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Abstract Nomogram, a standard technique that utilizes
multiple characteristics to predict efficacy of treatment and
likelihood of a specific status of an individual patient, has
been used for prediction of response to neoadjuvant che-
motherapy (NAC) in breast cancer patients. The aim of this
study was to develop a novel computational technique to
predict the pathological complete response (pCR) to NAC
in primary breast cancer patients. A mathematical model
using alternating decision trees, an epigone of decision
tree, was developed using 28 clinicopathological variables
that were retrospectively collected from patients treated
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with NAC (n = 150), and validated using an independent
dataset from a randomized controlled trial (n = 173). The
model selected 15 variables to predict the pCR with
yielding area under the receiver operating characteristics
curve (AUC) values of 0.766 [95 % confidence interval
(CD], 0.671-0.861, P value < 0.0001) in cross-validation
using training dataset and 0.787 (95 % CI 0.716-0.858,
P value < 0.0001) in the validation dataset. Among three
subtypes of breast cancer, the luminal subgroup showed the
best discrimination (AUC = 0.779, 95 % CI 0.641-0.917,
P value = 0.0059). The developed model (AUC = 0.805,
95 % CI 0.716-0.894, P value < 0.0001) outperformed
multivariate logistic regression (AUC = 0.754, 95 % CI
0.651-0.858, P value = 0.00019) of validation datasets
without missing values (n = 127). Several analyses, e.g.
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bootstrap analysis, revealed that the developed model was
insensitive to missing values and also tolerant to distribu-
tion bias among the datasets. Our model based on clini-
copathological variables showed high predictive ability for
pCR. This model might improve the prediction of the
response to NAC in primary breast cancer patients.

Keywords Breast cancer - Data mining - Neoadjuvant
chemotherapy - Nomogram - Prediction model

Introduction

Neoadjuvant chemotherapy (NAC) is the administration of
chemotherapy before surgical treatment of cancer. The
clinical advantages of NAC include tumour size reduction,
which improves the breast conservation rate, and deter-
mination of chemosensitivity to help design later adjuvant
therapy [1]. Several meta-analyses have revealed that
patients with pathological complete response (pCR) after
NAC showed higher survival rates than those without pCR
[1-4], indicating that pCR might represent a surrogate
prognostic indicator in these patients. Thus, predicting pCR
using information collected before NAC has been pro-
posed, with the most commonly used predictive factors
including oestrogen receptor (ER) status, human epidermal
growth factor receptor 2 (HER2/neu) status, histological
grade and proliferative activity [5-7]. Recent studies
showed that the sensitivity to chemotherapy differs
according to cancer phenotype classified mainly by ER and
HER2 status [8-10]. Luminal A subtype (ER-positive,
HER2-negative and low-grade or low-proliferative pheno-
type) exhibited lower sensitivity to chemotherapy despite
better prognosis than other phenotypes, and hormonal
therapy alone is the preferred treatment for this subtype
[11].

Nomograms, which integrate clinical and pathological
variables using multiple logistic regression (MLR), have
been developed and are well validated to predict pCR after
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NAC [12, 13]. These tools are now widely used by on-
cologists via sophisticated web interfaces. In comparative
studies using prospective cohorts, nomograms showed
similar performance to molecular tests designed to predict
pCR following NAC [14, 15]. The gene signatures to
predict prognosis were also expected to predict chemo-
sensitivity [16-19], although the predictive ability was
limited in those studies. Thus, new prediction tools, even
with the use of molecular/clinicopathological factors, are
now needed.

MLR has several limitations. First, it can deal with only
few independent variables to avoid over-fitting to the given
datasets. Second, MLR is sensitive to missing values, a
frequent occurrence in retrospectively collected data.
Third, MLR cannot tolerate the distribution bias of vari-
ables among multiple datasets (usually obtained from dif-
ferent institutes), which reduces its generalizability. Thus,
we used a data mining technique to address the following
problems: (1) limits in the number of variables that can be
included in a model, (2) missing values and (3) bias among
datasets. Using alternating decision tree (ADTree), an
accurate and versatile decision-tree type data mining
method [20], we developed and validated a mathematical
model to predict pCR after NAC in patients with primary
breast cancer.

