
and patient prognosis. The researchers also reported

six distinctive combinations of copy number alterations
in HCC." In another study, copy number changes in 63
HCCs of various aetiologies (viral and nonviral) were
analysed and 8q24 copy number gains associated with
MYC overexpression were identified that were unique
to viral and alcohol-related HCCs.” Amplification
of MDM4 (1q32.1) and copy number gain of EEFIA2
(20q13.33) were shown to be frequent and aetiology-
independent molecular events in HCC.”® A meta-analysis
of four independent microarray comparative genomic
hybridization datasets, including 169 samples, identified
chromosomal gains in five broad (1g, 6p, 8q, 17q, and
10q) and two narrow (5p15.33 and 9q34.2-34.3) regions,
and 88 significant losses frequently present in 4q, 6q, 8p,
9p, 13q, 14q, 16q and 17p.!* Wang et al.”® reported the
results of copy number analysis of 286 HCC tumours
by single nucleotide polymorphism array, which identi-
fied 29 recurrently amplified and 22 recurrently deleted
regions, as well as BCL9 and MTDH as novel amplified
oncogenes in HCC.?

Whole-exome sequencing
Innovations in sequencing technologies have enabled
researchers to explore the liver cancer genome in more
depth. The capture or enrichment of DNA fragments
containing the exonic region followed by massively
parallel sequencing can determine somatic mutations
in the whole exon domain (exome).?** This approach
enables the comprehensive detection of somatic alter-
ations in the protein-coding region, and has led to
the discovery of many novel genes implicated in liver
cancer. Exomic sequencing of 10 HCV-positive HCCs
and subsequent analysis of an additional tumour cohort
of various aetiological backgrounds identified recurrent
inactivating mutations of the ARID2 gene in 18.2% of
HCV-associated HCCs.” Guichard ef al.? performed
copy number analysis of 125 HCC cases and whole-
exome sequencing of 24 of these cases and found new
recurrent alterations in four genes (ARIDIA, RPS6KA3,
NFE2L2 and IRF2). Huang et al.” performed whole-
exome sequencing of nine pairs of HCCs and their intra-
hepatic metastases. Although most substitutions (94.2%)
were common in both primary and metastatic tumours,
a fraction of mutations were only detected in primary
(1.1%) or metastatic (4.7%) tumours. Among them,
KDM6A, CULY, FGD6, AKAP4 and RNFI139 were found
only in the metastatic tumours of three individuals.
Using whole-exome sequencing of 87 HCC cases,
Cleary et al.®® identified recurrent alterations in the
NFE2L2-KEAPI and KMT2A (also known as MLL)
pathways, and other genes (C160rf62 and RAC2) with
lower mutation frequencies. Eight fluke-associated
cholangiocarcinomas (the predominant type of liver
cancer in northern Thailand and neighbouring coun-
tries) were analysed, and showed that the number of
coding mutations per tumour ranged from 19 to 34, with
an average of 26 mutations per sample.? In addition to
TP53 and KRAS, recurrent inactivating mutations in the
MLL3, ROBO2, RNF43 and PEG3 genes were identified,
and activating mutations were found in the GNAS gene.
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Whole-genome sequencing

Several research groups have sequenced the full liver
cancer genome in further attempts to identify all
somatic driver events related to hepatocarcinogenesis,
including substitutions in noncoding regions, structural
rearrangements, and viral genome integration. Totoki
et al.* first performed whole-genome sequencing of
one HCV-associated HCC case (tumour genome and
corresponding normal genome) and identified >16,000
somatic mutations and 26 intra-chromosomal and inter-
chromosomal rearrangements generating four fusion
transcripts. Among them, one in-frame fusion transcript
(BCORLI-ELF4), generated by a small inversion on the
X chromosome, showed reduced transcriptional repres-
sion activity compared to wild-type BCORLI, which
encodes a tumour suppressor gene.

