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doi:10.1152/ajpheart.00080.2013.—G protein-coupled receptor/adenylyl cyclase
(AC)/cAMP signaling is crucial for all cellular responses to physiological and
pathophysiological stimuli. There are nine isoforms of membrane-bound AC, with
type 5 being one of the two major isoforms in the heart. Since the role of AC in the
heart in regulating cAMP and acute changes in inotropic and chronotropic state are
well known, this review will address our current understanding of the distinct
regulatory role of the ACS5 isoform in response to chronic stress. Transgenic
overexpression of ACS in cardiomyocytes of the heart (AC5-Tg) improves baseline
cardiac function but impairs the ability of the heart to withstand stress. For
example, chronic catecholamine stimulation induces cardiomyopathy, which is
more severe in AC5-Tg mice, mediated through the AC5/sirtuin 1/forkhead box
O3a pathway. Conversely, disrupting ACS, i.e., AC5 knockout, protects the heart
from chronic catecholamine cardiomyopathy as well as the cardiomyopathies
resulting from chronic pressure overload or aging. Moreover, AC5 knockout results
in a 30% increase in a healthy life span, resembling the most widely studied model
of longevity, i.e., calorie restriction. These two models of longevity share similar
gene regulation in the heart, muscle, liver, and brain in that they are both protected
against diabetes, obesity, and diabetic and aging cardiomyopathy. A pharmacolog-
ical inhibitor of AC5 also provides protection against cardiac stress, diabetes, and
obesity. Thus ACS inhibition has novel, potential therapeutic applicability to

several diseases not only in the heart but also in aging, diabetes, and obesity.

adenylyl cyclase type 5; cardiomyopathy; aging; metabolism; AC5 inhibitor

THIS ARTICLE is part of a collection on G Protein Kinase A
Signaling in Cardiovascular Physiology and Disease. Other
articles appearing in this collection, as well as a full archive of all
collections, can be found online at http://ajpheart.physiology.org/.

Adenylyl cyclase (AC) is the enzyme that catalyzes the
conversion of ATP to adenosine 3',5'-cyclic monophos-
phate (cAMP), a key intracellular second messenger, which in
the heart mediates inotropy and chronotropy. Since the pioneering
work 55 years ago by Sutherland (73), it has been known that
AC-cAMP signaling plays crucial roles in normal biological
function, for example, lipolysis (53), gluconeogenesis (54), respi-
ration (29) and cytoskeletal organization (25), and its dysregula-
tion in pathophysiological states including memory (52) and
neurodegenerative disorders (69), tumorigenesis (66), and heart
disease (13, 19). The diverse actions of cAMP are mediated
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through the cAMP-dependent activation of protein kinase A
(PKA), cyclic nucleotide-gated ion channels, and cAMP-activated
exchange proteins. Ten different isoforms of ACs have been
identified in mammalian tissues; nine are G protein-regulated
transmembrane ACs, and one is a soluble form of AC (9). Each of
the various isoforms has a unique chromosomal distribution (28),
indicating that there is a significant heterogeneity in the distribu-
tion and biochemical properties within AC isoforms. The overall
amino acid similarity between the different AC isoforms is
~60%. Although all the AC isoforms are ubiquitously expressed,
each is characterized by distinct biochemical properties, differen-
tial regulatory roles, and tissue-specific distribution throughout the
body. Local increases in cAMP derived from tissue-specific iso-
forms of ACs can selectively regulate closely associated proteins,
providing possibilities for different cells to respond diversely to
similar stimuli. Thus the AC isoforms are subclassified according
to their regulation by various endogenous modulators such as
calcium/calmodulin and protein kinase C (PKC) and PKA feed-
back phosphorylation. ‘

The membrane-bound ACs (AC1-AC9) are large proteins
(~120-140 kDa) that share a common structure consisting of

0363-6135/13 Copyright © 2013 the American Physiological Society H1
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an intracellular NHp-terminus, two repeats of six transmem-
brane domains (M1 and M2) and two cytoplasmic catalytic
domains of ~40 kDa each (C1 and C2). Crystal structure-
coupled with biochemical data indicate that two cytosolic
domains form the catalytic core pocket, and ATP binds at one
of two pseudosymmetric binding sites at the C1-C2 interface
(10, 75). Forskolin binds in two almost equivalent pockets at
either end of C1 and C2 domains (87). For the isoforms of
ACI1, AC2, and ACS, expression of either the «-half (M1/C1)
or the B-half (M2/C2) of the molecule alone is insufficient to
generate enzymatic activity. The specificity of AC response
likely depends on the creation of intracellular microdomains
containing signaling molecules. In the submicromolar range of
Ca?*, the sensitivity of ACs for Ca®* is coupled with distinct
subcellular localization of Ca®*-sensitive AC isoforms (82,
83), suggesting a temporally and spatially distinct pattern of
cAMP signaling, depending on the localization of ACs in Ca®*
microdomains within the plasma membrane or cytoplasm. For
instance, studies in overexpression models suggested that AC8
may augment cardiac contractility by preferentially activating
Ca?* loading of sarcoplasmic reticulum through cAMP com-
partmentation, rather than enhancing Ca®* influx via L-type
Ca?* channels (21). Dyachok et al. (12) suggested that oscil-
lations of cAMP lead to selective target activation by restrict-
ing the spatial redistribution of PKA (12). 3-Adrenergic recep-
tors (B-AR) are selectively located in plasma membrane lipid
raft microdomains, resulting in more efficient coupling to AC
compared with nonlipid raft microdomain receptors, such as the
E-prostanoid-2 receptor. Signaling modules that include AC iso-
forms also contain A kinase anchoring proteins (AKAPs), PKA,
and anchored phosphodiesterases to provide microdomains of
cAMP production and signaling (2, 34, 82, 86).

Since AC signaling in general and ACS signaling in partic-
ular have been extensively reviewed (31, 56, 67), this review
will focus on AC5 and its regulation of responses to chronic
stress and disease. We will also provide a brief overview of the
potential translational direction of this work, discussing some
of our recent findings with a pharmacological ACS inhibitor.

B-AR-G Protein-AC-cAMP Signaling Pathway

The B-AR-G protein-AC-cAMP signaling pathway is one of
the major pathophysiological mechanisms for regulation of
cardiac function (31, 45, 47, 78). By targeting Ca?* handling
proteins, it provides strong inotropic and chronotropic response
in times of need, such as in fight or flight (22, 48, 70, 72).
Throughout much of the 20th century, it was believed that
stimulation of this pathway could provide inotropic support
and should be used in heart failure therapy. It was shown that
transgenic (Tg) mice with up to 60-fold overexpression of
B2-AR had enhanced cardiac function without signs of cardiac
pathology (46, 51). Furthermore, 3,-AR transgene experiments
showed improvement in function in failing rabbit hearts (76).
More recent work with adenoviral-mediated B-AR transgene
overexpression demonstrated enhanced cardiac function in a
rat model of heart failure (65). However, the concept of
treating heart failure with chronically enhanced B-AR stimu-
lation became controversial when patients responded positively
to acute B3-AR inotropic therapy, particularly with dopamine
and dobutamine, but had poor outcomes when on prolonged
inotropic therapy (14, 44, 55). An experimental study that first

AC5 IN CARDIAC DISEASE, METABOLISM, AND AGING

highlighted the adverse effects of chronic -AR signaling was
shown in G, Tg mice (36). Although these animals had higher
responsiveness to isoproterenol (Iso) when young, a picture of
cardiomyopathy developed as they aged, including myocardial
hypertrophy, fibrosis and necrosis, and depression of cardiac
function (1, 36, 37). Later studies using $;-AR (15, 16, 63)-
and (2-AR (11, 63)-overexpressed models confirmed these
findings, i.e., hyperfunction at young age and deterioration of
function with aging. These studies (1, 11, 15, 16, 36, 37, 63) in
combination with clinical studies showing poor outcomes in
patients on 3-AR agonists (14, 44, 55) and Bristow’s classical study
in The New England Journal of Medicine demonstrating desensiti-
zation of the B-AR in patients with heart failure (4) changed the
paradigm from treating patients with heart failure with B-AR
agonists to antagonists (7, 8, 30, 60, 68). Heart failure still remains
as the leading cause of mortality and morbidity in the United
States. For this reason, targeting components distal to the B-AR
signaling, such as ACs, will be important for the development of
future treatment of heart failure.

