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FIGURE 5. Localization of MEF/ELF4 was unaffected by the mutation of NPM1. A, 293T cells were transfected with the GFP-MEF/ELF4 fusion protein
expression vector and pcDNA/V-Wt-NPM1 (a) or pcDNA/V-Mt-A-NPM1 (b). Forty-eight hours after transfection, cells were fixed and immunofluorescence-
stained with anti-V tag antibody. B, Western blotting of FLAG-MEF/ELF4 subcellular distribution in 293T cells co-transfected with pFLAG-MEF/ELF4 and
pcDNA/V-Wt-NPM1 or pcDNA/V-Mt-A-NPM1. Purity of the subcellular fractions was assessed by blotting with histone H1 (nuclear extraction) and Hsp70

(cytoplasmic extraction).

ELF4 and Wt- or Mt-NPM1 in nuclear and cytoplasmic
proteins confirmed the nuclear localization of MEF/ELF4 even
with Mt-NPM1 (Fig. 5B).

Wt-NPM1 Inhibits, whereas Mt-NPM1 Enhances, the Onco-
genic Activity of MEF/ELF4—The overexpression of MEF/ELF4
in NIH3T3 cells increases the growth rate, enhances colony
formation in soft agar, and promotes tumor formation in nude
mice (10). To determine the effects of the interaction of NPM1
with MEF/ELF4 on cell behavior, we assessed the anchorage-
independent growth of NIH3T3 cells after co-transfection of
MEF/ELF4 with Wt-NPM1 or Mt-A-NPM1. Compared with
NIH3T3 transfected with only MEF/ELF4, Wt-NPM1-coex-
pressing cells showed reduced anchorage-independent growth,
whereas Mt-A-NPM1-coexpressing cells exhibited increased
growth (Fig. 6).

MEF/ELF4 Binds to the HDM?2 Promoter and Activates Its
Expression—In murine cells, MEF/ELF4 binds directly to the
Mdm?2 promoter, thereby promoting Mdm2 expression (12).
To ascertain whether MEF/ELF4 also directly regulates the pro-
moter activity of HDM2 (the human analog of Mdm?2), we scru-
tinized the DNA sequence of the HDM?2 gene and found a con-
served putative MEF/ELF4 binding site in the P2 promoter (Fig.
7B). To establish the association of MEF/ELF4 with the HDM?2
promoter, we performed a ChIP assay with nuclear lysates from
293T cells expressing FLAG-MEF/ELF4. Immunoprecipitation
with the FLAG antibody (but not with the control IgG) and
subsequent PCRs revealed the recruitment of overexpressed
MEF/ELF4 to the promoter region of the HDM2 gene (Fig. 7A).
The luciferase assay revealed that MEF/ELF4 strongly transac-
tivated the wild-type HDM2 promoter (Fig. 7, B (a)
and C) and that the effect was abrogated by mutation of the ETS
site (—122 to —82) (Fig. 7, B (b) and C). Compared with Wt-
NPM], the expression of Mt-A-NPM1 in 293T cells enhanced
the association of MEF/ELF4 with the HDM2 promoter, as
detected by ChIP analysis (Fig. 7D). Taken together, these find-
ings suggest that Mt-NPM1 up-regulates HDM2 transcription
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FIGURE 6. Mt-NPM1 stimulates MEF/ELF4-induced hyperproliferation
and transformation. NIH3T3 cells transfected with various combinations of
expression plasmids were plated in soft agar on 60-mm dishes and incubated
for 2 weeks. A, microscopy of MEF/ELF4-transfected NIH3T3 cells with Wt-
NPM1 or Mt-A-NPM1. B, the average number of colonies of three independ-
ent experiments with S.D. (error bars). *, p < 0.05.

by increasing the recruitment of MEF/ELF4 to the HDM2 pro-
moter by dislocating Wt-NPM1 that interferes with its binding
to the promoter.

Higher Levels of HDM2 mRNA in Clinical Samples from AML
Patients with Mt-NPM1 and Higher MEF/ELF4 Expression—To
determine the possible clinical relevance of MEF/ELF4, NPM1,
and HDM2 in AML patients, we examined the mRNA levels of
each in CD34-positive leukemic blasts from 22 AML patients
with normal karyotypes. Fourteen patients had Wt-NPM1, and
eight patients had Mt-A-NPM1. There was no significant dif-
ference between the clinical characteristics of the Wt-NPM1
group and those of the Mt-NPM1 group (Table 1). Samples
from the Mt-NPM1 group had significantly higher levels of
HDM2 expression as compared with the Wt-NPM1 group (p =
0.009) (Fig. 84). In addition, patients with high expression lev-
els of MEF/ELF4 (the MEF/ELF4-H group) had significantly
higher HDM?2 expression than patients with low expression

JOURNAL OF BIOLOGICAL CHEMISTRY 9463

161

€102 ‘gl [Hdy uo ‘Ateiqi Ausianiun njesebep je 610°0q' mmm wolj pspeojumod]



NPM1 Mutations Enhance HDM2 Expression through MEF/ELF4

A 15 B
(@) P2 promoter
™ Wt-Ets Int z
Intron 1 a ntron
o HDM2 -IExomI[ B 1 Exon 2: 1' Exon3
)5 -122 82
o
z
ES
5
(b)
ATG
intron 1 Mt-Ets I ] Intron 2
[ | HDM2mut —HE | Exon 2] 1 Exon3
0
IgG  FLAG 22 82
] D
25
> 25
>
T 20
© =
° 25
]
E 15 %
= ES
2 10
Qo
=
5 5
&
" FLAG-MEF/ELF4 — A = +
MEFIELFA — — + +  WNPMI T T =
HDM2 + - - + Mt-A-NPM1 = = = 5
HDM2mut R -

FIGURE 7. MEF/ELF4 transactivates the HDM2 promoter. A, MEF/ELF4 binds to the HDM2 promoter in vivo. FLAG-MEF/ELF4-bound DNA from 293T cells was
immunoprecipitated with FLAG antibody or normal mouse IgG. RQ-PCR amplification was performed on the corresponding templates by using primers for
HDM2. B, structure of the HDM2 promoter region (—82 to —122) (schematic). C, 293T cells were transfected with HDM2 promoter-driven luciferase reporter
plasmid encoding wild-type (B (a)) or mutant (B (b)) protein. Luciferase activity by pcDNA alone was assigned a value of 1.0. The analysis was performed in
triplicate assays, and the results were reproducible. The results are shown as the mean = S.D. (error bars). D, 293T cells were co-transfected with pFLAG/MEF/
ELF4 and pcDNA/Wt-NPM1 or pcDNA/Mt-A-NPM1. RQ-PCR amplification was undertaken on corresponding templates using primers for HDM2. The analysis

was performed in triplicate assays, and the results were reproducible. The results are shown as the mean = S.D. *, p < 0.05.

