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Signatures of mutational processes in

human cancer

A list of authors and their affiliations appears at the end of the paper

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these
mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational
processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than
20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC

family of cytidine deaminases, whereas others are confined
with age of the patient at cancer diagnosis, known mutagenic

to a single cancer class. Certain signatures are associated
exposures or defects in DNA maintenance, but many are of

cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic
regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying
the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.

Somatic mutations found in cancer genomes' may be the consequence
of the intrinsic slight infidelity of the DNA replication machinery,
exogenous or endogenous mutagen exposures, enzymatic modifica-
tion of DNA, or defective DNA repair. In some cancer types, a sub-
stantial proportion of somatic mutations are known to be generated
by exposures, for example, tobacco smoking in lung cancers and
ultraviolet light in skin cancers®, or by abnormalities of DNA main-
tenance, for example, defective DNA mismatch repair in some
colorectal cancers®. However, our understanding of the mutational
processes that cause somatic mutations in most cancer classes is
remarkably limited.

Different mutational processes often generate different combinations
of mutation types, termed ‘signatures’. Until recently, mutational sig-
natures in human cancer have been explored through a small number

of frequently mutated cancer genes, notably TP53 (ref. 4). Although
informative, these studies have limitations. To generate a mutational
signature, a single mutation from each cancer sample is entered into a
mutation set aggregated from several cases of a particular cancer type. A
signature that contributes the large majority of somatic mutations in the
tumour class is accurately reported. However, if multiple mutational
processes are operative, a jumbled composite signature is generated.
Furthermore, because such studies are based on ‘driver’ mutations’,
signatures of selection are superimposed on the signatures of mutational
processes.

Recent advances in sequencing technology have overcome past limi-
tations of scale'. Thousands of somatic mutations can now be iden-
tified in a single cancer sample, offering the possibility of deciphering
mutational signatures even when several mutational processes are
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Figure 1| The prevalence of somatic mutations across human cancer types.
Every dot represents a sample whereas the red horizontal lines are the median
numbers of mutations in the respective cancer types. The vertical axis (log
scaled) shows the number of mutations per megabase whereas the different

cancer types are ordered on the horizontal axis based on their median numbers
of somatic mutations. We thank G. Getz and colleagues for the design of this
figure®. ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia;
CLL, chronic lymphocytic leukaemia.
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Figure 2 | Validated mutational signatures found in human cancer. Each
signature is displayed according to the 96 substitution classification defined by
the substitution class and sequence context immediately 3" and 5’ to the
mutated base. The probability bars for the six types of substitutions are
displayed in different colours. The mutation types are on the horizontal axes,

operative. Moreover, because most mutations in cancer genomes are
‘passengers’ they do not bear strong imprints of selection.

We recently developed an algorithm to extract mutational signa-
tures from catalogues of somatic mutations and applied it to 21 breast
cancer whole-genome sequences*. Novel and known signatures were
revealed, with the contribution of each signature to each cancer sample
and the timing of its activity estimated®’, Further studies have demon-
strated that the approach can also be applied, albeit with less power, to
mutational catalogues from sequences of all coding exons (exomes)”.
Global sequencing initiatives are now yielding catalogues of somatic
mutations from thousands of cancers®. We have therefore applied this
method to survey the repertoire of mutational signatures and processes
operating across the spectrum of human neoplasia.

Mutational catalogues

We compiled 4,938,362 somatic substitutions and small insertions/
deletions (indels) from the mutational catalogues of 7,042 primary
cancers of 30 different classes (507 from whole genome and 6,535 from
exome sequences) (Supplementary Fig. 1). In all cases, normal DNA
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whereas vertical axes depict the percentage of mutations attributed to a specific
mutation type. All mutational signatures are displayed on the basis of the
trinucleotide frequency of the human genome. A higher resolution of each
panel is found respectively in Supplementary Figs 2-23. Asterisk indicates
mutation type exceeding 20%.

from the same individuals had been sequenced to establish the somatic
origin of variants.

The prevalence of somatic mutations was highly variable between
and within cancer classes, ranging from about 0.001 per megabase
(Mb) to more than 400 per Mb (Fig. 1). Certain childhood cancers
carried fewest mutations whereas cancers related to chronic mutagenic
exposures such as lung (tobacco smoking) and malignant melanoma
(exposure to ultraviolet light) exhibited the highest prevalence. This
variation in mutation prevalence is attributable to differences between
cancers in the duration of the cellular lineage between the fertilized egg
and the sequenced cancer cell and/or to differences in somatic muta-
tion rates during the whole or parts of that cellular lineage'.

The landscape of mutational signatures

In principle, all classes of mutation (such as substitutions, indels, rear-
rangements) and any accessory mutation characteristic, for example, the
sequence context of the mutation or the transcriptional strand on which
it occurs, can be incorporated into the set of features by which a muta-
tional signature is defined. In the first instance, we extracted mutational
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Figure 3 | The presence of mutational signatures across human cancer
types. Cancer types are ordered alphabetically as columns whereas mutational
signatures are displayed as rows. ‘Other’ indicates mutational signatures for
which we were not able to perform validation or for which validation failed
(Supplementary Figs 24-28). Prevalence in cancer samples indicates the

signatures using base substitutions and additionally included informa-
tion on the sequence context of each mutation. Because there are six
classes of base substitution—C=>A, C>G, C>T, T>A, T>C, T>G (all
substitutions are referred to by the pyrimidine of the mutated Watson-
Crick base pair)—and as we incorporated information on the bases
immediately 5" and 3’ to each mutated base, there are 96 possible muta-
tions in this classification. This 96 substitution classification is particu-
larly useful for distinguishing mutational signatures that cause the same
substitutions but in different sequence contexts.