AC in the Heart

Whereas AC2, -3, -4, -5/6, and -7 are detected in rat cardiac
fibroblasts (59), AC5 and AC6 are the two major isoforms
expressed in the adult mammalian heart (23, 35). Both AC5
and AC6 regulate heart rate and contractility, but AC6 plays a
more significant role at baseline in view of the relatively minor
reduction in AC content and corresponding reductions in car-
diac contractility observed in AC5 knockout (AC5-KO) hearts
(58). However, the role of these two major isoforms in the
heart in mediating the response to cardiac stress is controver-
sial. In this article, we first review the studies demonstrating an
adverse effect of overexpression of AC5 and beneficial effects
of disrupting AC5 on cardiomyopathies induced by chronic Iso
stimulation, aging, and pressure overload in either AC5-Tg or
ACS5-KO mice. This leads to a discussion of other factors
involved in ACS protection against aging, e.g., metabolism and
diabetes. Since not all studies are in agreement, we then discuss
those with an opposite point of view and reconcile the differ-
ences. The controversial studies on AC6 overexpression and
disruption are beyond the scope of this review, which focuses
on ACS.

Regulation of Cardiomyopathy by ACS

Chronic catecholamine cardiomyopathy. Chronic Iso in-
creased oxidative stress and induced a more severe cardiomyop-
athy in AC5-Tg compared with wild-type (WT) mice, as reflected
by a greater impairment of left ventricular (LV) ejection fraction
(EF) along with greater LV dilation and increased fibrosis, apop-
tosis, and hypertrophy (41) (Fig. 1, A and B). LV EF fell more
(P < 0.05) in AC5-Tg than WT mice (—35 = 2 vs. —18 £ 1%).
Oxidative stress induced by chronic Iso was greater in AC5-Tg
hearts, whereas protein expression of manganese superoxide dis-
mutase (MnSOD), which protects against oxidative stress, was
reduced by 36%, suggesting that the increased severity of the
cardiomyopathy in AC5-Tg may have resulted as a consequence
of decreased MnSOD expression. This was confirmed by mating
ACS-Tg with MnSOD-Tg mice. These bigenic mice no longer
responded to chronic Iso with more severe cardiomyopathy than WT
mice. In fact, LV EF fell less in AC5-Tg X MnSOD-Tg (—13 = 1%)
versus either AC5-Tg or WT mice. LV EF fell similarly in
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MnSOD-Tg alone (—13 % 2%). Conversely, AC5-KO mice are
protected from the cardiomyopathy induced by chronic Iso treat-
ment (58), as reflected by less of a reduction with chronic Iso (P <
0.05) in AC5-KO than WT (—10 = 2 vs. —19 = 2%) mice, and
this protection was lost in bigenic AC5-KO mice mated with
MnSOD heterozygous KO mice, where LV EF fell by —18 = 3%
(Fig. 1, C and D). The decrease in LV EF with chronic Iso in the
bigenic AC5-KO X MnSOD heterozygous mouse was similar to
that in the MnSOD heterozygous alone (—18 % 3 vs. —18 & 4%).
The decreases in LV EF must be interpreted with the histological
changes in the heart consistent with chronic cardiomyopathy, e.g.,
fibrosis and apoptosis. When the data are all taken together, the
picture of intensification of cardiomyopathy with AC5-Tg and
protection with MnSOD-Tg or AC5-KO becomes even more
apparent. We also demonstrated that ACS, but not AC6, regulates
MnSOD at the transcriptional level via the sirtuin 1/forkhead box
O3a pathway (Fig. 2). Thus the cardiomyopathy induced by
chronic catecholamine stress is intensified in AC5-Tg by inhibit-
ing sirtuin 1/forkhead box O3a, which downregulates MnSOD
transcription, resulting in oxidative stress intolerance (41).

Chronic pressure-overload cardiomyopathy. Cardiac hyper-
trophy in response to pressure overload is a double- edged
sword; on the one-hand it compensates for the pressure
overload, whereas on the other hand LV hypertrophy im-
pairs LV function (26, 40), eventually leading to heart
failure. AC5-KO mice tolerated chronic pressure overload
better than WT, with improved LV function, less fibrosis,
and apoptosis in the heart (57).

We previously showed that AC5 and AC6 have opposite
protein expression levels in response to pressure overload LV
hypertrophy, e.g., an upregulation of ACS and a downregula-
tion of AC6 (33), suggesting unique regulatory pathways for
ACS in response to chronic pressure overload cardiomyopathy.

H3

Owrt
M AC5-Tg
AC5-Tg x MNnSOD-Tg

Fig. 1. A and B: chronic isoproterenol (Iso)
exacerbated cardiomyopathy in transgenic
overexpression of adenylyl cyclase 5 in cardio-
myocytes of the heart (AC5-Tg) compared with
wild-type (WT), and the cardiomyopathy was
rescued by mating the AC5-Tg mice with Mn-
SOD-Tg (AC5-Tg X MnSOD-Tg) mice (41).
C and D: downregulation of MnSOD elimi-
nated the protective effects of AC5-knockout
(KO) with chronic Iso. LV, left ventricular;
EF, ejection fraction. *P < 0.05 (41). Fig-
ures used are modified with permission
from Lai et al. (41).

Il AC5-KO x MnSOD*-

In addition, it was reported that myocardial AC5 mRNA
expression was increased from 5-12 wk in spontaneously
hypertensive rats, which was accompanied by development of
LV hypertrophy and hypertension (20). Recently, from mi-

Catecholamine

stress \

Cardiac
dysfunction

Longevity

Fig. 2. Signaling diagram for AC5 mediating cardiac stress and longevity. Left:
cardiac dysfunction: signaling diagram for ACS5 regulation of MnSOD tran-
scriptionally through the sirtuin 1/forkhead box O3a (SIRT1/FoxO3a) pathway
is shown. Imbalance between reactive oxygen species production and the
intracellular antioxidant system results in the intolerance of ACS5-Tg to stress
(41). Righr: longevity: disruption of AC5 activates the Raf/MEK/ERK signal-
ing pathway. The activation of ERK activates antioxidative stress and cell
survival mechanism, which leads to longevity in AC5-KO mice (85). Arrows
indicate the direction of signaling. Figures used are modified with permission
from Lai et al. (41) and Yan et al. (85).
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croarray analysis we found several genes in AC5-Tg hearts
related to L'V hypertrophy, which was similar to those in a
public data set for pressure overload LV hypertrophy and that
the transcription factor binding site of nuclear factor of acti-
vated t-cells (NFAT), a key prohypertrophic pathway (3, 81), is
enriched in ACS5-Tg hearts even at baseline, suggesting that
cardiac overexpression of AC5 predisposes the heart to LV
hypertrophy (61), which is not observed in AC6-Tg hearts (27).
Another mechanism mediating the role of AC5 and hypertro-
phy is the muscle protein AKAP (mAKAP), which is re-
quired for the cAMP second messenger controlling cardiac
myocyte hypertrophy. ACS binds selectively and directly to a
unique NH»-terminal site on mAKAP, but not AC6 (39).