TABLE 1
Clinical and laboratory characteristics of patients (ranges shown in parentheses)
Wt-NPM1 Mt-NPM1 p
No. of patients 14 8
Sex
Male 5 5
Female 9 3 0.60
Median age (years) 54.5 (18-78) 62 (44-76)
FAB classification
MO 1 0
M1 2 2
M2 4 2
M4 2 2
M5 2 2
M6 3 0 0.50
TLD*® 6 4 0.50
Median white blood cell count/ul 7300 (1300-556,000) 47,500 (1700-114,700) 0.10
Median lactate dehydrogenase level 647 (203-5325) 669 (270-2391) 0.07
Median bone marrow cell count/ul 337,000 (9000-738,000) 475,000 (34,900-769,000) 0.10

levels of MEF/ELF4 (the MEF/ELF4-L group) (p = 0.03) (Fig.
8B).

DISCUSSION

In the present study, we identified NPM1 to be a MEF/ELF4-
binding protein. Wt-NPM1 inhibited the function of MEF/
ELF4 (i.e. DNA binding and transcriptional activities), whereas
Mt-NPM1 augmented its function. Some of these effects of Wt-
NPM1 and Mt-NPM1 on MEF/ELF4 were reproducible on the
HDM2 promoter (one of the target genes of MEF/ELF4), sug-
gesting that HDM2 expression is influenced by NPM1. Further-
more, we found that the expression of Mt-NPM1 in MEF/
ELF4-overexpressing NIH3T3 cells resulted in enhanced
malignant transformation. We also found that the mRNA level
of HDM?2 in primary leukemia cells was higher in patients with
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NPM1 mutations. Mef/Elf4 directly activates Mdm?2 expression
(13). Therefore, NPM1 mutation could enhance HDM2 expres-
sion through the increased MEF/ELF4 activity, thereby pro-
moting transformation by inhibiting the p53 pathway.

NPM1 is a multifunctional phosphoprotein that has been
implicated in cell proliferation as well as regulation of tran-
scription factors. It appears to repress or stimulate transcrip-
tion. For example, Wt-NPM1 activates and inhibits p53 func-
tion through direct binding (22, 25). Interferon regulatory
factor-1 (IRF-1), a transcriptional activator, binds to Wt-
NPM], resulting in the inhibition of DNA binding and tran-
scriptional activity (26). Our findings with Wt-NPM1 and
MEF/ELF4 are consistent with these observations. Wt-NPM1
interacts directly with c-Myc and regulates the expression of
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FIGURE 8. Expression of Mt-NPM1 and higher expression of MEF/ELF4 are
associated with the elevated expression of HDM2 in CD34-positive AML
cells. Total RNA isolated from 22 AML patients (CD34-positive leukemia cells)
was analyzed for the expression of HDM2 by RQ-PCR. Shown is stratification
by the presence of the NPM1 mutation (A) and by the level of ELF4/MEF (B).
These bars were median lines for each group. *, p < 0.009 against Wt-NPM1;
** p < 0.03 against MEF/ELF4-L, assessed by analysis of variance followed by
Scheffe’s multiple comparison test.

endogenous c-Myc target genes at the promoter, which
enhances c-Myc-induced proliferation and transformation
(27). In contrast, the present study suggests that Wt-NPM1
inhibits (whereas Mt-NPM1 facilitates) the transformation
induced by MEF/ELF4, suggesting that there is a contradiction
in terms of NPM1 function. However, the overexpression of
Wt-NPM1 without c-Myc activation has only a small effect on
proliferation and has no effect on transformation, so Wt-NPM1
may mainly have a role in c-Myc-driven tumors. Interestingly,
¢-Myc, IRF-1, and MEF/ELF4 are all regulated during the cell
cycle, and the levels of these transcription factors are highest in
the G, phase (28, 29).

We found that Wt-NPM1 could interfere with the ability of
MEF/ELF4 to bind to DNA, resulting in the inhibition of MEF/
ELF4-dependent transcriptional activity. The mechanism by
which Wt-NPM1 interferes with the DNA binding of MEF/
ELF4 is unclear. We previously showed that the 120 amino
acids N-terminal to the ETS domain in MEF/ELF4 (residues
87-206) are responsible for its binding to AML1 proteins (30);
thus, MEF/ELF4 interacts with other proteins outside the
DNA-binding domain. As mentioned above, the association of
Wt-NPM1 and IRF-1 inhibits the DNA binding of IRF-1.
Narayan et al. showed that IRF1 binds directly to Wt-NPM1
through a short linear motif in the nuclear localization
sequence outside the DNA-binding domain (31). These results
suggest that the inhibition of DNA binding by NPM1 may not
be through simple interference with the DNA-binding domain
of MEF/ELF4. Determining the protein-binding interface of
MEEF/ELF4 may help to reveal the mechanism of NPM1-medi-
ated transcriptional regulation.

The heterodimerization domain (residues 186-259) of
NPML1 is essential for its interaction with p53 (22), and the
c-Myc-binding region is within the NPM1 heterodimerization
domain (27). In the case of MEF/ELF4 and NPM1, the N-ter-
minal regions of NPM1 (F1, F2, and F3) could bind to His-MEF/
ELF4, implying that the oligomerization domain is important
for the interaction.