Fujimoto et al.” reported the results of whole-genome
sequencing of 27 HCCs and matched normal genomes, 25
of which were associated with HBV or HCV infection. The
average number of somatic point mutations at the whole-
genome level was 4.2 per Mb. One tumour that contained
an exceptionally large number of somatic mutations
(24,147 substitutions) showed a DNA mismatch-repair
defect caused by a somatic nonsense mutation in the
MLH]1 gene. Furthermore, mutations in several chromatin
regulators, including ARIDIA, ARID1B, ARID2, KMT2A
and MLL3, were detected in ~50% of the tumours.

Whole-genome sequencing of 88 HCC tumour and
normal tissue pairs, including 81 HBV-positive and no
HCV-positive cases showed an average somatic muta-
tion rate of 3.69 per Mb and a mean protein-altering
mutation rate of 1.8 per Mb, which are mid-range
among different cancer types.” In this study, the WNT/
CTNNBI and JAK/STAT pathways were shown to be
major oncogenic drivers in HCC and activating JAKI
mutations were identified in 9.1% of total cases, sug-
gesting that these pathways could be novel therapeutic
targets in HCC.

HBYV genome integrations in the host genome
HBV is a DNA virus whose genome is integrated into
the host genome. The integration of the viral genome
affects host gene expression near the integration site and
its effect on the integrity of the host genome is associ-
ated with virus-mediated hapatocarcinogenesis.”® In the
past, Southern blot analysis or inverse PCR was applied
to identify viral genome integration sites. However,
current genome sequencing technology can detect virus
integration events more comprehensively and at higher
resolution than previously.

Jiang et al.** performed high-depth (>80x and 240x
coverage of the genome, two or three times more than that
used for conventional whole-genome sequencing) whole-
genome and transcriptome sequencing of four pairs of
HBV-positive HCCs and identified 225 HBV genome
integration sites by taking advantage of paired reads
mapping to both human and viral genomes. A variety
of genomic aberrations near viral integration sites were
found, including direct gene disruption, viral promoter-
driven gene transcription, viral-human transcript fusion,
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and DNA copy number alterations. Frequent HBV inte-
gration in TERT and MLL4 loci has also been reported.*
Sung et al.** conducted whole-genome sequencing, at
>30x coverage on average, of 81 HBV-positive and seven
HBV-negative HCC samples. Analysis of HBV integration
sites identified 399 integration breakpoints (4.9 per case).
Frequent HBV integration breakpoints were observed in
the TERT, KMT2D (also known as MLL4), CCNEI and
ENI1 genes.

Somatic change of retrotransposons in HCC
The human genome contains a variety of repetitive
sequences, including tandem repeats (such as satellite
DNA and microsatellite DNA) and retrotransposons,
such as short interspersed nuclear elements (SINEs)
and long interspersed nuclear elements (LINEs). In
the human genome, Alu and LINE-1 are major forms
of SINEs and LINEs, respectively. Given that current
massive parallel sequencing technologies can produce
only short reads (~200bp), repetitive sequences, which
constitute ~20% of the human genome, remain to be
explored in genome sequencing.*

Retrotransposon capture sequencing applied to HCC
samples revealed two LINE-1-mediated somatic changes
associated with liver tumorigenesis.*” One was a germline
retrotransposon insertion in the MCC gene, a tumour
suppressor gene that is known to be mutated in colo-
rectal cancers. This retrotransposon insertion was found
to downregulate MCC expression and activate the WNT/
CTNNBI pathway. The other event, a tumour-specific
LINE-1 insertion, activates a potential oncogene, ST18,
in liver tumours.

Mutation signatures and aetiological factors
There are six patterns of somatic substitution (C>A/
G>T, C>G/G>C, C>T/G>A, T>A/A>T, T>C/A>G and
T>G/A>C) in the cancer genome and they are affected
by exogenous or endogenous mutagens, such as oxida-
tive stress, exposure to chemicals or UV, and defects in
the DNA repair machinery.*® Whole-genome sequencing
in cancer can identify large numbers of neutral muta-
tions and is more appropriate for the analysis of mutation
signatures in an unbiased manner than is whole-exome
sequencing.