Materials and methods
Participants and treatments

The study protocol was approved by the institutional
review board of Kyoto University Hospital. We disclosed
the details of the study to all of the participants in lieu of
obtaining informed consent because the Japanese ethics
guidelines for epidemiologic research allow observational
studies to use anonymous clinical data after disclosing the
study details to the potential participants.

We included patients who had participated in the Orga-
nisation for Oncology and Translational Research (OOTR)
NOO3 trial. This was a randomized trial of patients with
operable breast cancer treated with docetaxel with or without
capecitabine after four cycles of NAC consisting of 5-fluo-
rouracil, epirubicin and cyclophosphamide (FEC) (UMIN
ID: C000000322, http://www.umin.ac.jp/ctr/index.htm).
Patients who received the same chemotherapy regimen in
regular clinical practice were also included in this study.
Only patients with a tumour size of <5 cm and who had
completed >75 % of the planned courses of NAC were
included.

First, we conducted an exploratory analysis using a
dataset of 58 patients collected consecutively from Tokyo
Metropolitan Cancer and Infectious Diseases Centre
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Komagome Hospital. Additional patients were then col-
lected from Osaka National Hospital and Tsukuba Uni-
versity Hospital to develop the prediction model. The
training dataset consisted of 150 patients treated at the
three institutions from 2005 to 2009. This included 89
patients who participated in the OOTR NOO3 trial. The
newly developed prediction model was applied to an
external validation dataset consisting of 173 patients from
the OOTR NOO3 trial. This validation dataset was obtained
from three randomly selected institutions that had partici-
pated in the OOTR NOO3 trial (Niigata Cancer Centre
Hospital, National Kyushu Cancer Centre and Aichi Can-
cer Centre).

All of the patients included in this study received the
same treatment protocol, consisting of four courses of FEC
(5-fluorouracil 500 mg/m®, epirubicin 100 mg/m* and
cyclophosphamide 500 mg/m?, i.v., every 3 weeks) fol-
lowed by four courses of docetaxel (75 mg/m?, i.v., every
3 weeks) with or without capecitabine (1,650 mg/m?/day,
oral administration, for 14 days every 3 weeks).

Data collection

Data for 28 clinicopathological variables were retrospec-
tively collected from databases maintained at each insti-
tution (Table 1). All of the mammography and
ultrasonography images were reviewed by physicians cer-
tified in imaging diagnosis by the relevant accreditation
organizations in Japan. The Response Evaluation Criteria
in Solid Tumours (RECIST) were used to classify the
clinical response to NAC. According to the protocol of the
OOTR NOO3 trial, the clinical response was evaluated after
both the FEC treatment (i.e. the clinical response after
anthracycline) and the taxane-containing regimen (i.e. the
clinical response after taxane). Information pertaining to
histological type, ER status, progesterone receptor (PgR)
status, HER?2 status and histological/nuclear grade of nee-
dle biopsy specimens were collected from the original
pathology report of each patient. At each institution, the
surgical specimen obtained following NAC was serially
sectioned, stained with haematoxylin and eosin (H&E) and
diagnosed by experienced pathologists. pCR was defined as
the absence of residual invasive cancer cells in the breast
and the axillary lymph nodes (ypT0/is + ypNO).

Data analysis

For statistical analyses, we quantitatively graded the vari-
ables using the criteria established by a committee of
specialists from the fields of breast surgery, diagnostic
radiology and pathology.

