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of cases with loss with or without ALK fusion. Table S5. P-values for
comparisons of the frequencies of chromosome aberrations in all
chromosome arms between tumours with or without ALK fusion. Table
$6. Number of cases with copy number gain or loss at selected loci with
or without ALK fusion. Table $7. Significance of the differences in
frequencies of copy number changes (gains and losses) between
tumours with or without ALK fusion.

Addtional file 2: Figure S1. Mutation rates for EGFR, TP53 and KRAS
according to cumulative smoking are shown. EGFR and KRAS mutations
were only detected among ALK fusion negative cases, so ALK fusion
positive cases were not included in the analysis. Note the gradually
decrease in EGFR mutation rate with increase in cumulative smoking.
KRAS mutations were detected only among smokers.

Additional file 3: Figure S2. Comparisons of copy number alteration
rates at selected loci with or without ALK fusion. Note that 5p15.33
including TERT shows the highest gain both in ALK fusion positive and
negative tumours, the frequencies being identical.
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ARTICLE INFO ABSTRACT

Article history: An appropriate trigger for BCR-ABL1 mutation analysis has not yet been established in unselected cohorts
Rece}ved 5 Auggst 2013 of chronic-phase chronic myelogenous leukemia patients. We examined 92 patients after 12 months of
Rece"’e‘é 12“8%"‘585 f°2r$327 October 2013 tyrosine kinase inhibitor (TKI) treatment in Nagasaki Prefecture, Japan. Univariate analysis revealed that
Accepte ctober significant factors associated with not attaining a major molecular response (MMR) were the presence of

Hoiutaife ARie.5 WOvERTHES 2013 the minor BCR-ABL1 fusion gene, a low daily dose of TKI, and the emergence of BCR-ABL1 kinase domain

" T mutations conferring resistance to imatinib. Factors associated with the loss of sustained MMR were a
S . low daily dose of TKI and the emergence of alternatively spliced BCR-ABL1 mRNA with a 35-nucleotide
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insertion. Taken together, our results suggest that the search for BCR-ABL1 mutations should be initiated

BCR-ABL1

Alternative splicing if patients have not achieved MMR following 12 months of TKI treatment.

Mutation © 2013 Elsevier Ltd. All rights reserved.
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1. Introduction [1-6]. A 6-year update of the IRIS study was recently presented,

which revealed an event-free survival of 86% and overall survival

The introduction of BCR-ABL1 tyrosine kinase inhibitors (TKIs) of 88% [7]. Our previous cohort study with various patients (i.e. a

has revolutionized the management of patients with chronic myel- - group of patients in a practical setting) revealed that imatinib treat-

ogenous leukemia (CML) [1-5]. A complete cytogenetic response ment could achieve excellent outcomes for CML patients, at both
(CCyR) rate of 60-67% and major molecular response (MMR) rate clinical and molecular levels [6].

of 22-39% at 12 months have been reported for imatinib treatment The quantification of residual BCR-ABL1 transcripts by quan-

titative reverse transcription-PCR (QRT-PCR) is a sensitive tool to

monitor minimal residual disease. Molecular response is assessed

* Corresponding author at: Department of Hematology, Sasebo City General Hos- accordl,ng to the mternatlo,nal Scale ‘as the ratio of BCR-ABL1

pital, 9-3 Hirase, Sasebo, Nagasaki 857-8511, Japan. Tel: +81 956241515. transcripts to ABL1 transcripts, and is expressed and reported
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corresponds to major molecular response (MMR). The IRIS study
showed that achieving MMR within 12 months of imatinib therapy
was associated with the best progression-free survival. Palandri
et al. previously reported that the prognostic value of achieving
MMR was greater if the response was stable [8].

An insufficient response to imatinib in CML has been attributed
to several causes, of which point mutations in the BCR-ABL1 kinase
domain (BCR-ABL1 KD mutations) appear to be the most common,
occurring in 30% to 90% of patients who develop resistance to imat-
inib [9-15]. BCR-ABL1 KD mutations have previously been reported
in 21 different amino acids, and were shown to confer differing lev-
els of resistance to imatinib, which was confirmed by differences
in the cellular 50% inhibitory concentration (ICsq) of TKIs [ 1G]. Sev-
eral other mechanisms of resistance have been identified, including
low plasma concentrations of TKIs, the overexpression of BCR-ABL1
transcripts, drug efflux/influx, and alternative signaling pathway
activation [17-21].