The first whole-genome sequencing study of a Japanese
HCV-positive HCC case showed a distinct mutation sig-
nature (dominance in C>T/G>A and T>C/A>G) in the
liver cancer genome.*® A similar substitution pattern
was also reported in Asian HBV-positive HCC cases.”*
Guichard ef al * reported the over-representation of C>A/
G>T substitutions in HCC in a Western population with
multiple aetiological backgrounds, although their data was
obtained using whole-exome sequencing.?® Using whole-
genome sequencing, a study of 27 HCC cases of different
aetiological backgrounds demonstrated a dominance of
T>C/A>G transitions as well as C>A/G>T transversions
and C>T/G>A transitions, particularly at CpG sites.”
As C>T/G>A transitions are commonly found in other
cancers, T>C/A>G transitions and C>A/G>T trans-
versions could be characteristic mutational signatures
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Figure 1 | Multiple aetiological factors and ethnic
differences affect somatic mutation signatures in liver
cancer. Five characteristic mutation signatures identified in
the liver cancer genome are shown.®® Permission obtained
from Nature Publishing Group © Alexandrov, L. B. Nature
500, 415-421 (2013).

of HCC genomes. Habitual alcohol drinking and the
occurrence of synchronous or metachronous multiple
liver nodules were significantly associated with the prin-
cipal components of the somatic substitution patterns.®
Somatic substitutions in IHCC associated with liver fluke
are predominantly C>T/G>A transitions, the majority
of which are identified in the context of a CpG-to-ITpG
change as the result of 5-methylcytosine deamination.”
In addition to six different substitutions, information on
the bases immediately 5' and 3' to each mutation has been
used to identify context-dependent mutation patterns in
a wide range of cancers. Among 22 mutational signatures
identified by this cross-tumour analysis, HCC contained
five distinct signatures, which was the highest number
among the 30 tumour types and indicates that a complex
mutagenesis process operates in this tumour (Figure 1).*®

Epigenetic alterations in HCC

HCC is a heterogeneous disease in terms of aetiology and
cell of origin.* Various environmental agents and lifestyles
known to be risk factors for HCC are suspected to promote
its development by eliciting epigenetic changes, which
have a key role in a wide range of human malignancies.*!

DNA methylation in HCC

Altered DNA methylation is an early event in HCC
development. Global hypomethylation mainly affects
intergenic regions of the genome and has a critical role in
increasing chromosomal instability.* DNA methylation
of gene promoters, which is important in transcriptional
regulation and the cellular differentiation process,* is a

common mechanism of gene silencing in cancer cells.
Furthermore, CpG island hypermethylation pheno-
types have been reported in various types of cancers,
such as colorectal,* uterine,* glioma,* and renal?’
cancers. However, the presence of such phenotypes is
still controversial in HCC.##

A molecular mechanism of active DNA demethylation
has been identified and shown to be involved in tumori-
genesis,*® particularly in glioma and haematological
malignancies. Hydroxymethylcytosine is present at a con-
siderable level in normal adult liver tissues and is often
decreased in tumour tissues;’! however, its role in liver
carcinogenesis remains unknown. IDHI and IDH2 muta-
tions are frequent in THCCs and have been detected in
34 of 326 cases (10%).” Tumours containing mutations
in IDHI or IDH2 had lower 5-hydroxymethylcytosine
and higher 5-methylcytosine levels compared with
those without mutations, and 50% of hypermethyl-
ated genes overlapped with DNA hypermethylation in
IDHI-mutant glioblastomas.*!