Applying this approach to the 30 cancer types revealed 21 distinct
validated mutational signatures (Supplementary Table 1 and Sup-
plementary Figs 2-28). These show substantial diversity (Fig. 2 and
Supplementary Figs 2-23). There are signatures characterized by
prominence of only one or two of the 96 possible substitution muta-
tions, indicating remarkable specificity of mutation type and sequence
context (signature 10). By contrast, others exhibit a more-or-less equal
representation of all 96 mutations (signature 3). There are signatures
characterized predominantly by C>T (signatures 1A/B, 6, 7, 11, 15,
19), C>A (4, 8, 18), T>C (5, 12, 16, 21) and T>G mutations (9, 17),
with others showing distinctive combinations of mutation classes
(2,13, 14).

Signatures 1A and 1B were observed in 25 out of 30 cancer classes
(Fig. 3). Both are characterized by prominence of C>T substitutions
at NpCpG trinucleotides. Because they are almost mutually exclusive
among tumour types they probably represent the same underlying
process, with signature 1B representing less efficient separation from
other signatures in some cancer types. Signature 1A/B is probably
related to the relatively elevated rate of spontaneous deamination
of 5-methyl-cytosine which results in C>T transitions and which
predominantly occurs at NpCpG trinucleotides®. This mutational
process operates in the germ line, where it has resulted in substantial
depletion of NpCpG sequences, and in normal somatic cells'.

Signature 2 is characterized primarily by C>T and C>G mutations
at TpCpN trinucleotides and was found in 16 out of 30 cancer types

percentage of samples from our data set of 7,042 cancers in which the signature
contributed significant number of somatic mutations. For most signatures,
significant number of mutations in a sample is defined as more than 100
substitutions or more than 25% of all mutations in that sample. MMR,
mismatch repair.

(Fig. 3). On the basis of similarities in mutation type and sequence
context we previously proposed that signature 2 is due to over activity
of members of the APOBEC family of cytidine deaminases, which
convert cytidine to uracil, coupled to activity of the base excision
repair and DNA replication machineries®''.

In most cancer classes at least two mutational signatures were
observed, with a maximum of six in cancers of the liver, uterus and
stomach. Although these differences may, in part, be attributable to
differences in the power to extract signatures, it seems likely that some
cancers have a more complex repertoire of mutational processes than
others.

Most individual cancer genomes exhibit more than one mutational
signature and many different combinations of signatures were observed
(Fig. 4 and Supplementary Figs 29-88). The patterns of contribution to
individual cancer samples vary markedly between signatures. Signature
1A/B contributes relatively similar numbers of mutations to most cancer
cases whereas other signatures contribute overwhelming numbers of
mutations to some cancer samples but very few to others of the same
cancer class, for example, signatures 2, 3, 4, 6, 7, 9, 10, 11, 13 (Fig. 4).

Mutational signatures and age of cancer diagnosis

We examined each cancer type for correlations between age of dia-
gnosis and the number of mutations attributable to each signature in
each sample. Signature 1A/B exhibited strong positive correlations
with age in the majority of cancer types of childhood and adulthood
(Supplementary Table 2). No other mutational signature showed a
consistent correlation with age of diagnosis.

The mutations in a cancer genome may be acquired at any stage in
the cellular lineage from the fertilized egg to the sequenced cancer cell.
The correlation with age of diagnosis is consistent with the hypothesis
that a substantial proportion of signature 1A/B mutations in cancer
genomes have been acquired over the lifetime of the cancer patient, at
a relatively constant rate that is similar in different people, probably in
normal somatic tissues. The absence of consistent correlation of all
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Figure 4 | The contributions of mutational signatures to individual cancers
of selected cancer types. Each bar represents a typical selected sample from the
respective cancer type and the vertical axis denotes the number of mutations
per megabase. Contributions across all cancer samples could be found in

Supplementary Figs 29-58. Summary of the total contributions for all operative
mutational processes in a cancer type can be found in Supplementary Figs 59~
88. ‘Other” indicates mutational signatures for which we were not able to

perform validation or for which validation failed (Supplementary Figs 24-28).

other signatures with age suggests that mutations associated with these
have been generated at different rates in different people, possibly as a
consequence of differing carcinogen exposures or after neoplastic
change has been initiated.

Mutational signatures with transcriptional strand bias

The efficiency of DNA damage and DNA maintenance processes can
differ between the transcribed and untranscribed strands of genes. The
most well known cause of this phenomenon is transcription-coupled
nucleotide excision repair (NER) that operates predominantly on the
transcribed strand of genes and is recruited by RNA polymerase 11
when it encounters bulky DNA helix-distorting lesions™.

We re-extracted substitution mutational signatures incorporating
the transcriptional strand on which each mutation has taken place.
Because a mutation in a transcribed genomic region may be either on
the transcribed or the untranscribed strand, this generates a classifica-
tion with 192 mutation subclasses.

Several signatures showed substantial differences in mutation pre-
valence between transcribed and untranscribed strands (known as
transcriptional strand bias) (Fig. 5 and Supplementary Figs 89-95).
For example, signature 4 shows transcriptional strand bias for C>A
mutations (Fig. 5). Signature 4 is observed in lung adeno, squamous
and small cell carcinomas, head and neck squamous, and liver cancers
(Fig. 3), most of which are known to be caused by tobacco smoking.
Therefore, signature 4 is probably an imprint of the bulky DNA adducts
generated by polycyclic hydrocarbons found in tobacco smoke and
their removal by transcription-coupled NERY. The higher prevalence
of C>A mutations on transcribed compared to untranscribed strands is
consistent with the propensity of many tobacco carcinogens to form
adducts on guanine.

Similarly, signature 7, mainly found in malignant melanoma, shows
ahigher prevalence of C>T mutations on the untranscribed compared
to the transcribed strands consistent with the formation, through ultra-
violet exposure, of pyrimidine dimers and other lesions which are known
to be repaired by transcription-coupled NER™.