Second generation TKIs (2nd-TKIs), such as nilotinib and dasa-
tinib, became widely available in Japan in 2009 [3,4,22,23].
Responses to 2nd-TKIs were found to be rapid and durable, with
a higher percentage of patients with chronic-phase CML (CML-CP)
surviving at 12 months. Second-TKIs are generally well tolerated,
with occurrence of grade 3/4 drug-related adverse events being
less and hematological adverse event profiles being more favor-
able than those of imatinib. Second-TKIs also exhibit increased
inhibitory potency against BCR-ABL1 kinase and efficacy in the
treatment of patients with many BCR-ABL1 KD mutations that
develop from imatinib use [16,24]; the T315] mutation confers
resistance to both imatinib and 2nd-TKIs. Although excellent
results have been reported with 2nd-TKIs, most of these were from
prospective clinical trials, indicating that the data is from a selected
group of patients. Whether the administration of 2nd-TKIs has
improved the outcome of insufficient responders to imatinib in a
practical setting remains unclear, and profiles related to insufficient
responses need to be reevaluated.

To address these issues, we prospectively measured residual
BCR-ABL1 transcripts and analyzed the BCR-ABL1 KD mutation
status in 115 CML-CP patients who registered for the mutation
analysis study between March 2010 and March 2012. This study
demonstrated the ‘smaller than expected’ impact of BCR-ABL1
KD mutations, and also highlighted problems associated with a
reduced dosage of 2nd-TKIs.

2. Patients and methods
2.1. Patients and eligibility criteria of the mutation analysis study

A total of 160 patients with CML-CP were confirmed, and 149 patients were
either treated or had been treated with TKI at 11 hospitals in Nagasaki Prefecture,
Japan between March 2010 and March 2012. CML-CP patients who had received TKI
during this period and those who had a history of receiving TKI were eligible for
this mutational analysis study. Of the 149 CML-CP patients, informed consent was
obtained from 115 patients for the measurement of BCR-ABL1 fusion transcripts and
analysis of BCR-ABL1 KD mutations (molecular study) (Fig. 1). The results of these
analyses were notified to each clinician and the selection of TKIs was left to their
judgment. This study was approved by the Ethical Committees of each participating
hospital.

2.2. RNA extraction, complementary DNA synthesis

Total leukocytes in the bone marrow and peripheral blood samples were isolated
by centrifugation following red blood cell lysis, and total RNA was extracted using
TRIzol reagent and the PureLink RNA Micro kit (Invitrogen, CA, USA). cDNA was syn-
thesized using random hexamer primers and Super Script Ill Reverse Transcriptase
(Invitrogen).

2.3. Quantitative reverse transcription-polymerase chain reaction conditions
QRT-PCR for BCR-ABL1 transcripts levels was performed in 411 samples using

LightCycler (Roche Diagnostics, Mannheim, Germany) and LightCycler TagMan Mas-
ter (Roche Diagnostics). Primers and TagMan probe sequences published in the EAC
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network protocol were used for QRT-PCR [25]. When major BCR-ABL1 (i.e. b2a2 and
b3a2) was not detected, the presence of minor BCR-ABL1 (i.e. ela2) was examined.
The amount of the fusion gene in the original sample was calculated by means of
a standard curve (created with the BCR-ABL1 fusion gene or ABL1 gene cloned in
plasmids) and expressed as the BCR-ABL1/ABL1 ratio.

2.4. Direct sequencing of the ABL1 kinase domain

After quantifying BCR-ABL1 transcripts in 411 samples, a detectable amount of
the BCR-ABL1 transcripts was amplified in 273 samples. A total of 264 of the 273
samples (96.7%) were used for the mutation analysis study. The nested PCR strat-
egy was applied for direct sequencing, in which primers were used as previously
described [26,27]. After nested PCR, PCR products were sequenced in both direc-
tions with the following primers: ABL-1F, ABL-1R, ABL-2F, and ABL-2R as previously
described [28], using the BigDye Terminator v3.1 Cycle Sequencing Kit and ABI Prism
3100x! Genetic Analyzer (Applied Biosystems, CA, USA).