The ADTree model was developed using the training
dataset and validated using the independent validation

378

Table 1 Characteristics of patients in the training and validation
datasets

Variables Training dataset  Validation dataset P value®
n % n %
No. of patients 150 173
Age (years)
Median 50 48 0.131
Range 27-71) (29-68)
Body mass index (kg/m?)
Median 22.7 21.2 0.0004
Range (16.9-35.8) (15.6-43)
Menopausal status
Pre- 75 50.0 105 60.7  0.054
menopause
Post- 75 50.0 68 39.3
menopause
Physical examination
Palpable lump
Yes 149 99.3 166 96.0  0.136
No 1 07 5 2.9
Unknown 0 0 2 1.2
Skin dimpling
Yes 31 20.7 28 162 0281
No 116 773 143 82.7
Unknown 3 20 2 1.2
Mammography
Presence of a mass
Yes 92 61.3 113 653  0.102
Focal 19 12.7 35 20.2
asymmetry
No 26 17.3 20 11.6
Unknown 13 87 5 2.9
Presence of calcifications
Yes 45 30.0 80 462 0.035
No 87 58.0 88 50.9
Unknown 15 100 5 2.9
Architectural distortion
Yes 27 180 22 127 0.110
No 108 72.0 145 83.8
Unknown 15 100 6 35
Ultrasonography
Presence of masses
Yes 148 98.7 172 994 0480
No 2 13 1 0.6
Maximum tumour size (mm)
Median 26 29 0.012
Range (11-48) (11-49)
Unknown 0 0 8 4.7
Depth/width ratio
Median 0.67 0.58 <0.0001
Range (0.23-2.06) (0.22-1.18)
@ Springer
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Table 1 continued

Table 1 continued

Variables Training dataset ~ Validation dataset P value® Variables Training dataset ~ Validation dataset P value®
n % n % n % n %
Unknown 3 20 21 12.2 FEC-TX 42 280 79 45.7
Echogenic halo NS not significant, NC not collected, FEC 5-fluorouracil + epirubi-
Yes 68 459 56 326  0.026 cin + cyclophosphamide, T taxane, TX taxane + capecitabine
No 79 534 109 63.4  ER-positive or PgR-positive was defined as 10 % or more of cells
Unknown 1 07 7 4.1 with positive staining or Allred score of 3 or more
Posterior acoustic features b HER2-positive was defined as a score of 3+ on immunohisto-
Enhancement 33 23 61 355 0.024 .chemical t;sting or a positive score on fluorescence in situ hybrid-
ization testing
None 5 30.7 66 384 ¢ Triple negative was defined as ER, PgR and HER?2 negative
Shadowing 37 25.0 41 23.8 d 2 .
¥~ test, Mann—Whitney U or ¢ test
Unknown 3 20 4 2.3
Interruption of the anterior border of the mammary gland
Yes 123 83.1 146 849 0.694 dataset. To enhance model accuracy, we used ensemble
No 2 149 23 134 methods: multiple ADTree models were developed and the
Unknown 3 20 3 17 mean prediction of these models was used as the final
Histological type prefiiction [21]. The model was optimized .by cross-vz.ili—
Invasive ductal 146 973 170 983 0.566 dation ((?Y) and the area undcr. thc? receiver operating
carcinoma characteristics curve (AUC) for discriminating pCR from
Invasive 4 27 3 1.7 non-pCR was determined.
lobular The importance of variables in the ADTree model was
carcinoma evaluated based on the decrease in prediction accuracy
ER status® (AUC values) by replacing the actual value with a random
Positive 105 70.0 102 59 0.024 value for each variable (sensitivity analysis). To evaluate
Negative 42 280 70 40.5 the significance of missing values in the developed model,
Unknown 3 20 1 0.6 the missing values were replaced with random values and
PgR status® the decrease in AUC value was assessed (missing value
Positive 69 46.0 84 486 0735 analysis). The prediction accuracy was evaluated using a
Negative 78 520 88 50.9 smaller number of ADTrees in the developed model than
Unknown 3 20 1 0.6 the optimized number (pruning analysis). To elucidate the
HER?2 status® relationship between generalizability and variable distri-
Positive 19 12.7 38 220  0.026 bution bias between the training and the validation dataset,
Negative 125 833 127 73.4 we integrated all of the data and randomly split it into two
Unknown 6 4.0 8 4.6 datasets. The ADTree model was developed using one of
Triple-negative phenotype® these datasets and validated using the other dataset (ran-
Yes 31 20.7 44 254 0.293 dom split analysis). Each analysis was repeated 200 times
No 113 753 121 70.0 with different random values.