Aging cardiomyopathy. The genetically engineered mouse
model in which type 5 AC was knocked out, i.e., AC5-KO
mice, have increased median life span of ~30% (Fig. 3A) and
are protected from aging-induced cardiomyopathy (85), includ-
ing decreased LV hypertrophy, decreased fibrosis, and de-
creased apoptosis compared with WT as they age (Fig. 3B).
Using a proteomic-based approach, we demonstrated a signif-
icant activation of the Raf/MEK/ERK signaling pathway,
which results in protection from oxidative stress, leading to
longevity in AC5-KO mice (Fig. 2). In addition to the pro-
longed life and protection against aging cardiomyopathy in
ACS5-KO mice, this model also exhibits protection against the
osteoporosis of aging (85). Furthermore, both young and old
AC5-KO mice had better exercise endurance than WT mice of
the corresponding age. These beneficial effects of ACS5 disrup-
tion on aging are synergistic in clinical relevance of ACS
inhibition, since elderly patients have an increased prevalence
of heart failure (42, 43).

AC5-KO model vs. calorie restriction models of longevity.
Calorie restriction (CR) is the most widely studied model of
longevity (5, 50, 71). Our hypothesis was that superimposing
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CR on the AC5-KO would combine their potentially different
mechanisms mediating longevity resulting in a superlongevity
model. This hypothesis was not correct, and superimposing CR
on the AC5-KO was uniformly lethal within a month (79, 84).
AC5-KO mice on CR developed a syndrome similar to star-
vation, as evidenced by greater decrease in body weight, blood
glucose, fat and glycogen storage, and greater increase in
ketone bodies than either AC5-KO or CR alone. Accordingly,
we adopted the converse hypothesis that the longevity mech-
anisms were similar in the two models. To test this, we recently
compared AC5-KO model with CR in terms of physical phe-
notype as well as metabolic and gene expression profiles (84).
Similar to the mice on CR, AC5-KO mice exhibit a lower body
weight, reduced fat accumulation (Fig. 4B) and glycogen
stores, and lower fasting blood glucose levels. However, in
contrast to CR with restricted food intake, AC5-KO mice eat
more compared with their WT littermates. Microarray analysis
revealed a remarkable similarity of gene profiles between
ACS5-KO and CR mice in the heart, skeletal muscle, and brain
(Fig. 4A). Many tissue-specific pathways in the regulation of
metabolism, longevity, and stress resistance overlap in the
ACS5-KO and CR mouse models, including sensory perception
in heart and brain, muscle function in skeletal muscle, and lipid
metabolism in liver (Fig. 4C). Importantly, the similarly reg-
ulated genes and pathways for AC5-KO and CR will begin to
establish a unified theory for longevity, stress resistance, and
potentially for diabetes and obesity.

Diabetic cardiomyopathy. A key extrapolation from the
above study comparing AC5-KO and CR is that both models of
longevity protect against glucose intolerance and insulin resis-
tance (24, 32, 80, 84) and, taken together with AC5-KO’s
ability to protect against pressure overload and catecholamine
cardiomyopathy, raises the likely probability that AC5-KO
also might protect against diabetic cardiomyopathy. Even at
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baseline, in the absence of a high-fat diet, levels of fasting
glucose and insulin resistance were lower in AC5-KO (Fig.
4D). Our preliminary results suggest that AC5-KO protects
against diabetic cardiomyopathy (32). When the AC5-KO and
their WT were placed on a high-fat diet, the WT rapidly
developed a reduction in cardiac function with histopatholog-
ical evidence of cardiomyopathy, as typically reported in the
literature (6, 18, 62). However, the AC5-KO was protected
against high-fat diet-induced cardiomyopathy (32). These ob-
servations underlie several important and clinical relevant
questions. For example, is the protection of the cardiomyopa-
thy due to an action of AC5-KO on the heart, i.e., the target
organ of the cardiomyopathy, or is it indirectly due to an action
on metabolism, i.e., the initiating cause of the cardiomyopathy?
These and other related investigations are currently underway.

Controversy in role of ACS in the heart. Not all studies have
found that overexpression of ACS5 is deleterious or that its

disruption is salutary. For example, when ACS is overex-
pressed in the heart, LV function is improved as well as the
response to exercise (17). This is not particularly surprising
since increasing any component of the B-AR signaling path-
way, even at the level of the B-receptor, improves cardiac
performance at baseline and in the response to exercise, as we
have also observed in our AC5-Tg models. The adverse effects
appear much later with chronically enhanced B-AR signaling.
The bottom line is that patients with heart failure respond
favorably to B-AR blockade over the long haul but have
increased mortality with chronically enhanced B-AR stimula-
tion. A more controversial finding is that AC5-Tg was able to
rescue Goq overexpression-induced cardiomyopathy (74) but
not cardiomyopathy induced by cardiac overexpression of
B-AR (64). Conversely, AC5-KO mice were not able to rescue
Goq overexpression-induced cardiomyopathy (77). These
seemingly different results from rescue of cardiomyopathy (57,
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58, 77) are not likely due to different backgrounds in the KO
mice, but rather reconciliation of the differences in these
studies is more apparent when understanding the signaling
pathways. For example, Tg mice with cardiac-specific overex-
pression of Ggq showed that the cardiomyopathy was mediated
by PKC with a significant reduction in ACS. Therefore, it is
logical that replacing ACS in this situation would be beneficial
and that reducing it further, as with the AC5-KO, would not be
beneficial. However, 3;-AR or chronic Iso-stimulated cardio-
myopathy is mediated by PKA with increased levels of AC5
(58). These results, taken together, support our hypothesis that
chronically elevated levels of AC activation, like -AR (11,
16, 63) or Gy (1, 36, 37), are deleterious and facilitate
development of cardiomyopathy. In contrast, when a cardio-
myopathy develops associated with reduced levels of ACS,
restoration of ACS5 expression may be beneficial for normal
cardiac function under these conditions.