2.5. Categorization of BCR-ABL1 KD mutations

BCR-ABL1 KD mutations were categorized as “resistant to imatinib” and
“unknown sensitivity” according to the ICsq of TKIs summarized in the recommen-
dations from European LeukemiaNet [16]. Twenty-one BCR-ABL1 KD mutations
categorized as “resistant to imatinib” were as follows; M244V, 1248V, G250E,
Q252H, Y253H, Y253F, E255K, EZ55V, E279K, V299L, F311L, T3151, F317L, M351T,
F359V, V379], L384M, L387M, H396R, H396P, and F486S.

BCR-ABL1 35INS, a retention of 35 intronic nucleotides at the splice junction of
exon 8/9, which results in a stop codon after 10 intron-encoded residues, was not
included in the BCR-ABL1 KD mutations because BCR-ABL1 35INS was considered
to be an alternative spliced variant, and not a point mutation [29-32].

2.6. Definition of clinical parameters according to the response

The criteria recommended by European LeukemiaNet were used to define
responses [33]. CCyR was defined as the absence of Philadelphia chromosome-
positive metaphases in the samples. Cytogenetic responses were based on the
percentage of Philadelphia chromosome-positive cells among 20 or more cells in
metaphase in each bone marrow sample. Fluorescence in situ hybridization on
interphase cells was recommended if less than 20 metaphases were evaluable and
was performed with BCR-ABL1 extra-signal, dual-color, dual-fusion probes; CCyR
was defined when the number of positive cell interphases was less than 2 in 200
(<1%). Major molecular response (MMR) was defined as a ratio BCR-ABL1/ABL1
level <0.042%, which corresponded to a 3-log reduction from the median base-
line value calculated in our laboratory, using 30 samples from untreated CML-CP
patients. Undetectable BCR-ABL1 transcripts levels were defined as a ratio BCR-
ABL1/ABL1 level <0.0042%, which corresponded to the lowest level of detectability
by the method (104).

The overall response to TKI was evaluated using criteria proposed by European
LeukemiaNet [34]. The trajectory of the molecular response was categorized into
four groups using the modified categorization originally described by Palandri et al.
[8] as follows; QRT-PCR negative, BCR-ABL1 transcripts always undetectable; Sta-
ble MMR, BCR-ABL1 transcripts detectable, but always maintained MMR; Unstable
MMR, achieved MMR at least once, but could not maintain it; Never MMR, never
achieved MMR.

2.7. Statistics

Variables were analyzed by Fisher’s exact test to determine significantly associ-
ated factors for each group categorized by the trajectory of the molecular response.
All tests were 2-sided and values of p<0.05 were considered significant in all
analyses. All statistical analyses were performed with Prism Version 5.0 software
(GraphPad).

3. Results
3.1. Patient characteristics

Twenty-eight patients were newly diagnosed with CML-CP dur-
ing the study period (between March 2010 and March 2012). The
other 87 patients included in this study had been diagnosed before
this period. TKI was not the initial treatment for 19 patients. The
characteristics of these patients are summarized in Table 1. Patients
included 63 males and 52 females, with a median age at diagnosis
of 55 years old (age range: 17-88). The median time from the start
of TKI treatment to registration was 5.5 years (range 0.0-11.6). The
distribution of Sokal scores at diagnosis was as follows; 47 patients
were at low risk, 42 at intermediate risk, and 24 at high risk. Imati-
nibwas administered as aninitial treatment in 83 patients, nilotinib
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Fig. 1. Patient flow diagram.
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The trajectory of the molecular response was evaluated in 6 out of 28 patients who were diagnosed with chronic phase chronic myelogenous leukemia (CML-CP) between
March 2010 and March 2012, and in 85 out of 87 patients who started tyrosine kinase inhibitor (TKI) treatment before March 2010.

in 6, dasatinib in 7, and bosutinib in 1. Two out of 115 patients
received TKI as a treatment for molecular relapse following allo-
geneic hematopoietic stem cell transplantation.