Unknown 6 40 8 4.6 We also developed an MLR model using the training
Histological/nuclear grade dataset. Details of this model and the software used are
12 o4 627 89 514 0446 described in the Supplementary Materials and methods.

3 49 327 38 22.0
Unknown 7 47 46 26.6
Mitotic index Results
1 68 453 68 393 0.137
2 40 267 23 133 The clinicopathological variables of each dataset are
3 33 2.0 21 121 summarized in Table I. The training dataset included
Unknown 9 60 61 353 more ER-positive or HER2-negative patients compared
. with the validation dataset (P value = 0.024 and 0.026,
Treatment regimen A . K L.
FRC.T 108 120 94 543 0,001 respectively). Overall, 16 % of patients in the training
dataset and 22.5 % in the validation dataset achieved pCR
@ Springer
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Table 2 Treatment outcomes of the training and validation datasets

Outcomes Training Validation p value®
dataset dataset
n % n %
No. of patients 150 173
Clinical response after anthracycline treatment
CR 4+ PR 99 660 151 873 <0.0001
SD 50 333 21 121
PD 0 0 1 0.6
Unknown 1 0.7 0 0
Clinical response after taxane treatment
CR + PR 128 853 164 948 0.006
SD 21 14 7 4
PD 1 0.7 2 1.2
Breast surgery
Mastectomy 32 213 53 30.6 0.058
Breast-conserving surgery 118 78.7 120 694
PCR (ypT0/is + ypNO)
Yes 24 160 39 225 0.139
No 126 840 134 775

CR complete response, PR partial response, SD stable disease, PD
progression disease

2 22 test

(P value = 0.139) (Table 2). The rates of pCR and breast
conservation were not significantly different between the
institutions (P value = 0.06 and 0.30, respectively). The
clinical responses after anthracycline and taxane, however,
were significantly lower in the training dataset than in the
validation dataset (P value < 0.0001 and P = 0.006,
respectively).

The selected model showing the best AUC value in the
CVs contained 19 ADTrees with three variables on each
tree (Fig. 1a; Supplementary Fig. S1). In total, 15 variables
were included: three general [body mass index (BMI),
menopausal status and the presence of skin dimpling], five
ultrasonographic (maximum tumour size, tumour depth/
width ratio, echogenic halo, interruption of the anterior
border of the mammary gland and posterior acoustic fea-
tures), three mammographic (the presence of calcifications,
the presence of a mass and architectural distortion), and
four pathological variables (mitotic index and the status of
ER, PgR and HER?2). The method used to calculate the
probability of pCR using this model is shown in Fig. 1b
and Supplementary Fig. S2.

The receiver operating characteristics (ROC) curves and
the dot-plots of the pCR for each dataset are shown in
Fig. 2. The AUC values were 0.766 (95 % CI 0.671-0.861,
P value < 0.0001) in the CV using the training dataset and
0.787 (95 % CI 0.716-0.858, P value < 0.0001) using the
validation dataset. The model could discriminate pCR from

non-pCR patients at significant levels in both the training
and the validation datasets (P value < 0.0001). When the
threshold for a low risk of pCR was defined as 20 % for
example, the false-negative rate was 7.7 % and the nega-
tive predictive value was 95.9 % using the validation
dataset. The AUC of bootstrap analysis (200 repetitions)
performed to obtain unbiased estimates was 0.791 (95 %
CIL: 0.786-0.796) using the validation dataset.