Beyond these known examples of DNA damage processed by
transcription-coupled NER, other signatures show strong transcrip-
tional strand bias (5, 8, 10, 12, 16). Notably, signature 16, which is
characterized by T>C mutations at ApTpA, ApTpG and ApTpT
trinucleotides and is observed in hepatocellular carcinomas, shows
the strongest transcriptional strand bias of any signature, with T>C
mutations occurring almost exclusively on the transcribed strand
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Figure 5 | Selected mutational signatures with strong transcriptional strand
bias, Mutations are shown according to the 192 mutation classification
incorporating the substitution type, the sequence context immediately 5’ and 3’
to the mutated base and whether the mutated pyrimidine is on the transcribed
or untranscribed strand. The mutation types are displayed on the horizontal
axis, whereas the vertical axis depicts the percentage of mutations attributed toa
specific mutation type. A higher resolution version of all mutational signatures
with strong transcriptional strand bias is found respectively in Supplementary
Figs 89-95,

(Fig. 5). Similarly, signature 12, which features T>>C mutations at
NpTpN trinucleotides, also found in hepatocellular carcinomas,
shows strong transcriptional strand bias with more T>C mutations
on the transcribed than untranscribed strands (Supplementary Fig. 94).
On the assumption that the transcriptional strand biases in signa-
tures 12 and 16 are introduced by transcription-coupled NER, these
currently unexplained signatures may be the result of bulky DNA
helix-distorting adducts on adenine. However, there is no previous
basis for invoking transcription-coupled NER in the genesis of these
signatures and other causes of transcriptional strand bias may exist.

Mutational signatures with insertions and deletions

We re-extracted the mutational signatures including, in addition to
the 96 substitution types, two further classes of mutation: indels at
short nucleotide repeats and indels with overlapping microhomology
at breakpoint junctions. Three of the 21 base substitution signatures
associated with large numbers of indels. Signature 6, which is char-
acterized predominantly by C>T at NpCpG mutations, but is distinct
from signature 1A/B, contributes very large numbers of substitutions
and small indels (mostly of 1bp) at nucleotide repeats to subsets of
colorectal, uterine, liver, kidney, prostate, oesophageal and pancreatic
cancers. This pattern of indels, often termed ‘microsatellite instability’,
is characteristic of cancers with defective DNA mismatch repair®®. Con-
sistent with this explanation, the presence of signature 6 was strongly
associated with the inactivation of DNA mismatch repair genes in
colorectal cancer (P = 3.3 X 107°).

Signature 15 also contributes very large numbers of substitutions
and small indels at nucleotide repeats but, compared to signature 6,
exhibits greater prominence of C>T at GpCpN trinucleotides.
Signature 15 was found in several samples of lung and stomach cancer
and its origin is currently unknown.

By contrast, substantial numbers of larger deletions (up to 50 bp)
with overlapping microhomology at breakpoint junctions were found
in breast, ovarian and pancreatic cancer cases with major contribu-
tions from signature 3. A subset of cancer cases of these three classes is
known to be due to inactivating mutations in BRCAI and BRCA2, and
the presence of signature 3 was strongly associated with BRCAI and
BRCA2 mutations within the individual cancer types (P = 1.6 % 10~°
for breast cancer and P = 0.02 for pancreatic cancer)®. Indeed, almost
all cases with BRCAI and BRCA2 mutations showed a large contri-
bution from signature 3. However, some cases with a substantial con-
tribution from signature 3 did not have BRCA1 and BRCA2 mutations,
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indicating that other mechanisms of BRCAI and BRCAZ inactivation
or abnormalities of other genes may also generate it.

BRCA1 and BRCA2 are implicated in homologous-recombination-
based DNA double-strand break repair'®. Abrogation of their functions
results in non-homologous end-joining mechanisms, which can use
microhomology at rearrangement junctions to rejoin double-strand
breaks, taking over DNA double-strand break repair. The results show
that, in addition to the genomic structural instability conferred by
defective double-strand break repair, a base substitution mutational
signature is associated with BRCA1 and BRCA2 deficiency.

Associating cancer aetiology and mutational signatures

Each mutational signature is the imprint left on the cancer genome
by a mutational process that may include one or more DNA damage
and/or DNA maintenance mechanisms, with the latter either func-
tioning normally or abnormally. Here we consider likely mechanisms
or underlying causes by comparing signatures with mutation patterns
of known causation in the scientific literature or by associating them
with epidemiological and biological features of particular cancer types.

Signature 1A/B is probably due to the endogenous mutational process
present in most normal and neoplastic cells that is initiated by deamina-
tion of 5-methyl-cytosine®. Other signatures are probably attributable to
exogenous mutagenic exposures. Signature 7 is observed in malignant
melanoma and squamous carcinoma of the head and neck and has the
known features of ultraviolet-light-induced mutations. Signature 4 is
found in cancers associated with tobacco smoking (Fig. 3) and has the
mutational features associated with tobacco carcinogens®. The causal
relationship between tobacco smoking and signature 4 is supported by a
strong positive association between smoking history and the contribu-
tions of signature 4 to individual cancers (P = 1.1 X 10”7, Supplemen-
tary Figs 44-46, 74-76 and 96).

Cigarette smoke contains over 60 carcinogens™ and it is possible
that this complex mixture may initiate other mutational processes.
Signatures 1A/B, 2 and 5 were also found in lung adenocarcinoma.
Signature 5, but not signatures 1A/B and 2, also showed a positive
correlation between smoking history and mutation contribution
(P=8.0 %1077, Supplementary Fig. 96). Thus, in lung cancer, sig-
nature 5, which is characterized predominantly by C>T and T>C
mutations, may also be due to tobacco carcinogens. However, it is also
present in nine other cancer types, most of which are not strongly
associated with tobacco consumption, and therefore its aetiology
overall is unclear (Fig. 3).