Clinical Relevance of AC5

Although hundreds, if not thousands, of novel and exciting
discoveries have been made by alterations in genes in geneti-
cally engineered mice, relatively few have translated into
improving clinical care. One reason for the lack of success is
that it is difficult to overexpress or delete a gene in patients.
Therefore, the goal becomes to have a pharmacological analog
of the altered gene that can be safely delivered to patients. A
current goal of our laboratory is to translate the beneficial effects
of the AC5-KO model to clinical therapy. In this connection,
while screening for a commercially available drug for the ACS5
inhibition, adenine-9-pB-p-arabinofuranoside (Ara-A; Vidarabine)
showed a selective inhibition of ACS5. Recent studies in our
laboratory demonstrated that Ara-A selectively inhibits AC5
activity in ACS5-Tg mice, but not in AC6-Tg mice. In cardiac
membrane preparations with Iso stimulation, Ara-A (10 pM)
reduced cAMP production much more in AC5-Tg (49%) than
in WT and not at all in AC5-KO (38). Ara-A was originally
developed as an antiviral drug, which was approved by the
United States Food and Drug Administration. It has been
clinically used for treatment of herpes virus infection, but it
was found to be less efficient for viral therapy than the newer
drug, acyclovir. We also found that this pharmacological ACS
inhibitor recapitulates the favorable effects of ACS disruption
and ameliorated the development of cardiomyopathy and heart
failure induced by either permanent coronary artery occlusion
or chronic catecholamine infusion (38). Ara-A significantly
improved the survival rate and LV function compared with
vehicle after 3 wk of coronary artery occlusion, and these
beneficial effects of Ara-A were abolished by U0126, a MEK
inhibitor, suggesting the involvement of the downstream
MEK-ERK pathway of AC5 (38). This is significant since the
same signaling pathway was found mediating the longevity in
ACS5-KO (85). In heart failure, Ara-A has also been shown to
reduce autophagy by inhibition of AMPK (49). Since toxicol-
ogy for the drug has found little to be contraindicated in heart
failure and since adverse effects were only manifest with very
high chronic doses, low dose Ara-A is a strong candidate for a
clinical trial for heart failure since it selectively inhibits ACS5,
has been shown to protect against heart failure without adverse
effects, and has been already approved by the United States
Food and Drug Administration. One potential limitation to this
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drug is that only an intravenous formulation is currently avail-
able. Accordingly, drug discovery studies will have to be
pursued for oral delivery and optimizing the compound for
heart failure applications.

Conclusions

There are several take-home messages. First, although AC5
and AC6 are the two major isoforms in the heart, they mediate
dramatically different functions, particularly in response to
stress. Second, although ACS5 is one of the major cardiac
isoforms of AC, potentially its most important role will be in
mediating diabetes, obesity, and longevity, even more so than
in cardiac protection. Finally, it may be possible to translate the
beneficial effects of the ACS5-KO to the bedside, by using a
pharmacological analog, which preferentially inhibits ACS.
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Abstract—Solid-state ferrimagnetic MFe,O; (M = Mg, Ni,
Co; mean diameter size d = 30-35 nm) and superparamagnetic
MFe, O, (M = Mg, Ni, Mnj 5Zng.5; d = 6-8 nm) nanoparti-
cles [ferromagnetic nanoparticles (FMNPs) and superparamag-
netic nanoparticles (SPNPs)] were used to explore the physical
mechanisms of ac magnetically induced heating and identify what
physical parameters would be the most critical to enhance the ac
magnetically induced heating power for local in vivo hyperther-
mia agent applications. It was experimentally confirmed that “dc
(minor) hysteresis loss power” generated by the magnetization re-
versal process, and “Néel relaxation loss power” generated by fluc-
tuation of the magnetic moment dominantly contribute to the ac
heat generation of FMINPs and SPNPs, respectively. In addition, all
the experimentally and physically analyzed results demonstrated
that the improvement of in-phase magnetic susceptibility x/ _ is
directly relevant to the “dc (minor) hysteresis loss power” as well
as the dc magnetic softness, and the out-of-phase magnetic suscep-
tibility x/  is directly relevant to the “Néel relaxation loss power
(or ac magnetic hysteresis loss power, A)” as well as the ac magnetic
softness are the most crucial physical parameters responsible for
enhancing the ac magnetically induced heating power of solid-state
FMNPs and SPNPs, respectively. Particularly, some technical and
engineering approaches, which canimprove the x’ of FMINPs and
the " of SPNPs, were proposed and introduced in this study to
provide crucial information how to effectively design and develop
a new promising hyperthermia agent in nanomedicine.
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I. INTRODUCTION

OCAL in vivo hyperthermia using superparamagnetic
L nanoparticles (SPNPs) or ferromagnetic nanoparticles
(FMNPs) agents, magnetic fluid hyperthermia (MFH), has been
considered to be an efficacious cancer treatment modality due
to its biotechnical promises [1]-[4]. Among several kinds of
nanoparticles, especially cubic spinel-structured ferrite nanopar-
ticles have been widely studied for MFH agent applications, be-
cause they have chemically stable structures and can be molec-
ularly engineered to provide a variety of magnetic properties by
controlling their chemical compositions [5], [6]. Accordingly,
a large number of primary research activities relevant to the-
oretical and experimental studies such as the development of
various kinds of high-performance SPNPs or FMNPs agents
and the development of various coating techniques of SPNPs
or FMNPs agents for improving monodispersion status in fer-
rofluids and injection, including “intraarterial injection,” and
“intratumoral injection” targeting for “liver and lung cancers,
etc.,” and “prostate and renal cancers, etc.,” respectively, have
been made and are being intensively carried out for real clin-
ical use [7]-[14]. However, despite the huge biotechnical and
scientific efforts, this modality still faces critical challenges:
1) systemic “side effects”; 2) recurrence (bad prognosis); and
3) inhomogeneous heating of targeted cancer cells. One of the
main physical reasons for these technical limitations is that there
has been no report so far on the successful development of SP-
NPs or FMNPs, which can exhibit exceptionally high specific
loss power (SLP) and sufficiently high enough ac magnetically
induced heating temperature (AT,c mag) as well as ultra-fast
ac heating rate at the biologically and physiologically tolerable
range of applied magnetic field (H,pp1 < 190 Oe) and frequency
(fappl < 100 kHz). Moreover, the lack of understanding on the
ac magnetically induced heating mechanism of SPNPs and FM-
NPs, i.e., Néel or Brownian relaxation loss power Prelaxation loss
and hysteresis (minor hysteresis) loss power Physteresis loss» and
the physical nature of ac heating characteristics such as what
physical parameters dominantly contribute to the total ac heat-
ing power (Ptotal)s the Physteresis loss> and Prelaxation loss Of SP-
NPs and FMNPs, is considerably responsible for the techni-
cal limitations of current MFH. Therefore, research efforts to

1536-125X/$31.00 © 2013 IEEE
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systematically investigate the physical mechanism and the char-
acteristics of ac magnetically induced heating of SPNPs and
FMNPs are urgently needed to achieve highly efficient MFH
modality for real clinical applications.

In this study, we explored the physical mechanism of
ATy mag and identified what physical parameters would be the
most critical to enhance the Ppysteresisloss and the Prelaxation loss
of FMNPs and SPNPs using successfully synthesized solid-state
ferrimagnetic MFe, 04 [M = Mg, Ni (soft) and Co (hard)] and
superparamagnetic MFe;Oy (M = Mg, Ni, and Mng 5Zng 5)
nanoparticles for local in vivo hyperthermia agent applications.
In order to quantitatively estimate the ac heating characteristics
and to build up a physical model, which can describe the real
contribution of Physteresis loss a0d Prelaxation loss 10 the Pigta) of
both FMNPs and SPNPs, intrinsic magnetic properties of FM-
NPs and SPNPs such as ac hysteresis loss behavior, dc (minor)
hysteresis behavior, and in-phase (x/,) or out-of-phase (x/,)
magnetic susceptibility were experimentally measured and ana-
lyzed. In addition, based on the experimentally analyzed results,
some technical and engineering approaches, which can improve
the x/, of FMNPs and the x/, of SPNPs, were proposed and
introduced to provide crucial information how to effectively
design and develop a new promising hyperthermia agent.