To investigate DNA methylation patterns compre-
hensively, aberrantly methylated genes are identified by
methylated DNA immunoprecipitation (meDIP) fol-
lowed by tiling array® or next-generation sequencing.
Deng et al.** applied the meDIP-chip method to iden-
tify 15 genes preferentially methylated in HCV-related
HCCs. Alternatively, a genome-wide DNA methylation
assay that was developed on Beadchip™ (Ilumina Inc.,
San Diego, CA) technology® can measure methylation
levels quantitatively at single CpG sites, and yield largely
comparable results to meDIP sequencing® and whole-
genome bisulphite sequencing. This assay has been
applied to methylation profiling in various cancers and
in the cancer genome atlas project.”” A few distinct epi-
genetic subtypes identified on the basis of the methyl-
ation pattern have been detected in HCCs and will be
integrated with genetic alteration data.

Shen ef al.*® used a 27K Infinium™ array (Illumina) to
analyse 62 HCC cases and identified 2,324 differentially
methylated CpG sites, of which 684 hypermethylation
markers could be utilized for plasma DNA diagnostics.
They also analysed 66 HCC cases using a 450K array in
which the top 500 significant CpG sites that were differ-
entially methylated were able to distinguish HCC from
adjacent tissues.” Meanwhile, Tao et al.** analysed non-
cancerous tissues of HBV-associated HCC on a 27K array
and identified hypermethylated genes. Accumulation of
such methylations would form “an epigenetic field for
cancerization”.®

An early study® showed that extensive methylation is
associated with CTNNBI mutations, while HCC with a
TP53 mutation is often characterized by chromosomal
instability. Given that CTNNBI and TP53 mutations
are mutually exclusive in HCCs, such distinct methyl-
ation patterns could be associated with particular genetic
alterations.

Promoter CpG islands of the CDKN2A and CDKN2B
tumour suppressor genes are frequently hypermethylated,
leading to inactivation of the RB pathway.*® Methylation
of the CDKN2A gene promoter occurs in 73% of HCC
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Figure 2 | Core oncogenic pathways in hepatocarcinogenesis. Representative
genes involved in each pathway are indicated.

tissues,** 56% of HBV-related HCC, and 84% of HCV-
related HCC.®® RASSFIA is methylated in up to 85% of
HCCs, GSTPI in 50-90%,5% and MGMT in 40%.%°

Transcriptome analysis and beyond

RNA sequencing technology has enabled not only
transcriptomic profiling, but also the identification of
rearranged transcripts, such as translocations and inver-
sions, and tumour-specific expression of noncoding
RNAs, although the latter analysis requires deep cover-
age of sequencing reads. No recurrent fusion genes have
been reported in HCC to date.

Classification based on gene expression, copy number
and DNA methylation profiling data would help elucidate
the correlation between mutation profiles and molecular
subclasses.™” Gene expression profiles in cancer are the
result of genetic and epigenetic alterations. Therefore,
an integrated genomic analysis is necessary to deter-
mine how these genetic and epigenetic alterations affect
cancer phenotypes, because the combination of somatic
mutations, promoter methylation, and chromosomal loss
might lead to gene inactivation.”™

Vetter et al.” reported on the association between the
increase of splicing variants of the KLF6 gene and increased
hepatocarcinogenesis. Splicing variants in HCCs have
been reported in several genes,” including LLGLI (also
known as HUGL1),” TCF4,” and p73.7” Transcriptome
sequencing of HCC samples combined with genotyping
validation identified a frequent adenosine-to-inosine
RNA editing event in the AZINI gene in HCC.”*” This
editing induces a serine-to-glycine amino acid change
that confers gain-of-function activity and a stronger affin-
ity of the edited protein to antizyme. Increased AZIN1
(antizyme inhibitor 1) protein stability could promote
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cell proliferation, presumably through the neutralization
of ornithine decarboylase (ODC) and G1/S-specific
cyclin-D1 (CCND1) degradation mediated by antizyme.
Adenosine-to-inosine RNA editing will contribute to more
transcriptome diversity and liver carcinogenesis.