Some anticancer drugs are mutagens'”. Signature 11 is found in
malignant melanomas and glioblastoma multiforme pretreated with
the alkylating agent temozolomide (P=4.0 ¢ 107%) and has muta-
tional features very similar to those previously reported in experimental
studies of alkylating agents'®.

Abnormalities in DNA maintenance may also be responsible for
mutational signatures, and the roles of defective DNA mismatch repair
(signature 6) and defective homologous-recombination-based DNA
double-strand break repair (signature 3) have been discussed above.
Other signatures may result from abnormal activity of enzymes that
modify DNA or of error-prone polymerases. Signatures 2 and 13 have
been attributed to the AID/APOBEC family of cytidine deaminases®.
On the basis of similarities in the sequence context of cytosine muta-
tions caused by APOBEC enzymes in experimental systems, a role for
APOBECI, APOBEC3A and/or APOBEC3B in human cancer seems
more likely than for other members of the family’*'. However, the
reason for the extreme activation of this mutational process in some
cancers is unknown. Because APOBEC activation constitutes part of
the innate immune response to viruses and retrotransposons™ it may
be that these mutational signatures represent collateral damage on the
human genome from a response originally directed at retrotransposing
DNA elements or exogenous viruses. Confirmation of this hypothesis
would establish an important new mechanism for initiation of human
carcinogenesis.
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Signature 9, observed in chronic lymphocytic leukaemia and malig-
nant B-cell lymphomas, is characterized by T>G transversions at
ApTpN and TpTpN trinucleotides, and is restricted to cancers that have
undergone somatic immunoglobulin gene hypermutation (IGHV-
mutated) associated with AID (P=2.5x 107" in chronic lymphoid
leukaemia (CLL)). Signature 9 does not, however, have the known muta-
tional features of AID, and has been proposed to be due to polymerase
M, an error-prone polymerase involved in processing AID-induced
cytidine deamination'"*, Similarly, signature 10, which generates huge
numbers of mutations in subsets of colorectal and uterine cancer, has
been previously associated with altered activity of the error-prone poly-
merase Pol € consequent on mutations in the gene®*®,

Many mutational signatures do not, however, have an established or
proposed underlying mutational process or aetiology. Some, for example
signatures 8, 12 and 16, show strong transcriptional strand bias (Fig. 5)
and possibly reflect the involvement of transcription-coupled nucleotide
excision repair acting on bulky DNA adducts due to exogenous carcino-
gens. Others, for example signatures 14, 15 and 21, show overwhelming
activity in a small number of cancer cases (Supplementary Figs 38, 45
and 56, respectively) and are perhaps more likely to be due to currently
uncharacterized defects in DNA maintenance.

Localized hypermutation

Foci of localized substitution hypermutation, termed kataegis after
the Greek for thunderstorm, were recently described in breast cancer®.
Kataegis is characterized by clusters of C>T and/or C>G mutations
which are substantially enriched at TpCpN trinucleotides and on the
same DNA strand. Foci of kataegis include from a few to several
thousand mutations and are often found in the vicinity of geno-
mic rearrangements. The genomic regions affected are different in
different cancers. On the basis of the substitution types and sequence
context of kataegis substitutions, an underlying role for APOBEC
family enzymes was proposed for kataegis as well as for signatures 2
and 13 (ref. 6).

The 507 whole-cancer genome mutation catalogues were searched
for clusters of mutations. Cancers of breast (67 of 119), pancreas (11 of
15), lung (20 of 24), liver (15 of 88), medulloblastomas (2 of 100), CLL
(15 of 28), B-cell lymphomas (21 of 24) and acute lymphoblastic
leukaemia (1 of 1) showed occasional (<10), small (<20 mutations)
foci of kataegis, whereas acute myeloid leukaemia (0 of 7) and pilo-
cyticastrocytoma (0 of 101) did not. Subsets of breast (7), lung (6) and
haematological cancers (3) showed numerous (>10) kataegic foci and
two breast and one pancreatic cancer showed major foci of kataegis
(>50 mutations) (Fig. 6 and Supplementary Figs 97 and 98).

Kataegic foci are often associated with genomic rearrangements
(Supplementary Fig. 98). In yeast, introduction of a DNA double-
strand break greatly increases the likelihood of kataegis in its vicinity,
indicating a role for such breaks in initiating the process®. However,
even in cancer cases with kataegis, most rearrangements do not exhibit
nearby kataegis, indicating that a double-strand break is not sufficient.

In neoplasms of B-lymphocyte origin, including CLL and many
lymphomas, mutation clusters recurrently occurred at immunoglo-
bulin loci. In these cancers the mutation characteristics were different
(Supplementary Fig. 98), bearing the hallmarks of somatic hypermutation
associated with AID, which is operative during the generation of
immunological diversity™.

Discussion
The diversity and complexity of somatic mutational processes under-
lying carcinogenesis in human beings is now being revealed through
mutational patterns buried within cancer genomes. Itislikely that more
mutational signatures will be extracted, together with more precise
definition of their features, as the number of whole-genome sequenced
cancers increases and analytical methods are further refined.

The mechanistic basis of some signatures is, at least partially, under-
stood but for many it remains speculative or unknown. Elucidating the
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Figure 6 | Kataegis in three cancers. Each of these ‘rainfall’ plots represents an
individual cancer sample in which each dot represents a single somatic

mutation ordered on the horizontal axis according to its position in the human
genome. The vertical axis denotes the genomic distance of each mutation from
the previous mutation. Arrowheads indicate clusters of mutations in kataegis.

underlying mutational processes will depend upon two major streams
of investigation. First, compilation of mutational signatures from
model systems exposed to known mutagens or perturbations of the
DNA maintenance machinery and comparison with those found in
human cancers. Second, correlation of the contributions of mutational
signatures with other biological characteristics of each cancer through
diverse approaches ranging from molecular profiling to epidemiology.
Collectively, these studies will advance our understanding of cancer
aetiology with potential implications for prevention and treatment.