II. EXPERIMENT

FMNPs and SPNPs were synthesized by sol-gel, and high-
temperature thermal decomposition (HTTD) methods, respec-
tively. The size and the size distribution of the synthesized
nanoparticles were determined using a field emission scanning
electron microscopy (FE-SEM) and a high-resolution transmis-
sion electron microscopy (HR-TEM). The AT,¢ ., charac-
teristics and the ac hysteresis loss behavior were measured by
using a specially designed ac solenoid coil-capacitor system.
For measuring the self-heating temperature rise of the nanopar-
ticles, they were put in a microcentrifuge tube and an optical
thermometer was inserted into the nanoparticles. The f,,p1 and
the H,pp1 during AT, m,e and ac hysteresis loop measurement
were fixed at 110 kHz and 140 Oe, respectively. The dc minor
hysteresis loop and the initial magnetization curve were mea-
sured by using a vibrating sample magnetometer (VSM), and a
physical property measurement system (PPMS) was employed
to determine the X}, and X/ of the synthesized nanoparti-
cles. The contribution of Bysteresisloss aNd Prelaxation loss tO the
P, a1 of FMINPs and SPNPs were quantitatively analyzed based
on the experimentally obtained results including AT, mag, ac
and dc magnetic minor hysteresis loops, and magnetic suscep-
tibilities. The cytotoxicity and the cellular uptake of the synthe-
sized nanoparticles were investigated by employing methyl thi-
azol tetrazolium (MTT) bromide test and a TEM using neuronal
stem cells isolated from human fetal midbrain, human neural
cells, and normal mouse liver cells to evaluate the biocompati-
bility and to investigate the biofeasibility to hyperthermia agent
applications.

§§
]

Fig. 1. The particle size and the size distributions of the synthesized
(a) ferrimagnetic MgFes Oy, NiFez Oy4, and CoFey O4 nanoparticles and (b) su-
perparamagnetic MgFes O4, NiFeg O4, and Mng.5Zng 5 Fes O4 nanoparticles
measured by FE-SEM and HR-TEM, respectively.

III. RESULTS AND DISCUSSION

A. Structural, magnetic, and ac magnetically induced heating
propetrties of ferrite ferrimagnetic and superparamagnetic
nanoparticles

FE-SEM and HR-TEM images [see Fig. 1(a) and (b)] show
the size and the size distribution of the nanoparticles synthe-
sized by (a) sol-gel and (b) HTTD methods. The nanoparticles
shown in Fig. 1(a) had a mean particle diameter d of 30-35 nm
with a 27% standard deviation, and the nanoparticles shown
in Fig. 1(b) had d = 6-8 nm with a 12.5% standard devia-
tion. In order to verify the ferrimagnetic and superparamagnetic
nature of the synthesized nanoparticles, dc minor hysteresis
behavior of the nanoparticles was investigated at the sweep-
ing field H,p,1 of 2140 Oe at room temperature (RT). As can
be seen in Fig. 2(a), the MgFe, O and NiFe;O4 nanoparticles
with d = 30-35 nm had dc minor hysteresis loss, indicating
that they are ferrimagnetic nanoparticles. However, although
the CoFe, O4nanoparticles with d = 35 nm showed a large hys-
teresis loss at the sweeping field Hpp; of =15 kOe, they had
almost zero dc minor hysteresis loss with very small magnetiza-
tion value at the Hypp1 of 3140 Oe. This is mainly though to be
due to their high magnetic anisotropy [15]. Fig. 2(b) shows the
dc minor hysteresis behavior of the nanoparticles synthesized by
using HTTD method. The nanoparticles did not exhibit any dc
minor hysteresis loss directly, indicating that these nanoparticles
are superparamagnetic nanoparticles.
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Fig. 2. DC minor hysteresis loop of (a) ferrimagnetic nanoparticles and (b)
superparamagnetic nanoparticles measured at a dc Hypp) of £140 Oe.

In order to investigate the ac magnetically induced heating
characteristics of all the nanoparticles shown in Fig. 1, the
AT, mag Was measured at the fixed fo,p1 of 110 kHz and Hypp)
of 140 Oe. Fig. 3(a) and (b) shows the AT} ., of the FM-
NPs and SPNPs, respectively. The MgFe, O4 FMNPs exhibited
the highest AT, ;s and the CoFey O4 FMNPs had the lowest
AT¢ mag» Whereas for the case of SPNPs, the Mng 5 Zng 5 Fes Oy
SPNPs exhibited the highest AT, ; 1, and the NiFe, Oy SPNPs
had the lowest AT, mag. In order to systematically understand
the ac heating characteristics and to identify the physical param-
eters, which can potentially improve the ATc mag of FMNPs
and SPNPs, the intrinsic magnetic properties, i.e., initial mag-
netic susceptibility (initial Xr), X1, , X, dc minor hysteresis
behavior, and ac hysteresis loop characteristics of the FMNPs
and SPNPs were experimentally investigated. In addition, the
physical contribution of Piystersisloss a0d Prelaxation loss t0 the
Piota1 was calculated and analyzed based on the experimentally
measured results to explore the physical nature of ac heating
mechanism in both FMNPs and SPNPs.

B. Physical Mechanism and Parameters of AC Magnetically
Induced Heating Power of Ferrite Ferrimagnetic Nanoparticles

The Piystersisloss given by (1) is defined as the ac magnet-
ically induced heat generation per unit volume of magnetic
nanoparticles given by the f,p, multiplied by the area of dc
minor hysteresis 1oss. The Piystersisloss 15 generally induced
by the lagging of magnetic moment at a constant ac magnetic
field that is why it is closely related to the physical nature of
ac heat generation of ferrimagnetic or ferromagnetic nanoparti-
cles, whereas the Fyejaxation loss 18 defined as the ac magnetically
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Fig. 3. AC magnetically induced heating temperatures of solid-state (a) fer-
rimagnetic nanoparticles and (b) superparamagnetic nanoparticles measured at
the fixed Hypp) of 140 Oe and f,,p of 110 kHz.

induced heat generation caused by either spin relaxation (or ro-
tation), “Néel relaxation,” in a core of magnetic nanoparticle or
magnetomechanical friction force generated among the rotating
magnetic nanoparticles due to the increase of surrounding tem-
perature and the change of (bio)chemical environment, “Brown
relaxation”. The Piglaxation loss dominantly contributes to the ac
heating power of SPNPs, because they have no dc minor hys-
teresis loss. In addition, the Prelaxation 18 directly proportional to
the 7, of SPNPs expressed as a function of the Néel relaxation
(7n) or Brown relaxation (75) [see (2) and (3)]. However, for
the solid-state SPNPs with d = 6-8 nm considered in this study,
it can be assumed that: 1) 7y is much faster than 75; 2) 75
can be negligible due to relatively high packing fraction; and 3)
Tp can be neglected, because it is hard to define the viscosity
n [t = 3nVy/kpT, Vg : hydrodynamic volume, .". 7 = 7y in
(2)] [18]. Therefore, the Prelaxationloss Of solid-state SPNPs can
be simply assumed to be Pyeel relaxation loss» 85 €xpressed by (3):

Physteresis loss = N()fa,ppl / Hdc,appl -dM 1)

1 1 1 1
(—=—+—%—> @
T ™N B ™

" 2
Prelaxation loss = Pieel relaxation loss = TH0 Xy, fapleaga,pp]' 3

v 2n fr
Xm = Xo7 + (2mfT)?

Considering (1), the main physical reason for obtaining the high-
est AT, mag (OF Phystersisloss; see Table I) of MgFe, O4 FMNP
can be thought to be due to the largest dc minor hysteresis power
resulted from the highest dc magnetic softness. The higher dc
magnetic softness leads to a faster response of magnetic spins
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Fig. 4.
and (c) out-of-phase magnetic susceptibility.