Recently, it has been shown in vivo that NPM1 mutants
actively contribute to leukemogenesis by conferring a prolifer-
ative advantage in the myeloid lineage. In zebrafish, forced
expression of mutant NPM1 causes an increase in PU.1-posi-
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tive primitive early myeloid cells (32). Furthermore, in a trans-
genic mouse expressing the human NPM1 mutant, although
spontaneous AML was not found, myeloproliferation occurred
in the bone marrow and spleen (33). Moreover, Vassiliou et al.
(34) showed that activation of a humanized mouse NPM1
mutant knock-in allele in mouse hematopoietic stem cells
caused overexpression of the Hox gene, enhanced self-renewal,
and expanded myelopoiesis, resulting in delayed onset AML in
one-third of the mice. Taken together, these data suggest that
NPM1 mutations initiate leukemia by activating a set of prolif-
erative pathways. Mt-NPM1 enhances the transcriptional
activity of MEF/ELF4, so the up-regulation of HDM2 and sub-
sequent down-regulation of p53 may also have a role in
leukemogenesis.

In vitro transfection studies and immunohistochemical
observations in samples from AML patients have demonstrated
that NPM1 mutants recruit Wt-NPM1 from the nucleolus and
delocalize it to the nucleoplasm and cytoplasm (18) and that
aberrant NPM1 accumulation in the cytoplasm may have a crit-
ical role in leukemogenesis. While Wt-NPM1 protein co-local-
izes with tumor suppressor pl9ARF in the nucleolus,
Mt-NPM1 delocalizes p19ARF from the nucleolus to the cyto-
plasm, which results in reduced p19ARF activities (e.¢. Mdm2
and p21¢?? induction, stimulation of NPM1) (35). Further-
more, by using OCI/AML3 human leukemia cells where
mutant NPM1 islocalized in the cytoplasm, Bhat et al. (36) have
recently shown that NPM1-co-localizing nuclear transcription
factor, FOXM1 (forkhead box M1), disappears from the cyto-
plasm following transient NPM1 knockdown. These data sug-
gest that NPM1 may determine the intracellular localization of
interacting transcription factors. However, in our experiments,
Mt-NPM1 did not interact with MEF/ELF4 in vivo, and the
subcellular distribution of MEF/ELF4 was not affected by the
presence of Mt-NPM1. It seems that Mt-NPM1 binds and dis-
locates Wt-NPM1 into the cytoplasm of leukemia cells, which
eventually leads to uncontrolled transactivation of MEF/ELF4.
Wt-NPM1 knockdown with siRNA against NPM1 also
enhanced MEF/ELF4 activity (Fig. 3E), suggesting that the
depletion of an MEF/ELF4 inhibitor (i.e. Wt-NPM1) in the
nucleus is responsible for the transactivation of MEF/ELF4.
Taken together, it is likely that NPM1 mutants exert oncogenic
functions at least in part through the up-regulation of the activ-
ities of oncogenic transcription factors, such as MEF/ELF4. The
correlation between NPM1 mutations and the elevated expres-
sion of HDM2 in primary leukemia cells seems to support this
theory.

In patients with AML, NPM1 mutations are mutually
exclusive of recurrent genetic abnormalities. It can be spec-
ulated that the enhanced MEF/ELF4-HDM2-p53 pathway
induced by NPM1 mutations may participate in leukemia
development, especially in patients with a normal karyotype.
The transactivation of MEF/ELF4 by E2F1 is inhibited by p53
(37), suggesting that p53 suppression induced by NPM1
mutation could lead to the activation of E2F1, resulting in
the enhanced expression of MEF/ELF4. Our previous data
showing the elevated expression of MEF/ELF4 in AML cells
with a normal karyotype compared with that of AML cells
carrying t(8;21) and t(15;17) seem to support this hypothesis.

JOURNAL OF BIOLOGICAL CHEMISTRY 9465

163

£10Z ‘gl [Udy uo ‘Ateiqi Aysteniun iesebep je 6o ogl-mmm wolj papeojumoq



NPM1 Mutations Enhance HDM2 Expression through MEF/ELF4

Our results suggest a new role for NPM1 and MEF/ELF4 in
leukemia development.
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Acute megakaryoblastic leukaemia (AMGL) is an uncom-
mon disease with poor prognosis. Histopathologically,
AMGL cases show variable degree of fibrosis and the pres-
ence of uniform blasts or mature dysplastic megakaryo-
cytes. Here we examined 18 cases of AMGL, including
idiopathic (n = 9) and secondary (n = 9) cases. Fourteen
cases were males and four were females, ranging in age
from 14 to 87 years (median, 58). All cases had anaemia, but
leukocyte and platelet counts varied. Blast cells were
detected in the peripheral blood of 14 cases. Fourteen of 16
cases showed chromosomal abnormalities. The median
survival was 6 months (range, 1-48 months). Survival rates
did not correlate with the severity of fibrosis, propor-
tion of blast cells and cause of AMGL. Nine of the 11
cases examined immunohistochemically were positive for
platelet-derived growth factor (PDGF)(-BB), especially
megakaryoblasts and a few fibroblasts. The PDGF-positive
cases showed various degrees of fibrosis, while the nega-
tive cases showed no evidence of fibrosis. Our results
confirmed the poor prognosis of patients with AMGL,
irrespective of the degrees of fibrosis, and demonstrated
that PDGF could play an important role in the pathogenesis
of marrow fibrosis.

Key words: acute megakaryoblastic leukaemia, PDGF(-BB)

Acute megakaryoblastic leukaemia (AMGL) is an acute leu-
kaemia in which =50% of the blasts are of megakaryocyte
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lineage. AMGL occurs in both adults and children but is
an uncommon disease comprising approximately 3-5% of
cases of acute myelocytic leukaemia (AML). Patients with
AMGL present with pancytopenia, especially thrombocytope-
nia, although some may have thrombocytosis. Dysplastic
features in the neutrophils and platelets may be present.
Organomegaly, e.g. hepatosplenomegaly, is usually infre-
quent. Morphologically, although AMGL may be associated
with fibrosis, the histopathology of the biopsy varies from
cases with a uniform population of poorly differentiated blasts
to a mixture of poorly differentiated blasts and maturing dys-
plastic megakaryocytes; and a variable degree of reticulin
fibrosis may be present.’