3.2. Direct sequencing of BCR-ABL1 KD at diagnosis and within
12 months of the TKI treatment

BCR-ABL1 KD mutations and 35INS were analyzed at diagnosis
in 28 untreated CML-CP patients. Although no patient had BCR-
ABL1 KD mutations at the time of diagnosis, mutations became
detectable within 12 months of the TKI treatment in 3 out of 28
patients (10.7%). The mutations detected and patients were as fol-
lows; T315], UPN-108; T406A, UPN-45; A433T, UPN-61 (Fig. 2a).

Table 1
Patient characteristics.

CML-CP patients (2010-2012)
Registrant of molecular analysis

Total, n 115
Sex (male/female) 63/52
Age at diagnosis (median), y 17-88 (55)
Clinical phase at diagnosis, n
CcP 111
AP 4
BC 0
Time after the TKI treatment (median), y 0.1-11.6 (5.5)
Sokal score at diagnosis, n
Low 47
Intermediate 42
High 24
Uncertain or missing 2
Initial treatment
Imatinib 83
2nd-TKIs 14
Others 18
Allogeneic hematopoietic stem cell transplantation at any time
Yes 2
No 113

CP, chronic phase; AP, accelerated phase; BC, blastic crisis; TKI, tyrosine kinase
inhibitors (i.e. imatinib, nilotinib, dasatinib, and bosutinib). Second-TKIs include
nilotinib, dasatinib, and bosutinib.

In the case of UPN-108, the T315I mutation became detectable
after 3 months of the dasatinib treatment, at the time the patient
achieved MMR. MMR was lost three months later, and the muta-
tion was still detectable. We previously reported the successful
treatment of the T315I mutation by imatinib and interferon-o
combination therapy [28]; therefore, we added interferon-a to
dasatinib. After 5 months of the combination therapy, MMR was
re-achieved and the T315I mutation became undetectable.

BCR-ABL1 35INS was detected in 18 out of 28 patients (64.2%)
during the course of the treatment by direct sequencing. BCR-ABL1
35INS was detected both before and after the TKI treatment in
8 patients, only at diagnosis in 2 patients, and only after the TKI
treatment in 8 patients.

3.3. Molecular response after receiving the TKI treatment for
longer than 12 months

Ninety-one out of 115 patients were evaluable for their molecu-
lar response after receiving at least 12 months of the TKI treatment
(Fig. 1). These patients included not only 6 newly diagnosed
patients who had been treated with TKI for longer than 12 months,
but also 85 patients who had been diagnosed prior to March
2010 and were already taking TKIs. Using the criteria proposed
by European LeukemiaNet, 60 out of 91 patients were judged to
have achieved the optimal response (i.e. stable optimal response),
whereas the remaining 31 patients had not (i.e. unstable opti-
mal response). Based on the trajectory of the molecular response,
patients with a stable optimal response were further divided into
two groups, stable MMR (29 patients) and QRT-PCR negative (31
patients). Among those with an unstable optimal response, 16
patients that had never achieved MMR were categorized into the
“never MMR" group, and 15 patients that achieved MMR at least
once were categorized into the “unstable MMR” group.

3.4. BCR-ABL1 KD mutation in the “never MMR” group
Nine patients in the “never MMR” group were treated with imat-

inib and 7 patients were treated with 2nd-TKIs. In this group, only 3
patients (33.3%) with imatinib and one patient (14.3%) with 2nd-TKI
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Fig. 2. Clinical course of BCR-ABL1 fusion transcripts and KD mutations.

(a) Three patients harbored BCR-ABL1 KD mutations from diagnosis to 12 months of the TKI treatment. The clinical courses of patients harboring BCR-ABL1 KD mutations
after over 12 months of the TKI treatment are follows: (b) three patients in the “never MMR” group, (c) one in the “unstable MMR” group, and (d) one in the “stable MMR"
group.