METHODS SUMMARY

Mutational catalogues were stringently filtered and our previously developed
computational frameworl®™® was used to extract mutational signatures from
them. The computational framework for deciphering mutational signatures
and all mutational catalogues are freely available for download from http://
www.mathworks.com/matlabcentral/fileexchange/38724, whereas the complete
set of somatic mutations is available from fip://ftp.sanger.ac.uk/pub/cancer/
AlexandrovEtAl. All presented mutational signatures were validated. Kataegis
was detected using an algorithm based on piecewise constant fitting,

Full Methods and any associated references are available in the online version of
the paper.
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METHODS

Validating mutational signatures. Validating a mutational signature requires
ensuring that alarge set of somatic mutations attributed to this signature is genuine
in at least one sample. Validation is complicated as multiple mutational processes
are usually operative in most cancer samples, and thus every individual somatic
mutation can be probabilistically assigned to several mutational signatures. To
overcome this limitation, we examined our data set for samples that are predomi-
nantly generated by one mutational signature (that is, more than 50% of the
somatic mutations in the sample belong to an individual mutational signature)
and/or for samples in which all operative mutational processes have mutually
exclusive patterns of mutations (for example, a sample with mutations only from
signature 1B, which is predominantly C>T substitutions, and signature 18, which
is predominantly C> A substitutions). We identified the optimal available sample
for every mutational signature and attempted to validate the subset of somatic
mutations attributed to this signature using one of three methods (Supplementary
Fig. 99): (1) validation through re-sequencing with an orthogonal sequencing
technology; (2) validation through re-sequencing with the same sequencing tech-
nology (including RNA-seq, bisulphite sequencing, etc.); (3) validation through
visnal examination of somatic mutations by an experienced curator using a geno-
mic browser and BAM files for both the tumour and its matched normal.

For some of the previously published samples, we used the already reported
validation data. When possible, somatic mutations were validated by either re-
sequencing with orthogonal technology or re-sequencing using the same sequencing
technology. Weresorted to visual validation only when there was no other possibility
for validating a mutational signature. 22 out of the 27 originally identified mutational
signatures were validated (Supplementary Table 1 and Supplementary Fig. 99),
Three mutational signatures failed validation: signatures R1 to R3 (Supplementary
Figs 24 to 26). We were unable to validate two mutational signatures: signatures Ul
and U2 (Supplementary Figs 27 and 28), due to lack of available biological samples
and access to BAM files for the samples with sufficient number of somatic mutations
generated by these two mutational signatures.

Samples and curation of freely available cancer data. Informed consent was
obtained from all subjects. Collection and use of patient samples were approved
by the appropriate Internal Review Board of each institution. In addition to newly
generated data, we curated freely available somatic mutations from three other
sources: (1) the data portal of The Cancer Genome Atlas (TCGA); (2) the data
portal of the International Cancer Genome Consortium (ICGC); (3) previously
published data in peer-review journals, see additional references®***-%,
Filtering, estimating mutation prevalence and generating mutational catalogues.
In all examined samples, normal DNA from the same individuals had been sequenced
to establish the somatic origin of variants. Extensive filtering was performed to
remove any residual germline mutations and technology-specific sequencing arte-
facts before analysing the data. Germline mutations were filtered out from the lists
of reported mutations using the complete list of germline mutations from dbSNP*,
1000 genomes project®', NHLBI GO Exome Sequencing Project*?, and 69 Complete
Genomics panel (http://www.completegenomics.com/public-data/69-Genomes/).
Technology-specific sequencing artefacts were filtered out by using panels of BAM
files of (unmatched) normal tissues containing more than 120 normal genomes and
500 normal exomes. Any somatic mutation present in at least three well-mapping
reads in at least two normal BAM files was discarded. The remaining somatic
mutations were used for generating a mutational catalogue for every sample.

Prevalence of somatic mutations was estimated on the basis of a haploid human
genome after all filtering. Prevalence of somatic mutations in exomes was calcu-
lated based on the identified mutations in protein-coding genes and assuming that
an average exome has 30 Mb in protein-coding genes with sufficient coverage.
Prevalence of somatic mutations in whole genomes was calculated based on all
identified mutations and assuming that an average whole genome has 2.8 gigabases
with sufficient coverage.

The immediate 5’ and 3’ sequence context was extracted using the ENSEMBL
Core programing interfaces for human genome build GRCh37. Curated somatic
mutations that originally mapped to an older version of the human genome were re-
mapped using UCSC's freely available lift genome annotations tool (any somatic
mutations with ambiguous or missing mappings were discarded). Dinucleotide
substitutions were identified when two substitutions were present in consecutive
bases on the same chromosome (sequence context was ignored). The immediate 5°
and 3’ sequence content of all indels was examined and the ones present at mono/
polynucleotide repeats or microhomologies were included in the analysed muta-
tional catalogues as their respective types. Strand bias catalogues were derived for
each sample using only substitutions identified in the transcribed regions of well-
annotated protein-coding genes. Genomic regions of bidirectional transcription
were excluded from the strand bias analysis.