Platelet-derived growth factor (PDGF) is the major serum
mitogen for cells of mesenchymal origin in humans.? PDGF,
which is stored in a-granules of human platelets, is synthe-
sized in megakaryocytes as well as in macrophages and
some other cells and tissues.® The biologically active protein
is a dimmer composed of two related polypeptides desig-
nated A and B. The protein exists in either a heterodimer AB
or homodimer AA or BB.* All three forms have been observed
in vivo and each possesses biological activity in vitro with
PDGF AA being intrinsically less active than PDGF BB.®
PDGF BB has been identified as the human homologue of
the v-sis oncogene product and as such has been desig-
nated c-sis.%” The v-sis transforming domain is 89 amino
acids in length and is identical in sequence to PDGF BB.% The
PDGF protein has been implicated both directly as well as
indirectly in several pathological states including neoplasia,
arthritis, arteriosclerosis and bone marrow sclerosis.?

In this study, we examined 18 cases of AMGL, including
idiopathic and secondary cases to determine the role of
PDGF in the pathogenesis of marrow fibrosis. For this
purpose, we analysed the prognosis of patients with AMGL
and correlated it with reticulin fibrosis, which was examined
by immunohistochemistry of PDGF(-BB).
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MATERIALS AND METHODS
Patients

Eighteen patients (14 males and 4 females, age, range, 14 to
87 years, median, 58 years) were studied from cases filed at
the Department of Pathology, Kurume University, Japan,
between 1990 and 2010 (Table 1). Haematological and clini-
cal data were obtained at the time of the study. Diagnosis of
AMGL was established by standard procedure. The pheno-
type of blast cells was determined based on morphology,
immunohistochemical staining and/or flow cytometry analy-
sis. The grade of marrow fibrosis was evaluated by reviewing
the biopsy specimens. For the assessment of marrow fibro-
sis, paraffin sections were stained with Gomori’'s silver
impregnation technique, and fibrosis was assessed following
the European consensus guidelines.® Specimens were
graded as follows: in detail, no fibrosis was defined as the
presence of single scattered reticulin fibers; mild fibrosis was
defined as the presence of a loose meshwork of thin reticulin
fibers with many intersections; moderate fibrosis was defined
as the presence of a dense and diffuse increase in reticulin
forming extensive intersections and focal thick collagen
fibers; and severe fibrosis was defined as the presence of
dense reticulin fibers intermingled with bundles of collagen
and associated with endophytic bone formation. This study
was carried out in accordance with the Helsinki Declaration
as revised in 1989 and with the ethical guidelines of the
participating hospitals.

Immunohistochemistry

Immunohistochemical staining was performed using bone
marrow paraffin-embedded sections in order to establish the
diagnosis of AMGL. The antibodies used were CD41 (Immu-
notech, Marseille, France), von Willebrand factor (VWF)
(Dako, Glostrup, Denmark), CD34 (Immunotech) and
PDGF(-BB) (Genzyme, Minneapolis, MN, USA).

Flow cytometry

Flow cytometry was performed in order to establish the diag-
nosis of AMGL. Peripheral blood mononuclear cells (PBMC)
were analysed with monoclonal antibodies (mAb) for CD13
(My7, Coulter Clone; Hialeah, FL), CD14 (My4, Coulter
Clone), CD33 (My9, Coulter Clone), CD34 (Becton Dickin-
son, San Jose, CA, USA) and CD41 (Immunotech), using
a FACScan analyser (Becton-Dickinson, Franklin Lakes,
NJ, USA).

Statistical analysis

Statistical analysis of the Kaplan-Meier survival curves (log-
rank test by StatView version 5.0 (Abacus Concept, Inc.,
Berkeley, CA, USA)) was performed in the present study. A
P-value less than 0.05 denoted the presence of a statistically
significant difference.

RESULTS
Clinical data

Haemoglobin levels ranged from 4.0 to 10.1 g/dL. Total
leukocyte counts ranged from 1.12 x 10° to 48.3 x 10%L.
Blastic cells were detected in the peripheral blood of 14
cases and comprised 2.5 to 100% of leukocytes. Platelet
counts ranged from 1.0 x 10° to 2010 x 10%L. Six cases
progressed from myelodysplastic syndrome (MDS) and
one case was from chronic myeloid leukaemia (CML) and
one case was from essential thrombocythemia (ET) and one
cases from chronic idiopathic myelofibrosis (CMF).

Fourteen of 16 cases were found to have chromosomal
abnormalities. In addition, 6 of the 14 cases had chromo-
somal abnormalities of —5. Four of the 6 cases also had
chromosomal abnormality of —7. Sixteen cases were treated
with aggressive chemotherapy, three cases received allo-
genic peripheral blood stem cell transplant (allo-PBSCT) and
one case received allogenic cord blood stem cell transplant
(allo-CBSCT). Three cases achieved complete remission
(CR), but one relapsed. Thirteen cases, including three that
received allo-PBSCT, died between 1 and 48 months after
diagnosis. The median survival was 6 months (range, 1-48
months) (Tables 1,2).

Histopathological analysis, including fibrosis and
PDGF(-BB) expression

Seventeen of the 18 cases could be morphologically classi-
fied. Five cases showed normoplastic marrow, one case
showed hypoplastic marrow and 11 cases showed hyper-
plastic marrow, and all had various densities of neoplastic
megakaryoblasts. Fibrosis was observed in 13 cases; which
was of mild degree in five, moderate in two and severe in six
cases. Four cases showed no evidence of fibrosis (three of
these were idiopathic cases) (Fig. 1).