TABLE 1
CALCULATION RESULTS OF THE REAL CONTRIBUTIONS OF Pyystersis loss [(2)
FERRIMAGNETIC NANOPARTICLES] AND Py eel relaxation loss L(D)
SUPERPARAMAGNETIC NANOPARTICLES] TO THE Pjo¢,) AND THE MAGNETIC
ANISOTROPY VALUE OF EACH SUPERPARAMAGNETIC NANOPARTICLES

(a)

Hysteresis P P P P
Nanoparticie loss energy h)st:rzsis}nss Neel reﬁxuismn loss rfoh!s hyst;rcsislnss
(erglem?) (Wim%) (Wim®) (Wim3) (%)
MgFe,0, 2898 319x107  1.04XxX105  3.28x107 ~97
NiFe,0y 2246 245x107  833x10°  2.353x107 ~97
CoFe, 0, 37.26 4.1x 108 193x10°  599x10° ~68
(b)
Arisotropy P P P
Nanoparticle constant Neelrelaxationloss total, Neelrelaxationloss
erglem) (Wim%) (Wi (%)
MgFe,0, -0.4 X 10% 4.96 x 106 3.1% 108 972
NiFe, 0y 0.7 % 10% 1.40 x 106 1.49 X 108 939
Mny sZn, Fe,0, -0.18 X 10% 6.54 X 106 6.77 X 108 96.6

to the externally applied magnetic field due to a larger mag-
netic exchange energy (or lower magnetic anisotropy) resulting
in a higher initial x.,, as well as x},. Accordingly, it gener-
ates a larger dc magnetization value (M = X, H, Xm = X+
ixy.) as well as a larger dc minor hysteresis loss or loss power
Piystersisloss - In order to experimentally verify this physical as-
sumption, X, , Xo,» the initial x.,, and the dc minor hysteresis
behavior of all the three FMNPs shown in Fig. 1 were investi-
gated and compared. As shown in Figs. 2 and 4, the MgFe, Oy
FMNPs showed the highest initial x,,, and x/, values and cor-

Frequency (kHz)

Intrinsic magnetic properties of all the three ferrimagnetic nanoparticles shown in Fig. 1(a): (a) initial M — H curve, (b) in-phase magnetic susceptibility,

respondingly the largest dc minor hysteresis loss as well as the
highest AT},c mag. In contrast, the CoFe; O4 FMNPs showed the
lowest initial x,, and X/, values and accordingly almost zero
dc minor hysteresis as well as the lowest AT, ¢ rae. All the ex-
perimentally confirmed results shown in Figs. 2—4 indicate that
the physical nature (mechanism) of ac magnetically induced
heating power of FMNPs are closely related to the dc minor
hysteresis loss (or loss power Phystersisloss)» Which is directly
affected by the dc magnetic softness (or magnetic exchange cou-
pling). However, it was interestingly found that the FMINPs had
extremely small /7 values and there is no physical relationship
between the AT, mag and the X/, in ac heating characteristics
[Fig. 4(c)].

In order to quantitatively identify further how much
the Piysteresisloss contribute to the Pig1 of FMNPs, the
Physteresis loss and the PNeel relaxation loss WEIC numel'icany cal-
culated and analyzed based on the experimentally measured
results. The Py, was determined from the following equation:

Piotal = Cvolmeax (4)

where () is the volumetric heat capacity, m the mass of
nanoparticles, and T, ., is the maximum ac heating temperature.
As can be seen in Table I, the MgFe, 04 (AT, mag = 110 °C)
and NiFeo O4 (AT, ¢ mag = 102 °C) FMNPs with higher dc mag-
netic softness (or higher magnetic exchange, or lower magnetic
anisotropy) and correspondingly higher initial ., and x/,, val-
ues showed large hysteresis loss energy or hysteresis loss power
Piystersisloss at the ac sweeping field of £140 Oe. These two
values are 60—77 times larger than that of the CoFe;O4 FMNPs
(ATyc,mag = 2 °C). In particular, Table I shows that ~97%
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Intrinsic magnetic properties of all the three superparamagnetic nanoparticles shown in Fig. 1(b): (a) ac hysteresis loop, (b) ac hysteresis loop measured

at the sweeping field of 25 Oe with f,,p1: 110 kHz, (c) in-phase magnetic susceptibility, and (d) out-of-phase magnetic susceptibility.

of Phystersisloss contribute to the Poa1 of soft MgFe,O4and
NiFe,O4 FMNPs. These results strongly support the physical
fact that the dc (minor) hysteresis loss power plays a domi-
nant role in determining the AT, mag and the ac magnetically
induced heating characteristics of FMNPs.

According to all the results shown in Figs. 24, it can be
conclusively summarized that x/, is the most crucial physical
parameter to improve the Fyystersis loss and correspondingly the
AT,c mag of FMNPs. Therefore, the enhancement of x/,, would
be a dominantly key factor for achieving a promising FMNP
hyperthermia agent in nanomedicine. The technical approaches,
which can tailor the magnetic anisotropy and the magnetic ex-
change coupling of FMNPs, such as: 1) controlling the com-
position/distribution of cations in FMNPs during synthesis, and
2) modifying the particle dipole—dipole interaction by changing
the size, the size distribution, or the shape of FMNPs, can be
considerably suggested to physically improve the x/,, of FMNPs
for hyperthermia agent applications [15]-[17].

C. Physical Mechanism and Parameters of AC Magnetically
Induced Heating Power of Ferrite Superparamagnetic
Nanoparticles

The physical mechanism of ac heating characteristics of SP-
NPs could be differently understood, because SPNPs did not
exhibit any dc minor hysteresis loss [see Fig. 2(a)] and any
physical dependence on X/, [see Fig. 5(c)]. Accordingly, we
explored the physical relationship between the intrinsic ac mag-
netic properties such as ac hysteresis loss or area (/) and x,

and the ac magnetically induced heating characteristics of SP-
NSs to identify what physical mechanism is dominant and what
physical parameters are crucial to significantly improve the ac
heating power of SPNPs for hyperthermia agent applications.
The /. and o are induced by the response of magnetic spins
(moments) to the externally applied ac magnetic field. Hence,
their physical relationship can be described and expressed by
5)®).

The magnetization of SPNPs under ac magnetic field can be
expressed by

M(wt) = XZ?,BaC,appl
(Bac,appiis the total flux density ((tHac appt)) (5)

where 7, is defined as [19]

27
Xy = = [ M(ut)sin(hdwt)  ©)
ﬂ'Bac,appl 0

and & is defined as [20]

2T
o = M (wt) sin(wt)d(wt). @)
0

Therefore, the physical relationship between x// and & can be

expressed as follows:
X = —r—— o ®)

" 7T/'LEIac,aL]ppl

In addition, by substituting (8) into (3), the Pieelrelaxation loss
can be rewritten as (9). According to (9) and (8), it can be
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clearly understood that Pyeelrelaxationloss Of SPNPs under ac
magnetic field is the same as the ac hysteresis loss power
Py hysteresisloss- In particular, it is physically confirmed that:
1) Pueelrelaxationloss and Pac hysteresisloss aI€ directly propor-
tional to o and 2) & is directly proportional to X/, :

PNeelrelaxation loss = Pac hysteresisloss = fappIHac,appl «Q{//‘r

pr : relative permeability. €)