To assess the prediction ability by integrating early
clinical response, we developed a MLR model comprising
two variables; the predicted probability of pCR determined
by ADTree and the clinical responses after anthracycline or
taxane treatment. The accuracy of the ADTree model was
enhanced by including the clinical response to NAC
(Supplementary Fig. S3). The AUC values for the valida-
tion datasets were 0.820 (95 % CI 0.757-0.883,
P value < 0.0001) and 0.855 (95 % CI 0.794-0.916,
P value < 0.0001) after including the clinical responses
after anthracycline and taxane treatment, respectively.

We evaluated the discriminative ability of our model in
three subgroups of patients with luminal (ER-positive and
any HER2 status; n = 102), HER2-positive (ER-negative
and HER2-positive; n = 24) or triple-negative (ER- and
HER2-negative; n = 44) patterns of receptor expression.
The model showed significant discrimination of the lumi-
nal subgroup (P value = 0.0059), poor discrimination of
the triple-negative subgroup (P value = 0.743) and mod-
erate discrimination of the HER2-positive subgroup
(P value = 0.074) (Fig. 3).

The sensitivity analysis revealed large decreases in AUC
values when ER, PgR, HER2 and echogenic halo were
randomly replaced, indicating high importance of these
factors. On the other hand, the AUC values were hardly
changed when imaging findings were randomly replaced,
indicating little importance of these parameters (Fig. 4a). In
missing value analysis, the median AUC was 0.786 (95 %
CI0.785-0.787) using validation datasets including patients
with at least one missing value (n = 121). As another
approach to evaluate the importance of the variables inclu-
ded in the model, pruning analysis was performed to reduce
the number of trees, which also reduces the number of
variables. In this analysis, the AUC value for the overall
dataset remained high (>0.78) when the number of trees was
>4 and the number of variables was >6 (Fig. 4b). When the
number of variables was reduced to 8 for example, dis-
crimination of ER-positive and, particularly, HER2-positive
subtypes deteriorated (P value = 0.0266 and P value =
0.725), respectively (Supplementary Fig. S4). In random
split analysis, the median AUC value was 0.776 (95 % CI
0.773-0.776), almost identical to the AUC value obtained
using the original validation dataset (0.787).

To compare ADTree and MLR, a MLR model was
developed using our training dataset and consisted of ER,

@ Springer
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Fig. 1 ADTree-based
prediction model. a Part of the
developed ADTree models. The
final prediction model consisted
of 19 ADTree-based prediction
models; the other 16 models are
depicted in Supplementary

Fig. S1. The method used to g e, H
calculate the prediction score in - 7 Us.e:chogenic 3 US interruption
each model is described in l 3: HER2=positive | halo l of ant. border of
Supplementary Fig. S2. b The

" n n
final prediction score was y y

calculated by calculating the 1399 >

mean score of the 19 ADTree-
based models. Vy, V, and Vo 0416 > #0316 D
indicate the prediction scores of

each ADTree. The probability

of pCR (%) was determined

using the formula

(scorepreg — SCOTEyin)/

(SCOremay — SCOr€min) X 100, B
where Scorepreq, SCOr€m;, and

SCOr€max are the predictedand | () Of|I QO Off QO O] seaess
theoretical minimum and
maximum final scores,