Core liver cancer genes and pathways
Comprehensive analyses of the liver cancer genome have
demonstrated that multiple cancer genes and molecular
pathways are recurrently altered and have pivotal roles
in hepatocarcinogenesis (Figure 2). Table 2 summarizes
important mutated genes in liver cancer.

TP53 pathway

TP53 is the top gene among recurrently mutated genes
in HCC, and its mutation frequency varies between 18%
and 35.2% (25.9% on average) of HCCs.* Alterations of
other genes located upstream and downstream on the
TP53 pathway, such as recurrent mutations of the ATM
(an upstream regulator of TP53 activation®') and CDKNIA
(a target of TP53%) genes, have also been reported.
Moreover, mutations of the IRF2 gene, which encodes a
positive regulator of TP53 protein expression, are mutu-
ally exclusive to the TP53 mutation in a cohort of patients
with HCC.*

Cell cycle regulation pathway

The G1/S cell cycle checkpoint and cell senescence are
regulated by RB and CDKN2A. Inactivation of the RB and
CDKN2A genes by homozygous deletion and promoter
CpG hypermethylation or point mutations has been
reported in HCC.#% The tumour suppressing activity
of RB in the liver was evaluated in a mouse model, and
RB inactivation was found to be associated with both
increased cell proliferation and chromosomal instability.®

TERT pathway

Activation of telomerase (encoded by the TERT gene),
which is physiologically silenced in most normal cells, is
required for infinite replication in cancer cells.* Somatic
mutations in the TERT gene promoter have been shown
to promote TERT gene expression in melanoma.?"%
Killela et al.* screened these mutations in >1,000 tumours
of various organs and reported that 27% of HCC cases
harboured these alterations. Nault ef al. reported TERT
promoter mutations in 54% of human HCCs and 25%
of cirrhotic preneoplastic nodules, suggesting that this
alteration could be the earliest recurrent genetic event in
hepatocarcinogenesis.®

WNT pathway

Aberrant activation of WNT signalling is a driving
molecular event in a wide range of tumours, including
liver cancers.”* Somatically acquired missense mutations
in exon 3 of the CTNNBI gene are frequently reported in
HCC (10.0-32.8% in genome-wide sequencing studies).”?
In addition to CTNNBI, alterations of APC and AXINI,
which are tumour suppressor genes that negatively
regulate catenin -1 (CTNNB1) protein levels in a post-
transcriptional manner, have been recurrently reported
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Table 2 | Candidate driver genes in hepatocellular carcinoma with recurrent genetic alterations

Gene Frequency Total number of  Number of mutation- Genetic alteration  Pathway

(%) cases analysed positive cases
TP53 31 2,720 844 Mutation, LOH TP53 :
ARID1A 28.2 85 24 Mutation, LOH Chromatin modifying
CTNNB1 18.8 3,238 609  Mutation WNT
MTDH 14.7 286* 42 Amplification Cell adhesion
AXINL 14.2 466 66 Mutation, LOH WNT
CDKN2A B b o7 686 80 Mutation, LOH Cell cycle
ARID2 10.9 202 22 Mutation, LOH Chromatin modifying
CHDIL 10.7 286* 31 Amplification Chromatin modifying
BCLS 8.7 286* 25 Amplification Chromatin modifying
NFE2L2 7.4 162 12 Mutation Oxidative stress
ATM 6.9 72 5  Mutation, LOH TP53
PIK3CA 6.3 631 40 Mutation Growth factor signalling
SMARCA4 6.2 129 Mutation, LOH Chromatin modifying
TSC2 5.2 77 Mutation, LOH Growth factor signalling
CCND1 4.7 286* 14 : Amplification Cell cycle
APC 4.7 107 Mutation, LOH WNT
JAK2 4.7 85 Mutation Growth factor signalling
PTEN 4.4 451 20 Mutation, LOH Growth factor signalling
BRAF 4.4 360 16 Mutation Growth factor signalling
FGF19 4.3 286* 13 Amplification Growth factor signalling
RB1 4.3 94 Mutation, LOH Cell cycle
COL1A1 4.2 Tl Mutation Cell adhesion
HNF1A 3.9 233 Mutation Chromatin modifying
KRAS 2.4 672 18 Mutation Growth factor signalling
NRAS 1.6 426 7 Mutation Growth factor signalling