Aberrations; IM, imatinib; D, dasatinib; N, nilotinib. Numbers following these abbreviations indicate the dose of each TKI.
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Table 2
Events related to reductions in the TKI dosage.
Patients with Never MMR Patients with Unstable Patients with Stable MMR Patients with QRT-PCR Total, n
MMR negative
M 2nd-TKI M 2nd-TKI M 2nd-TKI M 2nd-TKI
Hematological toxicity, n 1 4 2 1 2 1 3 0 14
Non-hematological toxicity, n 3 2 5 0 5 2 6 2 25
Economic reasons, n 2 0 0 0 0 0 0 0 2
Total, n 6 6 7 1 7 3 9 2

Non-hematological toxicity was mainly observed in patients treated with imatinib. Of 25 patients with non-hematological toxicity, muscle cramps (n=7, 28.0%), water
retention (n=6, 24.0%), and elevations in liver enzymes (n=>5, 20.0%) were frequently reported. Hematological toxicity was mainly observed in patients receiving 2nd-TKIs
without a stable optimal response. Thrombocytopenia was the most frequent adverse event as hematological toxicity (9 out of 14 patients, 64.3%).

were taking daily doses of TKIs without any reduction (a standard
dose indicated imatinib 400 mg/day, nilotinib 600 mg/day, and
dasatinib 100 mg/day). In terms of drug adherence, no significant
difference was observed between the 3 groups taking different TKIs
(33.3%, 25.0%, and 0.0% in patients treated with imatinib, nilot-
inib, and dasatinib, respectively). The most frequent reason for
dose reduction was hematological toxicity in the 2nd-TKI group,
and non-hematological toxicity in the imatinib group (Table 2).
BCR-ABL1 KD mutations categorized as resistant to imatinib were
detected in 3 out of 16 patients (18.8%). The mutations detected
and patients were as follows; E279K, UPN-24; T315I and E255V,
UPN-40; G250E and L387M, UPN-48 (Fig. 2b). The BCR-ABL1 KD
mutation categorized as unknown sensitivity was not detected. In
the case of UPN-24, TKI was switched from imatinib to nilotinib and
a QRT-PCR negative status was obtained.

Direct sequencing detected BCR-ABL1 35INS in 12 out of 16
patients (75.0%) in the “never MMR” group. One patient (UPN-
24) was found to have both the E279K mutation and BCR-ABL1
35INS. The minor BCR-ABL1 fusion gene was detected in 3 out of 16
patients instead of major BCR-ABL1 fusion gene. These 3 patients
had BCR-ABL1 35INS in the transcriptional product of the minor
BCR-ABL1 fusion gene, but had no BCR-ABL1 KD mutations.

To determine the effect of long-term exposure of TKI on the
occurrence of mutations, we compared the mutation rate of newly
diagnosed patients with that of patients taking TKIs for longer than
24 months. In the “never MMR” group, 12 out of 16 patients had
beenreceiving TKI treatment for longer than 24 months. Of these 12
patients, the BCR-ABL1 KD mutation, minor BCR-ABL1 fusion gene,
and BCR-ABL1 35INS were detected in 2 patients, 2 patients, and
8 patients, respectively. In 4 newly diagnosed patients, the E279K
mutation became detectable in one patient after starting to take
imatinib, whereas 35INS was not detected. Whether the length of
the TKI treatment (12-24 months vs more than 24 months) influ-
enced the frequency of the BCR-ABL1 KD mutation or BCR-ABL
35INS was not clear due to the small number of patients.

3.5. BCR-ABL1 KD mutation in the “unstable MMR” group

In the “unstable MMR” group, 12 patients were treated with
imatinib and 2 patients were treated with dasatinib. One patient
had already stopped taking imatinib before the mutation analy-
sis. In this group, 5 patients (41.7%) with imatinib and one patient
(50.0%) with dasatinib were taking daily doses of TKIs without any
reduction. In terms of drug adherence, no significant difference
was observed between groups taking imatinib and dasatinib. Sim-
ilar to the “never MMR” group, the most frequent reason for the
dose reduction was hematological toxicity in the 2nd-TKI group,
and non-hematological toxicity in the imatinib group. BCR-ABL1
KD mutations known to confer resistance to imatinib were not
detected in this group, whereas the KD mutation categorized as
unknown sensitivity was detected in one patient (R457C mutation
in UPN-30) (Fig. 2c). BCR-ABL1 35INS was detected in 12 out of
15 patients (80.0%), including one patient (UPN-30) harboring both