We examined the expression of PDGF(-BB) by immuno-
histochemistry in 11 cases. The megakaryoblasts and a few
fibroblasts in 9 of the 11 cases showed immunoreactivity for
PDGF(-BB), while the other two cases were negative. In

© 2013 The Authors
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Table 1 Clinical data of 18 cases

Peripheral blood cells Therapy

Case Age RBC Hb WBC Blasts Plt Performance Radiation Complete  Survival
no Sex (yr) Type (x10"2L)  (g/dL)  (x10%L) (%) (x10%L) status Chemotherapy therapy Others remission  (month)

1 M 55 Idiopathic 18.2 5.9 21.1 34 64 2 Yes No Allo PBSCT No 2

2 M 14 Idiopathic 36.7 10.1 4 0 1 3 Yes No No No 6

3 M 50 MDS 17.5 6.3 2.1 0 14 2 Yes No No No (ND)

4 M 58 MDS 14.6 4 1.12 2 10 1 Yes No No No 1

5 M 58 MDS 14.6 4.7 1.5 0 10 2 Yes Yes Allo PBSCT No 3

6 F 64 Idiopathic 32.7 9.8 6.2 35 77 1 Yes No No No 2

7 M 20 ldiopathic 28.8 8.8 48.3 100 59 2 Yes No Allo CBSCT Yes 21+

8 M 78 Idiopathic 30.8 8 3.3 0 16 2 Yes No No No 10

9 F 40 ET 35.4 9.5 30.32 9 2010 2 Yes No No No 10
10 M 72 CMF 18.5 5.4 20.9 60 12 4 Yes No No No 6
ikl M 31 MDS 21.4 6.6 3.16 56 47 3 Yes No Allo PBSCT No 4
12 M 58 Idiopathic 17.4 6.4 1.6 5 6 2 Yes No No No 5
13 M 54 Idiopathic 22.3 8.6 242 5 393 1 No No No No 48
14 M 63 MDS (ND) 6.8 24 29 74 2 Yes No No No 30
15 M 73 Idiopathic 23.7 8.2 2.1 39 22 1 Yes No No Yes 10
16 M 60 CML 17.4 6.3 215 2.5 421 1 Yes No No No 10+
17 F 87 MDS 20.8 6.4 3.2 8 283 1 No No No No 3+
18 F 81 Idiopathic 25.9 9.4 1.2 18 82 1 Yes No No Yes 37+

Allo PBSCT, allogenic peripheral stem cell transplant; CMF, chronic idiopathic myelofibrosis; CML chronic myeloid leukaemia, ; ET, essential thrombocythemia; MDS, myelodysplastic syndrome;

ND, not done.
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Table 2 Chromosomal analysis

Case no Karyotype according to G-bands
1 (ND)
2 46,XY
3 45,XY,+der(1q7p),~5,-7,-22,-22,12p+,13p+,15p+,+2mar [9)/46,XY[1]
4 47 XY,-3,-4,-5,-7,-9,-13,+7mar [1)/44,XY,-3,-5,~7,-9,add(12) (p11.2),-13,-21,+4mar [11/43,XY,-3,-5,-7,add(12)

(p11.2),-13,-14,add(19)(q13),-22,+3mar [1)/43,XY,-3,-5,-7,add(12) (p11.2),-13,add(19)(q13),-20,-22,+3mar [1]
54,XY,add(1)(p13),+add(1)(q21),+add(2)(p23),add(5)(q31).+6,add(7)(p11.1),add(7)(q11.2),-12,der(14)(14qter-14p11::2::12q 1?2

[1)/56,XY,add(1)(p13),+add(1)(g21),+add(2)(p23),add(5)(q31),+6,-7,-7,+8,add(10)(p11.1),add(14)(p11.1),-19,+mar [1], 46,XX [8]

5
-12qter),add(15)(p11.1),-19,+7mar
[4)/54,XY,add(1)(p13),+add(1)(g21),+add(2)(p23),-5,add(5)(q31).+6,add(7)(p11.1),add(7)(q11.2),-12,der(14)
(14qter-14p11::2::12g1?-12gter),add(15)(p11.1),-19,+8mar[2]/53,XY,add(1)(q21),+2,+6,add(7)(p11.2),add(7)(q11.2),
-12,der(14)(14qter-14p11::7::12q17?-12qter),add(15)(p11.1),-19,+6mar
6

46,XX,add(1)(q21),-5,del(7)(q?),add(8)(q11),-10,-11,-12,add(14)(p11),-17,add(21)(q22),+der(?)t(?;11)(2;q13),+mari , +mar2,+mar3,

+mar4[1)/45,idem,-18,-mar4,+mar5 [10)/45,idem,-18,-mar3,-mar4,+mar5,+maré [2]/46,idem,-18,+mar2[1]
7 46,XY,add(1)(gq11),-18,add(18)(q21),+mar1 [2)/46,XY,+3,-6,-10,-11,-14,add(22)(q11),+3mar [11/46,XY [7]
8

(ND)
9 46,XX,-20,+der(20)t(1,20)(q21,p11),t(17,22)(q25,911) [12]
10 46,XY,1(3,8)(q26,924),t(11,12)(q13,p13) [18)/46,XY [2]

11 47 XY,+8,der,(15)t(1,15)(q12,q26) [1}/47 idem,add(3)(q12-13) [19]
12 36-39,X,-Y,add(4)(q34),-5,-7,-9,-11,add(11)(g24),-13,der(13)t(13;?1;?)(p10;q? 11-q44;?),-14,der(14)t(14;?;14)(p10;?;932),-16,
add(17)(g22),-18.-19,-19,-20,der(21)1(?17;21)(q?12;p11),+22,+mar[cp5] [5)/46,XY [15]

13 46,XY,1(3,11)(q23,q21) [19)/46,XY [1]
14 46,XY {20]
15 46,XY,inv(9)(p11913) [20] (*normal variant)

16 46,XY,1(9,22)(q34,q11) [2)/46,idem,del(5)(q_?),der(11)add(11)(q21),add(17)(q11) [18]
17 45-48, XX,del(3)(q21),del(5)(q139?33),-5,add(7)(q11.2),-11,-12,add(12)(p?13),-13,-18,-19,add(20)(q? 11,2).+mar2 +mar3 20]

18 47, XX [61/46,XX [14]

ND, not done.

addition, the former group showed various degrees of fibrosis
(from mild to severe) while the latter showed no evidence of
fibrosis (Table 3) (Fig. 2).