respectively @ ,G, ,G Q

(Vi HVptvgte === tv,)
19

Final prediction score =

histological/nuclear grade and interruption of the anterior  In the validation dataset, the AUC values for the FEC-T
border of the mammary gland on US. This MLR model = and FEC-TX groups were 0.789 (P value < 0.0001) and
yielded an AUC value of 0.754 (95 % CI 0.651-0.858,  0.788 (P value = 0.0003), respectively. The GeparQuattro
P value = 0.00019) using a subset of the validation dataset ~ study reported that adding capecitabine to preoperative
(n = 127; 46 cases were excluded because of missing  docetaxel after four courses of epirubicin and cyclophos-
values). The ADTree model outperformed the MLR model  phamide did not improve the rate of pCR [22]. Accord-
by yielding an AUC of 0.805 (95 % CI 0.716-0.894, ingly, our model showed a similar performance for both the
P value < 0.0001) using the same patient dataset. regimens.
The proportion of patients with the luminal, HER2-
negative subtype was higher in the training dataset than in
Discussion the validation dataset (65 and 50 %, respectively;
P value = 0.008), which indicated that the training dataset
Here, we developed a prediction model for pCR after NAC  included more patients with potentially chemo-insensitive
using ADTree and analyzed the model using several  cancers compared with the validation dataset. This dis-
analyses. The validation dataset was from the OOTR N0O03  proportion may have led to the difference in the clinical
trial, in which patients received FEC treatment and were  response rate between the training and validation datasets
randomly assigned to four cycles of docetaxel alone (FEC- (66 vs. 87 % after anthracycline and 85 vs. 95 % after
T) or four cycles of docetaxel plus capecitabine (FEC-TX).  taxane, respectively; Table 2). However, the training
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Fig. 2 a -ROC curves and b the distribution of the predicted
probabilities. a ROC curves of the prediction model. The area under
the ROC curve (AUC) values were 0.766 (95 % CI 0.671-0.861,
P value < 0.0001) in the CV using the training dataset, and 0.787
95 % CI 0.716-0.858, P value < 0.0001) using the validation
dataset. b Box plots showing the distribution of the predicted
probabilities of pCR determined using our model. The box and

dataset included patients with smaller tumours compared
with the validation dataset (median diameter: 26 and
29 mm, respectively; P value = 0.012; Table 1). There-
fore, the differences in the clinical response rate may not be
associated with differences in the pathological response
rate or breast-conserving rate. Although the unequal dis-
tribution of cancer subtypes between the two datasets may
affect the generalizability of our model, the result of ran-
dom split analysis showed that this discrepancy hardly
affected the predictive performance of our model.

There are several criteria used to define pCR after NAC.
Here, we defined pCR as the absence of residual invasive
cancer cells in the breast or the lymph nodes (ypT0/
is 4+ ypNO). pCR has also been defined as the complete
disappearance of cancer cells from the breast and the
lymph nodes (ypTO + ypNO), and as the absence of
residual cancer cells in the breast tissue, regardless of
lymph node status (ypTO + ypNX) [23]. Therefore, we
evaluated the predictive performance of ADTree model
using these three definitions. The AUC values were 0.728
©O5% CI 0.640-0.817; P value = 0.0002) for
ypTO + ypNO and 0.786 (95 % CI 0.705-0.867;
P value < 0.0001) for ypTO + ypNX in the validation
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whiskers represent the 10th, 25th, 50th, 75th and 90th percentiles, and
the data below the 10th and above the 90th percentile were plotted. In
each figure, the boxes on the left side of the graph represent the
patients without pCR (non-pCR), and the boxes on the right side
represent the patients who did achieve pCR. The model was able to
discriminate pCR from non-pCR patients at significant levels
(P value < 0.0001)

dataset. Although our model identified patients with and
without pCR at significant levels using both the definitions,
the accuracy of our model was decreased when the
ypTO + ypNO definition was used. The rate of pCR
determined by the ypT0O + ypNO definition was lower than
that for ypTOf/is + ypNO (10 vs. 16 % for the training
dataset and 15 vs. 22.5 % for the validation dataset).
Therefore, further evaluation using a larger dataset is
needed.

It has been reported that an early clinical response to
NAC might be predictive of pCR [2, 24]. As expected, the
AUC values obtained using validation datasets increased to
0.820 after including the clinical responses after anthra-
cycline treatment. Therefore, the ADTree model can pro-
vide highly accurate prediction for pCR by integrating the
early clinical response to NAC.