the R457C mutation and BCR-ABL1 35INS. No significant relation-
ship was observed between the detection of BCR-ABL1 35INS and
remission status. The timing of the detection and remission status
was as follows; when MMR was achieved, 2 patients; only when
MMR was lost, 3 patients; regardless of MMR status, 7 patients.

We compared the mutation rate of newly diagnosed patients
with that of patients taking TKIs for longer than 24 months in
the “unstable MMR” group. Twelve out of 15 patients had been
receiving the TKI treatment for longer than 24 months. Of these 12
patients, BCR-ABL1 35INS was detected in 9 patients, while no BCR-
ABL1 KD mutation was detected. Although no 35INS was detected
in 3 newly diagnosed patients, one patient developed the R457C
mutation after start taking dasatinib. The attempts to show the
impact of the length of the TKI treatment (12-24 months vs longer
than 24 months) on the frequency of the BCR-ABL1 KD mutation
or BCR-ABL 35INS failed because the number of patients was too
small.

3.6. BCR-ABL1 KD mutation in the “stable MMR” group

In the group of patients with a stable MMR, 21 patients were
treated with imatinib and 6 patients were treated with 2nd-TKIs.
Two patients had already stopped receiving TKI treatment before
the mutation analysis study. In this group, 14 patients (66.7%)
with imatinib and 3 patients (50.0%) with 2nd-TKIs were taking
daily doses of TKIs without any reduction. No significant differ-
ence was observed in terms of drug adherence among patients
taking 3 different TKIs (66.7%, 50.0%, and 50.0% in patients treated
with imatinib, nilotinib, and dasatinib, respectively). BCR-ABL1
KD mutations known to confer resistance to imatinib were not
detected in this group, whereas the KD mutation categorized as
unknown sensitivity was detected in one patient (Q252R muta-
tion in UPN-76) (Fig. 2d). BCR-ABL1 35INS was detected in 10 out
of 29 patients (34.5%) with stable MMR. In the case of UPN-76, the
patient had BCR-ABL1 35INS, but this disappeared when the Q252R
mutation became detectable.

The mutation rate of newly diagnosed patients with that of
patients taking TKIs for longer than 24 months was compared to
seek for a possible difference, in the “stable MMR” group. Twenty-
two out of 29 patients had been receiving TKI treatment for longer
than 24 months. Of these 22 patients, BCR-ABL1 35INS was detected
in 6 patients, while no BCR-ABL1 KD mutation was detected. In 7
newly diagnosed patients, although no 35INS was detected, one
patient developed the Q252R mutation after starting to take dasa-
tinib. The statistical analysis could not show significant effects of
the TKI-treatment duration on the mutation rate (12-24 months vs
longer than 24 months).

3.7. BCR-ABL1 KD mutation in the “QRT-PCR negative” group
All 31 patients in the QRT-PCR negative group were receiving the

TKI treatment during the molecular study. In this group, 25 patients
were treated with imatinib and 6 patients were treated with
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Table 3
Factors evaluated for their influence on the trajectory of the molecular response.

Patients with Never Patients with Unstable

Patients with Stable Never MMR vs Unstable Never MMR/Unstable

MMR MMR MMR MMR/Stable MMR MMR vs Stable MMR
p value p value

Total, n 16 15 29

Sex, n
Male g 7 17 >0.999 0.614
Female 7 8 12

Age when the TKI treatment started, n
<55 years 4 6 16 0.140 0.117
>55 years 12 9 13

Sokal score?, n
Low and intermediate risk 12 12 22 >0.999 >0.999
High risk 3 3 6

Type of BCR-ABL fusion gene, n
Major BCR-ABL 13 15 29 0.016 0.238
Minor BCR-ABL 3 0 0