As described in (5)—(9), Pxeelrelaxationloss 1S the main physi-
cal mechanism responsible for the ac heating power of SPNPs
and its contribution to Py, of SPNPs can be directly esti-
mated by experimentally evaluating both x//, and /. Hence,
X, and &7 of all the three SPNPs used in this study were
measured and compared to confirm the physical relation and
the role in characterizing the ac heating properties of SP-
NPs. Fig. 5 shows the ac magnetic properties of SPNPs in-
cluding ac magnetic hysteresis behavior measured at fopp1
= 110 kHz and H,c appr = £140 Oe and the ac magnetic
susceptibility (x,, and xJ,) measured at the activation mag-
netic field of 10 Oe under the ac frequency varied from
100 Hz to 10 kHz. In addition, Table I(b) summarizes the cal-
culated Pycel relaxation loss > Protal; PNeel relaxation loss/ Protal, and
magnetic anisotropy of all the three SPNPs (Mng 5Zng 5Fes Oy,
MgFe, Oy, and NiFe,Oy4) based on the experimentally measured
results. Among the three SPNPs, the Mng 5 Zng 5 Fea O4 SPNPs,
which showed the largest Pyeelrelaxationloss and Piota1 With a
Pyeel relaxation loss/ Protal Of 96.6%, had the largest o7 (highest
ac magnetic softness) and /. In contrast, the NiFe, O4 SPNPs,
which showed the smallest Pyeel relaxation loss and Piotal With
a PNeelrelaxationloss/ Protal Of 93.9%, had the smallest 2/ (low-
est ac magnetic softness) and x.,. These experimentally and
quantitatively analyzed results shown in Fig. 5 and Table I(b)
demonstrate that Pyee] relaxation loss dominantly contributes to
the Piota1 of SPNPs and it is directly proportional to & [see
(9)] as well as /1, . In particular, these results provide us crucial
information that the ac heating ability of SPNPs can be directly
estimated by measuring the ac hysteresis behavior or the ac hys-
teresis loss (area) at the same ac magnetic field condition of ac
magnetically induced heating because X, , which is related to
the “Néel relaxation of magnetic spins 75~ [see (2)], is directly
proportional to the & [see (8)]. In order to more clearly un-
derstand the physical relationship between &7 and x//, as well
as their effects on the ac heat generation of SPNPs, magnetic
anisotropy (K) of the SPNPs and the physical correlation with
& and x|, were explored. The main reason for this study is that
K is closely relevant to the magnetic spin motion (relaxation)
or “Néel relaxation of magnetic spins 7" and . , as described
in (10) [17] and (2), respectively:

()
TN = To €XpP

ksT 1o

where 79 is the relaxation time constant, V' the volume of parti-
cle, kp the Boltzmann constant, and 7" the temperature.

In addition, the relationship among &, x,, and K can be
clearly expressed by combining (2), (8), and (10) as follows:

11 1
& = X T Hac appl, <x" o — o —) , o < —=. (11)

v K K
According to (11), it can be physically understood that 2/ and
X., are inversely proportional to the X of SPNPs. As experi-
mentally confirmed in Table I(b), the Mng 5Zng s FeaO4 SPNPs,
which showed the largest &7, exhibited the lowest K value (high-
est ac magnetic softness), while the NiFe;O4 SPNPs, which
showed the smallest 27, had the highest K (lowest ac magnetic
softness). These results indicate that the significant enhancement
of &7 (or x/»,) by controlling the ac magnetic softness (K, or
magnetic exchange coupling) is the most important physical pa-
rameter (OI' approaCh) to imPTOVe the —Ptotal (P Neelrelaxation loss)
of SPNPs for MFH agent applications in nanomedicine. The ac
magnetic softness of SPNPs such as ferrite SPNPs, MFey Oy
(M: transition metals) SPNPs, could be enhanced by improv-
ing the exchange energy (coupling), the ac frequency response,
and the 7. The addition of a nonmagnetic cation to the tetra-
hedral site or the addition of a magnetic cation, which has a
higher Bohr magneton than that of iron, to the octahedral site
of ferrite SPNPs could be introduced and proposed as a critical
approach to improve the magnetic exchange coupling or to re-
duce the magnetic anisotropy. In addition, shallow doping of a
new cation with a faster rgsuch as cobalt ion or substitution of
cation with higher magnetic permeability by tetrahedral site of
ferrite SPNPs would be proposed to improve the ac frequency
response time and spin relaxation time [21]-[24].

D. Biocompatibility of Ferrite Ferrimagnetic and
Superparamagnetic Nanoparticles

In addition to the studies on the ac magnetically induced
heating characteristics and the physical nature of ac heating
mechanism of ferrite FMNPs and SPNPs, in order to evaluate
the feasibility of FMNPs and SPNPs used in this study to a
local hyperthermia agent, the in vitro biocompatibility (or cy-
totoxicity) of the nanoparticles were investigated by employing
MTT and TEM studies with normal rat liver epidermal cells
(for FMNPs) and neuronal stem cells isolated from human fe-
tal midbrain (for SPNPs). Fig. 6 shows the cell survival rate of
(a) the FMNPs and (b) the SPNPs under different nanoparticle
concentrations. As can be seen in Fig. 6(a) and (b), the FMNPs
showed a high cell survival rates of 90%—80% (noncytotoxicity)
and the SPNPs showed cell survival rates of 87%—65% (non-
or midcytotoxicity) with standard deviations of 8%—10% de-
pending on the nanoparticle concentrations. The studies on the
uptake characteristic of the SPNPs by a cell and its cytological
change caused by the infused SPNPs were conducted by TEM
using human neural cells (F3Lacz). In order to necrotize cancer
cells, the nanoparticle agents have to be initially absorbed by
the cells and located inside the cells without side effects such
as cell deformation, inflammation, and nucleus fragmentation.
As can be seen in Fig. 6(c), all the SPNPs were successfully
uptake and located in the cytoplasm of F3Lacz (black arrows)
without any side effects. The relatively high biocompatibility
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Fig. 6. Studies of in vitro biocompatibility of the ferrimagnetic and superparamagnetic nanoparticles: (a) cell survival rate of all the ferrimagnetic nanoparticles

with normal rat liver epidermal cells, (b) cell survival rate of all the superparamagnetic nanoparticles with neuronal stem cells, and (c) TEM study results of cellular

uptake characteristics of all the superparamagnetic nanoparticles by human neur

of all the FMNPs and SPNPs used in this study demonstrated
that they can be potentially considered to be an in vivo hyper-
thermia agent. However, ideally, considering the clearance of
nanoparticles by the reticuloendothelial system (RES) and the
blood clotting problem caused by aggregated nanoparticles, SP-
NPs in the range of 12—15 nm in diameter (core + coating layer)
are considered to be more appropriate nanoparticles for in vivo
hyperthermia agent applications.

IV. CONCLUSION

Solid-state MFe; O4 (M = Mg, Ni, Co) FMNPs and MFe, Q4
M = Mg, Ni, Mng 5Zng 5,) SPNPs were used to explore the
physical mechanisms of ac magnetically induced heating and
identify what physical parameters would be the most critical
to enhance the ac heating power for local in vivo hyperther-
mia agent applications. According to the experimental results,
Ijhysteresis loss and PNeeIrelaxation loss (OI‘ Pac hysteresis loss) dom-
inantly contributed to the P;q,1 of FMNPs and SPNPs, respec-
tively. Moreover, it was physically demonstrated that the initial
Xm and X, directly relevant to the dc magnetic softness, and
& (or xI), directly relevant to the ac magnetic softness, are the
most crucial physical parameters to enhance the Physteresisloss
(FMNPs) and Pyeel relaxationloss (SPNPS), respectively. Con-
trolling the magnetic anisotropy, the exchange coupling (en-
ergy), and the relaxation time constant of FMNPs or SPNPs by
tailoring the magnetic and structural properties of FMNPs and

al cells.