Survival rates

The survival rate of the 17 patients who could be evaluated
is shown in Fig. 3a. We compared the survival rates based
on a cut-off value of proportion of blastic cells of 20%
(Fig. 3b). The number of patients with blastic cells =20%
was seven, while in 10 patients the proportion of blast cells
was <20%. The results showed no significant difference in
the survival rate between the two groups. We also com-
pared the survival rates of 16 patients based on the sever-
ity of bone marrow fibrosis (Fig. 3c); seven patients had
mild or no evidence of marrow fibrosis, while nine had mod-
erate or severe fibrosis. There was no significant difference
in the survival rate between the two groups. We also com-
pared the survival rate of patients with severe marrow fibro-
sis (n = 5) with that of cases with no, mild or moderate
marrow fibrosis (n = 11). There was also no significant dif-
ference in the survival rate between the two groups. Finally,
we compared the survival rate of patients with idiopathic
AMGL (n = 9) with that of patients with secondary AMGL
(n = 8). There was no significant difference in survival rates
between the two groups.

DISCUSSION

In this study, we investigated 18 cases of AMGL, a relatively
large number of this uncommon disease that comprises
approximately 3-5% of all cases of AML." The clinical and
pathological features of AMGL were evaluated.

Previous studies reported that AMGL includes not only
idiopathic cases, but also the so-called secondary AMGL,
such as those that progress from MDS, %13 CML,'+2" ET?2-28
and CMF.'*152%-32 |n this study, six cases progressed from
MDS, one case from CML, one case from ET and one case
from CMF. However, there was no significant difference in
survival rate between idiopathic and secondary cases.

With regard to chromosomal analysis of AMGL, previous
studies reported that in children and particularly infants
under 1year of age, there may be an association with
a t(1;22)(p13;913)."* In addition, the c-sis gene, which
encodes the B chain of PDGF,* is on 22q13.%° Others dem-
onstrated an association between AMGL and abnormalities
of -5, ~7, -5q and —-7q.% In the present study, 14 of 16 cases
had chromosomal abnormalities and, six of these 14 had
chromosomal abnormality of -5 and four of these six had
chromosomal abnormality of —7 but no chromosomal abnor-
mality of 22q13. These findings were similar to those
reported previously.

Histopathologically, fibrosis was observed in 13 cases; five
had mild fibrosis, two moderate fibrosis and six had severe

© 2018 The Authors
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Table 3 Results of bone marrow analysis, immunohistochemistry and flow cytometric analysis

Bone marrow Immunohistochemistry Flow cytometric analysis
Case no Fibrosis Cellularity (%) CD41 VvWF CD34 PDGF (-BB) CD13 CD14 CD33 CD34 CD41a
megakaryoblasts
1 no 90 *+ + ND - - - - - ND
2 no 90 - + ND ND - ND oy ND L
3 severe 70 + + ND g ey ND + Ty ND
4 mild 90 + + - + + - + + +
5 ~ severe 90 ND + - + + - + - -
6 mild 50 + + *+ ND + ND + + +
T mild 90 - + + + + ND + + ND
8 severe 70 + + + + + - + + -
9 no 90 ND + ND - + - + ND ND
10 moderate 60 + + ND + + ND + + +
11 severe 50 + + ND + + ND + - ND
12 mild 70 + + ND + + g + - +
13 severe 60 + + + ND + - + + +
14 severe 80 ND + ND ND + - + ND ND
15 no 20 - + + ND + - + + +
16 moderate 90 ND ND ND + + - + + +
17 mild 40 ND + + ND ND ND ND ND ND
18 ND ND ND ND ND ND + - + - +

*+: =50% positive; **+: =30% positive; ***+: =20% positive.
PDGF, platelet-derived growth factor; vWF, von Willebrand factor.
ND, not done.

Figure 2 Immunohistochemistry. A representative case of AMGL with mild fibrosis. (a) H&E, (b) von Willebrand factor, (¢) CD41, (d)
platelet-derived growth factor (PDGF) (-BB).

© 2013 The Authors
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Figure 3 (a) Survival curves of 17 patients with AMGL. (b) Survival curves according to the proportion of blast cells among peripheral blood
cells. Survival curves according to the severity of marrow fibrosis: (c) No or Mild VS Moderate or Severe, (d) Severe VS Others.

fibrosis, while four cases showed no evidence of fibrosis.
PDGF is the major serum mitogen for cells of mesenchymal
origin in humans, and the PDGF protein has been implicated
both directly as well as indirectly in several pathological
states including neoplasia, arthritis, arteriosclerosis and bone
marrow sclerosis.? Several studies indicated that PDGF
plays an important role in the pathogenesis of marrow fibro-
sis. For example, PDGF is associated with the blastic phase
of CML; PDGF mRNA is expressed in blast cells as demon-
strated by reverse transcription-polymerase chain reaction
(RT-PCR). Furthermore, PDGF protein is produced and
secreted by blast cells as determined by direct bioassays.® In
that report, five cases, including a case with granulocytic and
megakaryocytic blastic crisis, of 10 cases showed marrow
fibrosis. Furthermore, three cases, including the case with
granulocytic and megakaryocytic blastic crisis, of these five
showed a significant amount of PDGF secretion (>0.2 ng/mL/
108 cells). In the present study, we examined the expression
of PDGF(-BB) by immunohistochemistry in 11 cases. Mega-
karyoblasts and a few fibroblasts in nine of the 11 cases

© 2013 The Authors

showed positive reactivity for PDGF(-BB), and those in two
cases showed negative reactivity for PDGF(-BB). In addition,
the former showed various degrees of fibrosis (from mild to
severe) while the latter showed no evidence of fibrosis.
These findings suggest that PDGF(-BB) may play an impor-
tant role in the pathogenesis of marrow fibrosis associated
with AMGL, and not only megakaryoblasts but fibroblasts
may be associated with marrow fibrosis.