Daily dosage of TKI®, n
Standard dosage or more 4 6 17 0.043 0.035
Less than standard dosage 12 8 10

Type of TKL,” n
Imatinib 9 12 21 0.094 0.560
2nd-TKIs 7 2 6

BCR-ABL KD mutation, resistance to TKI, n
Yes 3 0 0 0.016 0.243
No 13 15 29

BCR-ABL KD mutation, unknown sensitivity, n
Yes 0 1 1 >0.999 >0.999
No 16 14 28

BCR-ABL 35INS, n
Yes 12 12 10 0.140 0.002
No 4 3 19

¢ One patient with Never MMR and one patient with Stable MMR were excluded because data for the Sokal score at diagnosis was missing.
b One patient with Unstable MMR and two patients with Stable MMR were excluded because they stopped the TKI treatment before the molecular study.

2nd-TKIs. Sixteen patients (64.0%) with imatinib and 4 patients
(66.7%) with 2nd-TKI were taking daily doses of TKIs without any
reduction. No significant difference was observed in terms of drug
adherence among patients taking 3 different TKIs (64.0%, 75.0%, and
50.0% in patients treated with imatinib, nilotinib, and dasatinib,
respectively).

3.8. Factors related to the trajectory of the molecular response
after 12 months of the TKI treatment

To assess significant factors related to the molecular responses,
we tested for correlations between factors such as the baseline
features of patients, TKI regimen, and results of the KD mutation
analysis with the trajectory of the molecular response (the “never
MMR”, “unstable MMR”, and “stable MMR” groups) (Table 3).
Three significant factors for not achieving MMR were identified
by comparing the “never MMR” group with the other two groups
(“unstable MMR” and “stable MMR” groups); the type of BCR-ABL1
fusion gene, low daily dose of TKI, and presence of a BCR-ABL1 KD
mutation resistant to imatinib. Furthermore, 2 factors were iden-
tified as significant factors for not maintaining stable MMR. By
comparing the “stable MMR” group with two other groups, low
daily dose of TKI and the presence of 35INS were identified as fac-
tors associated with the loss of sustained MMR (Table 3). Patient
characteristics, such as sex, median age at the beginning of the
TKI treatment, or Sokal risk category were not significant factors
for achieving or maintaining MMR. The type of TKI was also not a
factor.

To compare the stable optimal response group (“stable MMR”
and QRT-PCR negative groups) and unstable optimal response
group (“never MMR” and “unstable MMR” groups), we analyzed
the following 3 variables; patient characteristics, type of TKI, and
daily dose of TKI. The presence of KD mutations, the 35INS, and
the type of BCR-ABL1 fusion gene were not included as variables
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in the analysis because BCR-ABL1 transcripts were absent in the
“QRT-PCR negative” group. Two factors negatively correlated with
maintaining an optimal response; TKI treatment started at a higher
median age (p=0.0480) and a lower daily dose of TKI (p=0.0348).
The type of TKI, sex, and Sokal score category did not correlate with
the response.

4. Discussion

We demonstrated that three factors were significantly related
to molecular responses in CML-CP patients following TKI treatment
in this study. First, adherence to TKI therapy was an important
factor for both achieving and maintaining MMR. Second, the pres-
ence of BCR-ABL1 KD mutations, especially mutations that confer
resistance to imatinib, was a significant predictor for not achieving
MMR. Third, the emergence of 35INS, which was detected in 43%
of patients, was significantly related to the loss of MMR.

We observed a relatively low optimal stable response rate on a
molecular level in this registration study by the Nagasaki CML Study
Group. Thirty-one out of 91 patients (34.1%) lost MMR after 12
months of the treatment. Considering the similar rate of insufficient
molecular responses reported in other studies [5,8], the manage-
ment of CML-CP patients with an insufficient molecular response
is a problem that remains even after the introduction of 2nd-TKIs
into practice. These findings prompted us to analyze the clinical
and molecular factors useful for predicting molecular responses to
TKI. We confirmed the importance of adhering to TKI therapy for an
optimal response, which we found to be the only significant factor
for both achieving and maintaining MMR. In the case of UPN-48
harboring the G250E and L387M mutations in BCR-ABL1 KD, MMR
was not achieved with dasatinib in spite of these mutations being
sensitive to dasatinib. This treatment failure may have been due
to the standard dose of dasatinib not being tolerated. Some stud-
ies, including ours, reported that the amount of TKI administered
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in practice was often less than the standard dose [17,18,35-37].
Therefore, tolerability for a standard dose must be considered when
selecting a TKI. A pharmacological assessment may help in this
decision.