The sensitivity analysis suggested that ER, PgR and
HER2 were more important than the other variables.
Among the imaging features that were generally less
important than these three features, echogenic halo was the
most important. Recent studies have indicated that the
subgroup, mainly classified using ER and HER2 status, is
strongly associated with the pathological response to NAC

@ Springer
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Fig. 3 Box plots showing the distribution of the predicted probabil-
ities of pCR using the prediction model in each subgroup. In each
figure, the boxes on the left side of the graph represent the patients
without pCR (non-pCR), and the boxes on the right side represent the
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Fig. 4 a Sensitivity analysis and b pruning analysis using the
validation dataset. a Box plots show the maximum and minimum,
the 25th and 75th percentiles, and the median AUC values. b The
horizontal axis shows the number of trees (bagging number). For each
number of trees, a bar graph shows the number of variables and a line
graph shows the AUC values
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patients who did achieve pCR. Each subgroup was defined as follows:
a luminal type (ER-positive and any HER2 status; n = 102);
b HER2-positive type (ER-negative and HER2-positive; n = 24)
and c triple-negative type (ER- and HER2-negative; n = 44)

[8-10, 18]; however, predicting pCR within each pheno-
type is still challenging. The model showed relatively
higher AUC values in luminal, HER2-negative and HER2-
positive subtypes (Fig. 3). Meanwhile, the model did not
function for the triple-negative phenotype (AUC = 0.531),
which means the clinicopathological variables collected in
this study show limited potential to predict chemosensi-
tivity in this phenotype. One possible reason of this low
AUC is the heterogeneity of triple-negative populations
[25]. Thus, the identification of new variables, including
novel genomic and epigenetic markers, and new models
integrating these variables are needed to overcome this
limitation.

The missing value analysis yielded an AUC value of
0.786 (95 % CI 0.785-0.787). This value was not much
different from the result of bootstrap analysis (AUC =
0.791). It is particularly noteworthy that the difference
between the upper and lower 95 % CI values was very
small, indicating low sensitivity of the developed model to
missing values. This is one of the beneficial features of the
ensemble technique used in this study.

In the pruning analysis, the AUC values for the
validation dataset improved according to the number of
ADTrees in the prediction model (Fig. 4b). Reducing the
number of trees to six eliminated many variables corre-
sponding to imaging findings. Although the AUC value of
the whole validation dataset remained high, the predictive
performance for the luminal and ER-negative/HER2-posi-
tive subtypes decreased (Supplementary Fig. S4), which
indicates that the variables derived from imaging findings
might contribute the most to chemosensitivity prediction in
both the subgroups.

Nomograms that use MLR to predict response to NAC
have already been introduced [12, 13, 26]. In our study,
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ADTree outperformed MLR using an identical dataset.
MLR offers some advantages, particularly the use of
fewer variables, which facilitates data collection and
interpretation of the model. These features of each mod-
elling method represent trade-offs that should be consid-
ered when applying the models. The combined use of
multiple prediction models could enhance predictive
accuracy [27]. We are currently testing the combination of
our model and available nomograms in a prospective
study.

There are several limitations of this study. Validation
using larger databases will more accurately assess the
model. The use of many features obtained from imaging
studies or physical examination would reduce the number
of users depending on the availability of the features. The
datasets obtained from multiple institutes would contribute
to strict evaluation of the model’s versatility whereas such
datasets sometimes introduce institute-dependent bias. In
this study, we used information from individual pathology
reports and the central pathology review is more preferable
to evaluate the features in a single criteria. A Web-based
interface to facilitate data input and prediction analysis,
like the MD Anderson Cancer Centre nomogram, and an
automated system to update the model will also be useful.
Biomarkers of tumour response, particularly those obtained
from midcourse biopsy samples, may increase the predic-
tive accuracy. Integration with subtype-specific biomarkers
is also needed to improve the accuracy of the developed
model.

In conclusion, we have established a new ADTree-based
method to predict pCR after NAC using variables readily
collected before NAC. The model could use larger number
of variables with keeping high generalization ability and
showed the outperformed prediction accuracy compared
with MLR as well as was tolerant to missing values and
distribution bias in the datasets.
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