Previous reports showed that the prognosis of AMGL is
usually poor.! Our results confirmed the findings of these
previous studies. Sixteen cases received aggressive chemo-
therapy, three cases were treated with allo-PBSCT and one
case with allo-CBSCT. Three cases achieved CR, but one
case relapsed. Thirteen cases, including three that received
allo-PBSCT, died between 1 and 48 months after diagnosis.
The median survival was 6 months (range, 1—48 months).
However, one case (20-year-old, male) that received allo-
CBSCT achieved CR and is still alive 21 months later with no
evidence of relapse. This limited result indicates that inten-
sive therapies, such as allo-CBSCT, are required for the

Pathology International © 2013 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd
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treatment of AMGL. We also compared the survival rates
based on various parameters, such as the proportion of neo-
plastic megakaryocytes in the peripheral blood and the
severity of marrow fibrosis, but no definite differences in
survival rates were found between the groups, probably due
to the small number of cases. However, taking rarity of the
disease into consideration, this study including detailed clini-
copathologic data of as many as 18 patients in a single
institute would be of value for reference. Further studies of
large case analysis are necessary to define the clinicopatho-
logical features of AMGL.
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LETTER TO THE EDITOR

European Journal of Haematology 90 (79-80)

Correlation between the low marrow blast cutpoint and
WHO classification for myelodysplastic syndromes

To the Editor:

The most widely used prognostic classification system used
for myelodysplastic syndromes (MDS) is the International
Prognostic Scoring System (IPSS) (1). Greenberg et al. (2)
recently proposed a Revised IPSS (IPSS-R). Bone marrow
(BM) cytogenetics, BM blast percentages, and cytopenias
remained the basis of this new system. A low marrow blast
cutpoint (2%) was added to novel components of the IPSS-
R. In the IPSS-R, the <5% marrow blast category was split
between 0— < 2% and >2-<5%. The World Health Organi-
zation (WHO) classification-based Prognostic Scoring Sys-
tem (WPSS) proposed by Malcovati et al. (3) was published
long before the IPSS-R adopted the split of blasts <5% into
two groups. The WHO category according to the WHO clas-
sification 3rd edition (4) is included in components of the
WPSS, but is not included in IPSS-R components. The low
BM blast cutpoint (2%) of IPSS-R is not included in criteria
of the WHO category. To clarify the correlation between the
low marrow blast cutpoint and WHO category, we compared
marrow blast percentages of refractory anemia of the WHO
category (WHO-RA) and refractory cytopenia with multilin-
eage dysplasia (RCMD).

Data set of our previous study (5) was used for the pres-
ent analysis. The database consisted of primary untreated
MDS patients with refractory anemia according to the
French—American—British classification. Patients with MDS
associated with isolated del (5q) were excluded from the
present analysis. WHO-RA and RCMD patients totaled 238
cases (Japanese 96 cases, German 142 cases) and 448 cases
(Japanese 32 cases, German 416 cases), respectively. U.G.
and Y.M., who are coauthors of the present analysis, are
coauthors of the IPSS-R report. Therefore, some patients of
the present analysis may have been included in the IPSS-R
report. However, in the IPSS-R report, there is no mention
of analysis of the WHO category. Definition of blast cells
by Goasguen et al. (6) was used in this study. This defini-
tion was adopted in consensus proposals of International
Working Group on Morphology of MDS (IWGM-MDS) (7).
Continuous data were compared using the nonparametric
Mann—Whitney test, and proportions were compared using
the chi-square test. The present analysis was approved by
the Institutional Review Board of Saitama International
Medical Center, Saitama Medical University.

Definition of blast cells by Goasguen et al. is simple. In
fact, the distinction between blasts and promyelocytes was
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Table 1 Correlation between WHO classification and bone marrow
blast percentages

BM blasts No. of Patients
No. of (%), with BM
Patients mean = SD  P-value blast >2-—<56%  P-value
WHO-RA 238 1.8+1.1 0.0011 67 (28.2%) 0.0022
RCMD 448 22 +£1.3 179 (40.0%)

BM, bone marrow; WHO-RA, refractory anemia according to the
WHO classification 3rd edition; RCMD; refractory cytopenia with mul-
tilineage dysplasia according to the WHO classification 3rd edition.

easy. In addition, we held two times of joint review meetings
for making cytomorphologic database. Therefore, we believe
that the reliability of the blast percentage is high in present
study. In IPSS-R study, it was reported that the split between
0— < 2% and >2-<5% was reproducible within the various
databases from the different institutions (2). The BM blast
percentage of RCMD patients was higher than that of WHO-
RA patients (P = 0.0011). The frequency of patients with
BM blast >2-<5% in RCMD was higher than that in WHO-
RA (P =0.0022) (Table 1). It was reported that RCMD
patients had a more unfavorable prognosis than WHO-RA
patients (3, 4). Therefore, it seems that the low marrow blast
cutpoint (2%) may have prognostic significance.
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Multiple myeloma (MM) is a malignant hematopoi-
etic disease that remains incurable. Therapeutic strategies
for this disease have been rapidly progressing based on
the development of new drugs, including proteasome in-
hibitors, immunomodulatory agents, antibodies and
small molecular compounds such as histone deacetylase
inhibitors (HDIs); however, drug resistance remains a
major challenge [1]. It is well known that cell adhesion-
mediated drug resistance (CAM-DR) occurs when MM
cells interact with stromal cells [2]. Specifically, MM cells
express surface adhesion receptor molecules which bind
with corresponding ligands on stromal cells. Such inter-
action results in protection of MM cells from the cyto-
toxic effects of anti-myeloma drugs. We previously found
that MM cells express various adhesion molecules, in-
cluding CD29 (B1-integrin), CD49d (a4-integrin, a sub-
unit of VLA-4), CD54 (intercellular adhesion mole-
cule-1), CD138 (syndecan-1), CD184 (CXC chemokine
receptor-4), and CD44. Furthermore, among them
CD49d was crucial for CAM-DR to conventional anti-
myeloma drugs such as bortezomib and dexamethasone
[3]. Thus, it is of great importance to suppress CD49d
expression to overcome CAM-DR.