Deciphering signatures of mutational processes. Mutational signatures were
deciphered independently for each of the 30 cancer types using our previously

developed computational framework®. The algorithm deciphers the minimal set
of mutational signatures that optimally explains the proportion of each mutation
type found in each catalogue and then estimates the contribution of each sig-
nature to each catalogue. Mutational signatures were also extracted separately for
genomes and exomes. Mutational signatures extracted from exomes were nor-
malized using the observed trinucleotide frequency in the human exome to the
one of the human genome. All mutational signatures were clustered using unsu-
pervised agglomerative hierarchical clustering and a threshold was selected to
identify the set of consensus mutational signatures. Mis-clustering was avoided by
manual examination (and whenever necessary re-assignment) of all signatures in
all clusters. 27 consensus mutational signatures were identified across the 30
cancer types. The computational framework for deciphering mutational signa-
tures as well as the data used in this study are freely available and can be down-
loaded from http://www.mathworks.com/matlabcentral/fileexchange/38724,
whereas the complete set of somatic mutations is available from ftp://ftp sanger.
ac.uk/pub/cancer/AlexandrovEtAl

Factors that influence extraction of mutational signatures. Recently, using
simulated and real data, we described in detail the factors that influence the
extraction of mutational signatures®. These included the number of available
samples, the mutation prevalence in samples, the number of mutations contri-
buted by different mutational signatures, the similarity between the signatures of
mutational processes operative in cancer samples, as well as the limitations of our
computational approach. Here, we examined data sets with varying sizes from 30
different cancer types and we have taken great care to report only validated
mutational signatures. However, our approach identified two similar patterns
most likely representing the same biological process; that is, signature 1A and
1B. The reasons for this is, for some cancer types we have sufficient numbers of
samples and/or mutations (that is, statistical power) to decipher the cleaner
version (that is, signature 1A), whereas for other cancer types we do not have
sufficient data and our approach extracts a version of the signature which is more
contaminated by other signatures present in that cancer type (that is, signature
1B). Nevertheless, the two signatures are very similar; hence we call them 1A and
1B. Being almost mutually exclusive among cancer types (that is, finding either
signature 1A or 1B in each cancer type but not usually both) is supportive of the
notion that they represent the same underlying process as is the fact that signa-
tures 1A and 1B both correlate with age and have the same overall pattern of
contributions to individual cancer genomes. Indeed, in our view it is likely that if
we had sufficient data, signature 1B would disappear and the algorithm would
extract only signature 1A.

Displaying mutational signatures, Mutational signatures are displayed using a
96 substitution classification defined by the substitution class and the sequence
context immediately 3" and 5' to the mutated base. Mutational signatures are
displayed in the main text of the report and in Supplementary Information on the
basis of the observed trinucleotide frequency of the human genome; that is,
representing the relative proportions of mutations generated in each signature
based on the actual trinucleotide frequencies of the reference human genome.
However, in Supplementary Information we also provide a visualization of muta-
tional signatures based on an equal frequency of each trinucleotide (Supplemen-
tary Figs 2-28). The equal trinucleotide frequency representation results, in all
mutational signatures, in a greater degree of prominence of C>T substitutions at
NpCpG trinucleotides as major features compared to the plots based on the
observed trinucleotides. This difference may in some cases reflect the biological
reality, that is, a propensity of the particular mutational process to be more active
at NpCpG trinucleotides. However, note that it may also in some cases be due to
incomplete extraction by the algorithm of the signature in question from sig-
nature 1A/B, which is characterized by prominent features at NpCpG trinucleo-
tides. This is likely to happen because (1) signature 1A/B is ubiquitous and (2)
because even a small probability of mutations at NpCpG trinucleotides will
generate a prominent feature because of the severe depletion of NpCpG trinu-
cleotides in the reference genome. In future, with larger numbers of sequences
and large numbers of whole-genome sequences it is anticipated that the latter
effect will be reduced. .

Approaches for associating cancer aetiology and exposures of validated muta-
tional signatures. Generalized linear models (GLMs) were used to fit signature
exposures (that is, number of mutations assigned to a signature) and age of cancer
diagnoses. For each cancer type, all mutational signatures operative in it were
evaluated using GLMs and the P values were corrected for multiple hypothesis
testing using the Benjamini-Hochberg false discovery rate procedure, The result-
ing P values indicate that age strongly correlates with signature 1A/B across 15
cancer types (Supplementary Table 2). Exposure to signature 4 also correlates
with age of diagnosis in kidney papillary and thyroid cancers. However, in both
cancer types, we were not able to detect/extract signature 1A/B due to a low
number of mutations in their samples and it is likely that signature 1A/B is
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currently mixed within signature 4. Further studies involving whole-genome
sequences will be needed to validate this hypothesis. Notably, in melanoma, age
of diagnosis also correlates with exposure to signature 7, which we have associated
with exposure to ultraviolet light.

Associations between all other aetiologies and signature exposures were per-

formed using two-sample Kolmogorov-Smirnov tests between two sets of sam-
ples. The first set contains the signature exposures of the samples with the ‘desired
feature’ (for example, samples that contain a hypermutation in the immuno-
globulin gene) and the second set is the signature exposures of the samples without
the ‘desired feature’ (for example, samples that do not contain a hypermutation in
the immunoglobulin gene). Samples with unknown feature status (for example,
not knowing the status of the immunoglobulin gene) were ignored. Kolmogorov-
Smirnov tests were performed for all signatures and all examined “features’ in a
cancer type. P values were corrected for multiple hypothesis testing using the
Benjamini-Hochberg false discovery rate procedure and based on the performed
tests in a particular cancer class.
A piecewise-constant-fitting-based algorithm for the detection of kataegis.
Foci of localized hypermutation, termed kataegis, were sought in 507 whole-
genome sequenced cancers. High-quality variant calls that had been previously
subjected to filtering for mutational signature analysis were investigated using an
algorithm developed to identify foci of kataegis.

For each sample, all mutations were ordered by chromosomal position and the
intermutation distance, defined as the number of base pairs from each mutation
to the next one, was calculated. Intermutation distances were then segmented
using the piecewise constant fitting (PCF) method® to find regions of constant
intermutation distance. Parameters used for PCF were 7 = 25 and ki, = 2 and
were trained on the set of kataegis foci that had been manually identified, curated
. and validated using orthogonal sequencing platforms®. Putative regions of katae-
gis were identified as those segments containing six or more consecutive muta-
tions with an average intermutation distance of less than or equal to 1,000 bp.
Variation in number of foci of kataegis and relationship with genome-wide
mutation burden. To examine the likelihood of kataegis occurring for different
mutation burdens, the expected number of kataegis events that would be observed
by chance was calculated for a range of total number of mutations per cancer, n,
between 1,000 and 2,000,000. The probability that any one mutation will be
followed by five other mutations within a distance of 5,000 bp, thereby triggering
the identification of kataegis, is given by p = P(Pois(5,000n/g) = 5), where gis the
length of the genome, in base pairs.