*Copy number change. Abbreviation: LOH, loss of heterozygosity.

in HCC and hepatoblastoma.”**® Frequent epigenetic
inactivation of SFRPs and SOX1, both of which are negative
regulators of WNT signalling, has also been detected.*®*”
Alterations in the CTNNBI, APC and AXINI genes occur
in a mutually exclusive way and activate downstream
signals, including transcriptional activation of the MYC
and CCNDI genes, which are also amplified in HCC.?8-1%
CTNNBI mutation is reported to be associated with
HCV-related HCC.®

Chromatin modifying factors

DNA is tightly associated with proteins, mainly various
types of histones, and compactly packed in the nucleus.
This DNA-protein complex is called chromatin, and its
structure (open or closed) or position is dynamically
regulated by histone modifications or ATP-dependent
mobilization, which affect gene expression and convey
epigenetic information beyond DNA replication. The
SWI/SNF (switch/sucrose non-fermentable) protein
complex regulates chromatin structure by altering the
position of the nucleosome, the basic unit of the DNA-
histone complex, and participates in a wide range of bio-
logical phenomena, such as differentiation, growth, DNA
repair, and reprogramming.»> ARIDIA, ARID1B and

ARID2 encode core proteins of SWI/SNF complexes and
are frequently altered in HCC.?%*! Alterations of these
ARID family members have been reported in other
tumour types, including ovarian cancer, renal cell cancer
and gastric cancer.'® In addition, the presence of frame-
shift mutations, copy number loss and homozygous
deletions observed in in vifro studies demonstrated
that members of the ARID family function as tumour
SUppressor genes.

Alterations of other epigenetic regulators have also been
reported in HCC. As an epigenetic writer (functioning
in histone modification), mutations in the gene encod-
ing histone-lysine N-methyltransferase 2A (KMT2A; also
known as MLL)!**!% and its family members (MLL3 and
MLL4) are frequent.®® A group of genes encoding epi-
genetic readers (specifically recognizing histone modifica-
tion) including BPTF** and other histone binding proteins
(RNF20 [also known as BREIA] and BRDT) are also
altered in certain HCCs.* Alterations in these epigenetic
regulators account for >50% of HCC cases.*!

Growth factor signalling pathway
Copy number analyses of HCC identified focal gene
amplification of the genes encoding the receptor tyrosine
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kinase MET, FGF19 (which is a ligand for FGFR4), and
downstream signalling components (MYC and RPS6KB1).
Furthermore, HCC genome sequencing studies have
revealed recurrent somatic mutations in genes encoding
other kinases (RPS6KA3 and JAKI). Epigenetic silencing
of SOCS-1, a negative regulator of the JAK/STAT pathway,
occurs frequently in HCC.'” Compared to other epithelial
cancers, such as lung or colorectal cancer, activating muta-
tions in the RAS (KRAS, NRAS and HRAS) and PIK3CA
genes are rarely reported in HCC, but occur more fre-
quently in THCC.!%*1% Activation of other growth factors
including TGF-B,""! IGF"? and VEGF"? are also involved
in hepatocarcinogenesis. These genomic alterations, espe-
cially JAK1/PIK3CA mutations,” are potential therapeutic
targets in liver cancer.