SPNPs would be the most efficient technical approach to signif-
icantly improve the physical parameters for their hyperthermia
agent applications.
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Abstract Gene delivery using magnetic nanoparti-
cles (MNPs) is known as magnetofection and is an
efficient non-viral gene delivery system. 7y-Fe,O3
nanoparticles (primary diameter = 29 nm) and
Fe;04 nanoparticles (primary diameter = 20-30 nm)
coated with deacylated linear polyethylenimine (PEI
max) were prepared and conjugated with DNA. The
dependency of transfection efficiency on the weight of
MNPs, viability of HeLa cells, and size of DNA/PEI
max/MNP complexes was evaluated. Transfection
efficiency initially increased with the weight of the
complexes; however, it decreased with further
increase in weight. In contrast, cell viability increased
with further increase in weight. Cytotoxicity assay
showed that the decline in transfection efficiency at
higher weights was not attributable to cytotoxicity of
DNA/PEI max/MNP complexes. The DNA/PEI max/
MNP complexes aggregated because of DNA binding
and pH interaction with the medium. Aggregation
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depending on the weight of MNPs was confirmed. The
number of complexes was estimated from the size
distribution. In addition, the dependency of the
transfection efficiency on aggregation was assessed
with respect to cellular endocytic pathways using the
complexes. The complexes were internalized through
clathrin-dependent endocytosis, which was a size-
dependent pathway. This study reveals that decreased
transfection efficiency was associated with the extent
of aggregation, which was induced by high weight of
MNPs.

Keywords Magnetofection - Magnetic
nanoparticles - Aggregation - Cytotoxicity -
Endocytosis

Introduction

Recently, magnetic nanoparticles (MNPs) have
attracted considerable attention as transfection vec-
tors. Non-viral transfection vectors such as cationic
polymers and cationic liposomes are more biocom-
patible than viral vectors; however, their transfection
efficiency is lower (De Smedt et al. 2000; Guo et al.
2007). MNPs guide DNA into the target tissue and
transfect targeted cells rapidly, and the application of
magnetic fields leads to the translocation of MNPs
inside the cells (Scherer et al. 2002). Coupling non-
viral transfection vectors with iron oxide nanoparticles

@ Springer
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such as polyethylenimine (PEI) (Scherer et al. 2002),
polyamidoamine dendrimer (Pan et al. 2007), and PEI/
poly(ethylene glycol)/chitosan copolymer (Kievit
et al. 2009)—coated iron oxide nanoparticles facilitate
high transfection efficiency and biocompatibility.
Furthermore, surface-modified silica (Roy et al.
2005) and gold (Ghosh et al. 2008) nanoparticles have
been used instead of iron oxide nanoparticles for gene
delivery vectors.

PEI has a cationic charge owing to protonation of
the amino nitrogen under physiological conditions
(Boussif et al. 1995). PEI conjugates with DNA
through electrostatic forces because PEI is cationic
and DNA is anionic (Kircheis et al. 2001; Oku et al.
2001). PEI is known as both a coating and a
transfection reagent (Boussif et al. 1995; Seino et al.
2009). First, MNPs tend to aggregate because of van
der Waals interactions, whereas coating with PEI
prevents aggregation via electrostatic repulsion
(Seino et al. 2009). Second, DNA/PEI/MNP com-
plexes are guided to cell surfaces by cationic—
anionic interactions between PEI and the cell
membrane (Payne et al. 2007). Third, the complexes
are internalized into the cells by endocytosis
promoted by ligand/receptor interactions between
PEI and cell surface receptors (Godbey et al. 1999;
Scherer et al. 2002). During endocytosis, the com-
plexes are engulfed by cell membrane invaginations
and encapsulated into membrane-bound vesicles
known as endosomes (Sahay et al. 2010). PEI elicits
proton sponge effects characterized by proton accu-
mulation followed by passive chloride influx into
endosomes. This influx causes osmotic swelling
leading to endosome disruption thereby protecting
DNA contained in the complexes from lysosomal
degradation (Kichler et al. 2001; Akincl et al. 2005).
PEI takes two forms: linear and branched. Linear
PEI is less toxic compared with branched PEI (Jeong
et al. 2001). In this study, PEI max, which is a
deacylated linear PEI, was coated on MNPs. These
MNPs were used as transfection vectors. Linear PEI
contains residual N-acyl groups that hinder gene
transfection (Thomas et al. 2005). Deacylation of
linear PEI promotes transfection.

With respect to magnetofection, transfection effi-
ciency is determined primarily by magnetic force on
the particles, particle configuration in the medium, and
endocytic pathway, depending on the size of particles.
Magnetic force depends on magnetization, volume,

@ Springer

magnetic permeability of MNPs (Pankfurst et al. 2003;
Furlani and Xue 2012), and magnetic field gradient
(Pankfurst et al. 2003; Akiyama et al. 2010; Furlani
and Xue 2012). Configuration of nanoparticles in the
medium is influenced by pH, concentration of parti-
cles, surface-coating agents, and serum protein (Steitz
et al. 2007; Wang et al. 2009; Wigo et al. 2012). The
influences of nanoparticle size on endocytosis have
been investigated with poly (b, L-lactide-co-glycolide)
nanoparticles fractionated to small- (<100 nm) and
large-size (>100 nm) nanoparticles (Prabha et al.
2002), gold nanoparticles of size 45, 70, and 110 nm
(Wang et al. 2010), and latex fluorescent beads of
defined size (50-1000 nm) (Rejman et al. 2004).
These studies show that high rate of cellular internal-
ization is achieved with smaller-sized nanoparticles.

The dependency of transfection efficiency on the
weight of MNPs was evaluated by determining the
cytotoxicity and size of DNA/PEI max/MNPs com-
plexes in Hela cells. The effect of the size of the
complexes on endocytic pathways was also assessed to
confirm the influence of size on transfection effi-
ciency. The novelty of this study lies in the confirma-
tion of the MNP weight response of transfection
efficiency in terms of cytotoxicity, aggregation of
complexes, and endocytic pathway. Moreover, rela-
tionships between transfection efficiency and aggre-
gation are confirmed for both y-Fe,O; and Fe;O4
nanoparticles.

Materials and methods
Materials and surface coating

v-Fe,03 nanoparticles (primary diameter = 29 nm)
and Fe;O, nanoparticles (primary diameter =
20-30 nm) were purchased from CIK NanoTek and
Nanostructured & Amorphous Materials, Inc. These
nanoparticles were coated with PEI max (mw 40,000)
purchased from Nacalai Tesque and Polysciences, Inc.

v-Fe, O3 nanoparticles (200 mg) were dispersed in
10 ml solution of 1.0 mg/ml PEI max by supersoni-
fication for 10 min. This solution was purified by
centrifugation at 743xg (R = 7.39 cm) for 15 min.
The supernatant was centrifuged at 10,000xg
(R = 8.8 cm) for 30 min. The precipitate was col-
lected as PEI max-coated vy-Fe,Os; nanoparticles
(Kami et al. 2011a). For Fe;O, nanoparticles,