HDI- and DNA-methylating agents show anti-tumor
activity by epigenetically re-expressing various genes [4,

5]. These effects might ultimately affect the expression
and function of various intracellular molecules, includ-
ing transcription factors. We therefore hypothesized that
these agents influence the expression levels of adhesion
molecules in MM cells. To verify this hypothesis, we ex-
amined the effect of the HDI romidepsin and DNA-
methylating agent azacitidine on the expression levels of
CD49d and two other representative adhesion mole-
cules, CD29 and CD138, by flow cytometry analyses in
two human MM cell lines, RPMI8226 and U266. Surpris-
ingly and importantly, romidepsin repressed the expres-
sion levels of CD49d with statistical significance in both
cell lines (fig. 1a, b). Levels of CD49d mRNA also mark-
edly decreased after addition of romidepsin, suggesting
that romidepsin suppresses CD49d expression at the
mRNA level (fig. 1¢). In contrast, romidepsin had no sig-
nificant effect on the expression levels of CD29 and
CD138 (fig. 1a, b). In RPMI8226 cells, azacitidine also
repressed CD49d as well as CD138 (fig. 1a). However, in
U266 cells it had no influence on all three adhesion mol-
ecules tested, including CD49d (fig. 1b). Since azaciti-
dine failed to disrupt DNA methyltransferases, which are
its main targets, in U266 cells [unpubl. data], it is possible
that azacitidine had no effect on the pathophysiology of
these cells.
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Fig. 1. Romidepsin represses CD49d expression in MM cell lines. § ]
RPMI8226 cells (a) or U266 cells (b) were cultured with 10 nM ro- ey
midepsin or 4 uM azacitidine for 48 h. The percentages of CD49d-, o 040
CD29- and CD138-positive cells were determined by flow cytom- o
etry using phycoerythrin-conjugated antibodies against each ad- $ 020
hesion 1nolecule. Statistical analyses were carried out using Stu- -
dent’s t test. ¢ Expression levels of CD49d mRNA were evaluated 0 ’
by quantitative real-time PCR. Statistical analysis was carried out < RPMIB226 U266
using Student’s t test.

To clarify whether romidepsin-mediated suppression
of CD49d expression results in abrogation of CAM-DR to
other drugs, we assessed CAM-DR to bortezomib, mel-
phalan and dexamethasone, which are key drugs for MM

therapy, using the co-culture system as described previ-

ously [3]. In the absence of the stromal cell line UBE6T-7,
bortezomib, melphalan and dexamethasone significantly
increased the percentage of annexin-V-positive cells, sug-
gesting that these agents effectively induce apoptosis.
However, when MM cells were co-cultured with UBE6T-7
cells, induction of apoptosis was suppressed (fig. 2a). We

2 Acta Haematol 2014;132:1-4
DOI: 10.1159/000357213

then assessed the reversal of CAM-DR, which was defined
as the ratio of annexin-V-positive MM cells in the pres-
ence of UBE6T-7 cells to those in the absence of UBE6T-7
cells [3]. As expected, pretreatment of MM cells with ro-
midepsin significantly increased the reversal of CAM-DR
to bortezomib, melphalan and dexamethasone in both cell
lines (fig. 2b), suggesting that roinidepsin effectively over-
comes CAM-DR. Consistent with the findings that azacit-
idine repressed CD49d expression in RPMI8226 cells,
azacitidine induced the reversal of CAM-DR to these
drugs with statistical significance (fig. 2b). In contrast,

Sripayap/Nagai/Hatano/Kikuchi/
Furukawa/Ozawa



Fig. 2. Romidepsin abrogates CAM-DR to
conventional anti-MM drugs. a Cells were
cultured with 2 nM bortezomib, 10 uM mel-
phalan or 1 uM dexamethasone in the pres-
ence or absence of UBEGT-7 cells for 48 h.
MM cells were then harvested and stained
with annexin-V-FITC. b Cells were pre-
treated with 10 nM romidepsin or 4 M
azacitidine for 24 h and subsequently cul-
tured with 2 nM bortezomib, 10 pM mel-
phalan or 1 uM dexamethasone in the pres-
ence or absence of UBE6T-7 cells for a fur-
ther 48 h. Reversal of CAM-DR was
determined as the ratio (%) of annexin-V-
positive MM cells in the presence of
UBE6T-7 cells to those in the absence of
UBEGT-7 cells. Statistical analysis was car-

ried out using Student’s t test.
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azacitidine had no effect on CAM-DR in U266 cells, the
CD49d levels of which were not suppressed by azacitidine.

Histone deacetylases (HDACs) are a class of enzymes
that lyse acetyl groups within histones, thus affecting
DNA gene expression. They also affect the acetylation
status of non-histone proteins such as heat shock protein

Romidepsin Overcomes CAM-DR in MM
Cells
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90 and a-tubulin, which are involved in the pathophysiol-
ogy of MM cells. Romidepsin mainly inhibits HDACI,
HDAC2 and HDACS [6]. Since HDAC1 and HDAC2 be-
long to class 1 HDACs, which target histone proteins, it
is possible that romidepsin-mediated restoration of gene
expressions affects the expression or function of tran-
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scription factors that regulate CD49d gene expression.
Since there are potential binding sites for ETS and WT1
transcription factors on the CD49d promoter region [7,
8], it is of great interest to clarify whether romidepsin af-
fects activities of these factors. It is also important to con-
firm that the CD49d expression of MM cells reduces in
patients treated with romidepsin.

Interestingly, azacitidine failed to suppress CD49d ex-
pression, showing no effect on CAM-DR in U266 cells;
whereas, just like romidepsin, it abrogated CAM-DR in
RPMI8226 cells. U266 are azacitidine-resistant cells, in
which its demethylating activity is negated [unpubl. data];
therefore, these results also suggest that restoration of
gene expressions due to an improvement of epigenetic
status is mainly involved in the repression of CD49d in
MM cells.

Previous preclinical studies have shown that the com-
binations of HDIs and bortezomib or other anti-myelo-
ma drugs enhance anti-tumor effects in MM cells [9].
Furthermore, clinical trials have also shown a certain
clinical efficacy of combinations of HDIs and other drugs

[10, 11]. Combination therapies are promising strategies
for the treatment of MM. Interestingly, overexpression of
HDACI is involved in resistance to bortezomib, and ro-
midepsin overcomes this resistance [12]. The fact that ro-
midepsin overcomes CAM-DR to bortezomib, melpha-
lan and dexamethasone provides additional rationale for
an advantage of the combination therapy.

In conclusion, our findings suggest that potentiations
of romidepsin and other anti-myeloma drugs, such as
bortezomib, melphalan and dexamethasone, are poten-
tial therapies for MM in view of overcoming CAM-DR,
which is critical for improving the efficacy of anti-myelo-
ma therapy, and might be essential for establishing novel
therapeutic strategies to enhance patient outcome or pos-
sibly cure the disease.
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