KEAP1-NFE2L2 pathway

The NFE2L2 gene encodes a sequence-specific trans-
criptional factor that upregulates genes associated with
oxidative stress and other metabolic pathways.!* The
level of the NFE2L2 protein is regulated by the ubiquitin-
proteasome pathway, and KEAPI functions as an E3
ubiquitin ligase. Activating missense mutations in the
NFE2L2 gene," which disrupt direct NFE2L2-KEAP1
interaction, or inactivating mutations of the KEAPI gene
are recurrently reported in HCC.?? These alterations
result in the accumulation of the NFE2L2 protein and
promote aberrant activation of downstream genes that
confer resistance to oxidative stress and induce metabolic
transformation in cancer cells.**1¢

NOTCH pathway

The role of the NOTCH cascade in solid tumours is
controversial. Comparative functional genomics inte-
grating transcriptome data from mice and human
HCC samples indicate that NOTCH is activated in this
cancer,'”!® whereas other reports identified activation
of NOTCH signalling as a suppressor feedback mecha-
nism during HCC progression."®'® These contradictions
suggest that biological activities of NOTCH signalling
during hepatocarcinogenesis largely depend on the
cellular contexts, as reported in other tumour types.*

Genomic changes during tumour progression
Midorikawa et gl.”* analysed copy number changes
during multistep hepatocarcinogenesis and found that
1q21.3-44 gain and loss of heterozygosity on 1p36.21~
36.32 and 17p13.1-13.3 were frequently observed in the
early stage of HCC, whereas the combination of chromo-
somal gains on 5q11.1-35.3 and 8q11.1-24.3 and loss of
heterozygosity on 4q11-34.3 and 8p11.21-23.3 are late
molecular events in advanced HCC.

Roessler et al.® combined array comparative genomic
hybridization and gene expression data in 76 HBV-
positive HCCs and attempted to elucidate genomic
signatures associated with tumour progression and the
prognosis of patients. These authors found a substantial
correlation between copy number aberration and gene
expression. In particular, a cluster of six genes located on
chromosome 8p were deleted in tumours from patients
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with a poor prognosis; these genes included PROSC,
SH2D4A and SORBS3, which showed tumour suppres-
sive activities, along with DLECI (also known as DLCI),
a known tumour suppressor gene.

Classification and prognosis prediction

In clinical settings, prognosis assessment and decisions
regarding treatment are made on the basis of various
tumour staging systems. The Edmondson-Steiner
grading system has been applied to assess tumour aggres-
siveness in HCC, but data supporting its independent
prognostic impact are quite weak.'?? Therefore, new
approaches and methodologies are needed to develop
independent prognostic and predictive tools that might
finally assist the clinical decision-making process to
further improve curative strategies in HCC.

Genomic profiling, such as gene expression profiling,
has been applied to classify HCCs.'**!** Copy number
alterations have also been integrated for classification and
therapeutic target identification.'® In prognosis predic-
tion, the expression pattern from the adjacent non-tumour
tissue, which reflects “carcinogenic field effect’,'** was
previously reported to correlate with patient survival.’
A large collection of human HCC samples from patients
undergoing curative resection was analysed by microarray
profiling. A panel of five genes, including TAF9, RAMP3,
HNI, KRTI9 and RAN, showed the strongest prognostic
relevance and was selected for further analysis.'”® The five-
genes score was further validated in an independent, large
cohort and also increased its prognostic accuracy when
combined with the expression pattern in non-tumour
tissues as described above.'*”

Integrative genomic analysis with gene mutation pro-
files will enable us to elucidate the genetic and epigenetic
mechanism of HCC for better classification and to con-
struct a better scoring system for prognosis prediction
and treatment selection.

Conclusions

As summarized in this Review, advances in sequenc-
ing technologies have enabled the examination of liver
cancer genomes at high resolution. In addition to copy
number changes and mutations, analyses have identi-
fied additional genome alterations, including struc-
tural alterations, HBV integration, and retrotransposon
changes. Integrated analyses of trans-omics data (gen-
ome, transcriptome and methylome data) have identi-
fied multiple critical genes and pathways implicated in
hepatocarcinogenesis.