Supplementary Fig. 97 shows the expected number of kataegis events identified
in genomes with between 100,000 and 500,000 mutations. For cancers with up to
200,000 mutations, the expected number of kataegis events is extremely small
(0.16 for a total mutation load of 200,000), making the detection of kataegic foci
highly significant for each sample. Supplementary Table 3 presents all the samples
in which kataegic foci were identified, the total mutation burden for each sample,
the observed number of kataegic foci, and the expected number of foci.
Specificity of variants in kataegis foci. Clusters of variant calls can easily occur in
regions of low sequence complexity. These are not true substitution mutations but
represent systematic sequencing artefacts or mis-mapping of shert reads. The
quality of variant calls depends on the quality of mutation-calling by individual
institutions. Additional filtering was applied to remove likely false-positive calls
and then putative kataegic foci were individually curated.

1,436 kataegis foci were called by PCF, with 873 finalized as putative kataegis
foci (Supplementary Table 4) involving 9,219 substitution variants. Where pos-
sible, BAM files were retrieved, inspected and substitution variants involved in
kataegis foci were manually curated to remove likely false-positive calls. Where
BAM files were not available to us, substitution variants were strictly excluded if
called in: (1) genomic features that generate mapping errors, for example, regions
of excessively high coverage due to collapsed repeat sequences in the reference
genome®'; (2) highly repetitive regions with reads consistently demonstrating low
mapping qualities in 20 unrelated normal samples; (3) locations with known germ-
line insertions/deletions within the sequencing reads reporting the mutated base.

Several features were seen in the finalized putative kataegis foci, which rein-
forced the conviction in the validity of these calls. Although clusters of mutations
identified by the PCF method were sought in an approach unbiased by mutation
type and based exclusively on intermutation distances, we find that the 873
putative foci demonstrate: first, a preponderance to C>T and C>G mutations
(Supplementary Fig. 97b); second, the enrichment for a TpC sequence context as
previously described® (Supplementary Fig. 97b); third, processivity (where con-
secutive mutations within a cluster were on the same strand; that is, 6 C>T
mutations in a row or 6 G>A mutations in a row; Fig. 6¢); and fourth, visual
curation of reads carrying these processive variants showed that the variants were
usually in cis (that is, mutations were on the same read (Supplementary Fig, 97¢)
or on the read mate of other affected alleles within the insert size) with respect to
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each other, indicating that they had arisen on the same allele. Finally, where data
were available, we found that clusters of substitution mutations within the same
kataegis foci shared approximately the same variant allele fraction, indicating that
they had probably arisen during a single cell cycle event.

BAM files from some samples were not accessible and therefore a proportion of
substitution variants involved in kataegis foci were not visually curated. The
application of the strict criteria described above and the subsequent finding of
the consistency of the mutation-type, sequence context, processive nature of the
mutations, with the majority in cis on individual sequencing reads, indicates that
the vast majority of these foci are probably genuine. However, the possibility that
some of the foci are not truly kataegis, particularly for the cancers which have not
been validated or visually curated, remains.

Sensitivity of kataegis detection. It is acknowledged that the likelihood of detec-
tion of kataegis foci rests on the sensitivity of mutation detection. It is possible for
foci to be missed because the mutations were not detected by mutation callers of
the various institutions, before our analysis. This is particularly relevant for sub-
clonal mutations bearing a low variant allele fraction or for mutations that occur
on a single copy of a multi-copy locus. This is because the likelihood of mutation
detection is reduced when uncorrected for copy number and for aberrant cell
fraction of the tumour sample. Furthermore, our stringent post-processing cri-
teria, particularly of samples that have not been visually curated, make it more
likely that kataegis is under-represented in this analysis.

Relationship between kataegis and large-scale genomic changes. Reinforcing
our previous findings®, we found that some kataegic foci were very closely assoc-
iated with rearrangements. For example, a breast cancer sample with 1,534 point
mutations had only one focus of kataegis which contained 32 point mutations.
The same breast cancer sample also had 25 large-scale genomic structural varia-
tions scattered throughout the genome. However, one tandem duplication coin-
cided with this single locus of kataegis in this cancer. Notably, no other mutations
or structural variations were seen for 2 Mb flanking this extraordinary event (Sup-
plementary Fig, 97b). Another breast cancer (Fig. 6) that contained 22,454 muta-
tions and had 292 rearrangements altogether, had nine regions of kataegis,
five of which coincided with large-scale structural variations, underscoring the
co-localization of kataegis foci with structural variations. This also highlights that
not all foci of kataegis co-localized with structural variations and not all structural
variations were associated with kataegis.

Sites of amplification represent a potential source of false variant calls. If the
amplification occurred early in the evolution of a cancer, then there is an increased
likelihood of substitutions accumulating randomly within the amplified genomic
region. When mapped back to the reference genome, these will appear as clustered
variants.

A number of features allow us to distinguish such events from ‘true’ kataegis.
These mutations would not be expected to have features associated with kataegis,
such as the mutation type, predilection for a TpC sequence context and the
processivity. Furthermore, if they have accumulated as random events in a
multi-copy locus, then they would be less likely to occur in cis (on the same
sequencing read) with respect to each other. In contrast, mutations which have
occurred at the same time, during one moment of transient hypermutability in a
single cell cycle event, would be expected to cluster on one copy of a multi-copy
locus, fo be in cis and to demonstrate approximately the same variant allele
fraction. Finally, to achieve the level of hypermutation required to be called as
a focus of kataegis (average intermutation distance of less than 1,000 bp for six
consecutive mutations equivalent to ~1,000 substitutions per Mb), the degree of
copy number amplification would have to be considerable.