Information regarding the BCR-ABL1 KD mutation status is
invaluable for the decision algorithm when tailoring therapeutic
strategies. A switch to effective TKI resulted in MMR being achieved
in two patients (UPN-23 and -108), with the elimination of the
mutations. However, in the case receiving the TKI treatment for
longer than 12 months, BCR-ABL1 KD mutations categorized as
resistance to imatinib were detected in the “never MMR” group
only. This finding indicated that sequence analysis of BCR-ABL1
KD should only be considered for this group of patients. In the
case of UPN-108, the T315I mutation became detectable after the
patient achieved MMR after 3 months of the dasatinib treatment.
T3151 mutation analysis at diagnosis is often considered important
because the presence of T315I mutation at diagnosis could affect
the whole treatment strategy. Minami Y, et al. reported that moni-
toring gene mutations in fractionated hematopoietic stem cells and
progenitors at diagnosis may help detect the T315] mutation ear-
lier [38]. Standard methods to detect the T315] mutation and the
standard management of patients with this mutation in practice
need to be established [28,39,40].

In our study, the proportion of patients with BCR-ABL1 KD muta-
tions was only 7% (8 out of 115 patients), which appeared to be less
than that of previous studies. Since previous studies have suggested
that 2nd-TKIs inhibit the proliferation of CML cells with BCR-ABL1
KD mutations [41], it is possible that the introduction of 2nd-TKIs
actually led, at least in part, to the lower frequency of BCR-ABL1 KD
mutations in our study.

The presence of BCR-ABL1 35INS significantly correlated with
an unstable optimal response in our study. BCR-ABL1 35INS itself
was found to not contribute to TKI resistance because the BCR-
ABL1 protein derived from the mRNA of BCR-ABL1 35INS lacked
the kinase domain necessary for BCR-ABL1 kinase activity [32].
We detected BCR-ABL1 35INS in 34 out of 60 patients (56.7%) by
direct sequencing. The emergence of BCR-ABL1 35INS, one of the
alternative splicing variants, may reflect the confounding effect of
other factors causing TKI resistance rather than directly provid-
ing TKI resistance because the precise regulation of RNA splicing
is indispensable for maintaining cellular homeostasis [42]. Further
assessments regarding BCR-ABL1 35INS in the treatment of CML
are needed.

The Sokal scoring system has been utilized to stratify patients
by risk in many clinical TKI trials. Although the score was shown
to predict the possibility of CCyR and MMR |[1,2], it did not cor-
relate with the trajectory of the molecular response in our study.
Marin D, et al. previously reported that adherence to imatinib was
the only independent predictor for complete molecular response,
while the Sokal score was not [43]. Second-TKIs were also found
to improve the outcomes of high-risk patients [3,4]. Collectively,
it is possible that the low adherence to TKIs and introduction of
more potent 2nd-TKIs lowered the power of the Sokal score in
the statistical analysis performed in our study. A larger analysis
may help to confirm the impact of the Sokal score in a practical
setting.

The results obtained in our study emphasized the necessity of
further searches for clinical and molecular factors that predict clin-
ical responses to TKIs. With more appropriate predicting factors, a
new treatment strategy may be developed in the future to maxi-
mize the number of patients achieving an optimal response.
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(St. Francis Hospital); Y. Moriuchi, S. Sato, H. Itonaga (Sasebo
Municipal General Hospital); S. Yoshida, E. Matsuo, Y. Moriwaki, J.
Makiyama (National Hospital Organization, Nagasaki Medical Cen-
ter); D. Ogawa (Nagasaki Prefectural Shimabara Hospital); H. Soda
(Health Insurance, Isahaya General Hospital); R. Yamasaki, H. Non-
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