These comprehensive genomic analyses have already
identified many potential therapeutic targets in liver
cancer, including growth factor signalling/kinases (MET,
FGF9/FGFR, PIK3CA/AKT/mTOR and JAK/STAT),
the NFE2L2-mediated oxidative pathway and chro-
matin modifying factors. Functional analysis of these
targets and the identification of novel potential driver
mutations, and the construction of in vitro and in vivo
therapeutic models to evaluate new molecular-targeting
compounds are necessary for effective translational
research connecting basic molecular science to the clinic.
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The aetiological factors associated with liver cancer
(for example hepatitis infection, alcohol and obesity) are
well known, and ethnic differences in the prevalence of
this disease are prominent. However, the effect of these
factors on the accumulation of somatic changes in the
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Fibroblast Growth Factor Receptor 2 Tyrosine Kinase
Fusions Define a Unique Molecular Subtype of
Cholangiocarcinoma

Yasuhito Arai,'” Yasushi Totoki,"” Fumie Hosoda,'” Tomoki Shirota,' Natsuko Hama,"
Hiromi Nakamura,' Hidenori Ojima,2 Koh Furuta,® Kazuaki Shimada,4 Takuji Okusaka,’
Tomoo Kosuge,” and Tatsuhiro Shibata’

Cholangiocarcinoma is an intractable cancer, with limited therapeutic options, in which
the molecular mechanisms underlying tumor development remain poorly understood.
Identification of a novel driver oncogene and applying it to targeted therapies for
molecularly defined cancers might lead to improvements in the outcome of patients. We
performed massively parallel whole transcriptome sequencing in eight specimens from
cholangiocarcinoma patients without KRAS/BRAF/ROSI alterations and identified two
fusion kinase genes, FGFR2-AHCYLI and FGFR2-BICCI. In reverse-transcriptase poly-
merase chain reaction (RT-PCR) screening, the FGFR2 fusion was detected in nine
patients with cholangiocarcinoma (9/102), exclusively in the intrahepatic subtype (9/66,
13.6%), rarely in colorectal (1/149) and hepatocellular carcinoma (1/96), and none in
gastric cancer (0/212). The rearrangements were mutually exclusive with KRAS/BRAF
mutations. Expression of the fusion kinases in NIH3T3 cells activated MAPK and con-
ferred anchorage-independent growth and iz vive tumorigenesis of subcutaneous trans-
planted cells in immune-compromised mice. This transforming ability was attributable
to its kinase activity. Treatment with the fibroblast growth factor receptor (FGFR)
kinase inhibitors BGJ398 and PD173074 effectively suppressed transformation. Conclu-
sion: FGFR2 fusions occur in 13.6% of intrahepatic cholangiocarcinoma. The expres-
sion pattern of these fusions in association with sensitivity to FGFR inhibitors warrant
a new molecular classification of cholangiocarcinoma and suggest a new therapeutic
approach to the disease. (HEraTOLOGY 2014559:1427-1434)

holangiocarcinoma (CC) is a highly malignant tures.” ICC is the second most common primary hepatic

invasive carcinoma that arises through malig-

nant transformation of cholangiocytes. Tt is
an intractable rumor with poor prognosis, whose inci-
dence and mortality rates are high in East Asia and have
been rapidly increasing worldwide.””> CC can be subdi-
vided into intrahepatic (ICC) and extrahepatic (ECC)
types, which show distinct etological and clinical fea-

malignancy after hepatocellular carcinoma, and is associ-
ated with hepatitis virus infection. Somatic mutations of
KRAS and BRAF are the most common genetic altera-
tions in CC.>* Surgical resection is the only curative
treatment for CC, and no standard chemotherapy regi-
mens have been established for inoperative cases or those
showing recurrence after surgical resection.”®

Abbreviations: CC, cholangiocarcinoma; ECC, extrahepatic cholangiocarcinoma; FGFR, fibroblast growth factor receptor; FISH, fluorescent in situ hybridization;
ICC, intrahepatic cholangiocarcinoma; TKI, tyrosine kinase inhibitor.
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