To examine this likelihood of false calls in regions of amplification, simulations

were performed assuming background mutation rates of 10 per Mb, 40 per Mb
and 100 per Mb for different copy number states and for different sizes of focal
amplification. The expected number of kataegic foci for these different states are
provided in Supplementary Table 5. For most of the samples in which kataegis
was detected (all but twenty), a 10 Mb region of amplification would require a
copy number state of 36 or above to generate 1 cluster of 6 mutations with an
average intermutation distance of less than 1,000 bp. For 19 of the remaining 20
samples, a 10 Mb region of amplification would require a copy number state of 10
or above, For the single cancer with a mutation rate exceeding 40 per Mb, a copy
number state of 4 is required to generate a cluster of mutations. As mentioned
previously, these clusters would have to be processive, be in cis and have roughly
the same variant allele fraction to be called as a focus of kataegis.
Definition of kataegis. Kataegis has been identified via a PCF-based method as 6 or
more consecutive mutations with an average intermutation distance of less than or
equal to 1,000 bp. Other salient features include a preponderance for C>T and C>G
mutations, a predilection for a TpC mutation context, processivity, evidence ofhaving
arisen on the same parental allele (being in cis) on sequencing reads and additionally
(but not necessarily) co-localization with large-scale genomic structural variation.
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REVIEWS

Exploration of liver cancer genomes

Tatsuhiro Shibata and Hiroyuki Aburatani

Abstract | Liver cancer is the third leading cause of cancer-related death worldwide. Advances in seguencing
technologies have enabled the examination of liver cancer genomes at high resolution; somatic mutations,
structural alterations, HBV integration, RNA editing and retrotransposon changes have been comprehensively
identified. Furthermore, integrated analyses of trans-omics data (genome, transcriptome and methylome
data) have identified multiple critical genes and pathways implicated in hepatocarcinogenesis. These
analyses have uncovered potential therapeutic targets, including growth factor signalling, WNT signalling,
the NFE2L2-mediated oxidative pathway and chromatin modifying factors, and paved the way for new
molecular classifications for clinical application. The aetiological factors associated with liver cancer are
well understood; however, their effects on the accumulation of somatic changes and the influence of ethnic
variation in risk factors still remain unknown. The international collaborations of cancer genome sequencing
projects are expected to contribute to an improved understanding of risk evaluation, diagnosis and therapy

for this cancer.

Shibata, T. & Aburatani, H. Nat. Rev. Gastroenterol. Hepatol. advance online publication 28 January 2014; doi:10.1038/nrgastro.2014.6

Introduction
Liver cancer is the third leading cause of cancer-related
death worldwide.! Hepatocellular carcinoma (HCC) is the
most common form of liver cancer, followed by intra-
hepatic cholangiocarcinoma (IHCC).! Chronic liver
damage, such as that caused by chronic hepatitis, liver cir-
rhosis and fatty liver disease, is closely associated with
the occurrence of liver cancers. Hepatitis virus infection
(for example HBV, HCV and others), aflatoxin B expo-
sure, alcohol intake, and other metabolic diseases (such
as obesity, diabetes mellitus and haemochromatosis) are
well-known risk factors for liver cancer.”* In addition,
parasites such as liver fluke are associated with IHCC in
Southeast Asian countries.>®

The incidence of liver cancer is high in East Asian and
African countries.">® HBV infection is more prevalent
in Africa and Asian countries (except Japan) than other
regions of the world.? However, the number of patients
infected with HCV has been rapidly increasing in Japan
and Western countries, especially in the USA where
viral hepatitis infection is partly mediated through drug
abuse.* In this Review, we mainly focus on HCC, as HCC
and THCC showed distinctive genomic alterations and
fairly little is known about the IHCC genome alterations
at present.

Somatic alterations in the liver cancer genome
The liver cancer genome contains multiple types of
somatic alterations, including mutations (such as single
nucleotide substitutions, and small insertions and del-
etions), changes of gene copy numbers (copy number
loss, gain and amplification), and intra-chromosomal
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and inter-chromosomal rearrangements (large deletion,
inversion, tandem duplication and translocation).

Genome-wide copy number analysis
Copy number changes in human cancers have been analy-
sed mainly by array-based comparative genome hybrid-
ization methods. Bacterial artificial chromosome (BAC)
clone DNA or oligonucleotide probe arrays (microarray-
based comparative genomic hybridization) have been used
in a number of studies to search for copy number changes
in liver cancer.™ Table 1 summarizes recurrent copy
number alterations in HCC. In addition to well-known
oncogenes, such as MYC and CCNDI, and tumour sup-
pressor genes, such as TP53 and RB, liver cancers harbour
multiple chromosomal amplifications and deletions. -

The identification of target genes solely by copy number
data has been challenging. Therefore, strategies based on
integrative analysis of genetic alterations, gene expres-
sion profiling and oncogenic function of candidate genes
might be an effective approach. Zender et al.* selected
potential tumour suppressor genes using data from copy
number analyses of human HCC, and functionally identi-
fied novel tumour suppressor genes, including XP0O4, by
in vivo short hairpin RNA screening in a mosaic mouse
model. Sawey et al.** extracted genes located in chromo-
somal regions of recurrent focal amplification in human
HCC and tested their oncogenic activity using a mouse
hepatoblast model. These authors identified 18 tumour-
promoting genes, including FGF19, which is located next
to the CCNDI gene on 11q13.3. FGF19 and CCND1
cooperatively promote tumour formation through the
CTNNBI pathway.”

Katoh et al.”® attempted to define a molecular clas-
sification of HCC on the basis of the copy number

ADVANCE ONLINE PUBLICATION | 1





