Figure S9B).
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Abstract Cellular reactive oxygen species (ROS) pro-
duction is increased by both temperature and anticancer
drugs. Antioxidants are known to suppress ROS production
while cancer patients may take them as dietary supplement
during chemotherapy and hyperthermic therapy. We
examined changes in ROS production in prostate cancer
cells in the presence of various anticancer drugs and anti-
oxidants at different temperatures. ROS production was
increased with temperature in cancer cells, but not in
normal’ cells; this increase was potently inhibited by
ascorbic acid. ROS production was also increased in the
presence of some anticancer drugs, such as vinblastine, but
not by others. Dietary antioxidant supplements, such as -
carotene, showed variable effects. Ascorbic acid potently
inhibited ROS production, even in the presence of anti-
cancer drugs, while f-carotene showed no inhibition.
Accordingly, our results suggest that cancer patients should
carefully choose antioxidants during their cancer chemo-
therapy and/or hyperthermic therapy.
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Introduction

Physiology of cancer cells has been extensively studied, and
the understanding of mechanisms for their rapid growth and
proliferation has been advanced in the past decade [1-3].
Accordingly, various therapeutic strategies in cancer treat-
ment have been developed [1, 4]. Although surgical
removal of the cancer tissue is still the golden standard for
complete cure, it is not always feasible in cases with
advanced or metastatic cancer. Surgical stress may be too
large for geriatric and/or exhausted patients. In such cases,
combination of various therapeutic strategies has been
recommended. Among such strategies, hyperthermic ther-
apy may be applied on the top of the conventional cancer
chemotherapy or radiation therapy [5, 6]. Although it may
not achieve complete remission of cancer by itself, clinical
studies have demonstrated that the survival and quality of
life may be significantly improved [3, 7].

Molecular mechanism of hyperthermic therapy includes
the overstimulation metabolism of rapidly proliferating
cancer cells, leading to the induction of apoptosis {8].
Increased production of reactive oxygen species (ROS) from
mitochondria may also be involved [9]. Because ROS pro-
duction may be increased in the presence of anticancer drugs
on their own, the combination of chemotherapy and hyper-
thermic therapy will synergistically increase ROS produc-
tion, leading to effective cancer cell death [6]. However,
ROS production is inhibited in the presence of various
antioxidants [10]. In this regard, various antioxidants, which
are also used as dietary supplements, may interfere with the
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efficacy of such chemotherapy and/or hyperthermic therapy.
Unfortunately, however, evaluation of the effect of such
antioxidants in the combination of cancer chemotherapy has
not been well performed [11, 12]. Ascorbic acid, for exam-
ple, is often used as a dictary supplement. Because ascorbic
acid may improve immunity or peripheral circulation [13],
people, including cancer patients, take this antioxidant.
However, the use of ascorbic acid in cancer patients remains
controversial; ascorbic acid may enhance [10] or suppress
[13] the efficacy of chemotherapy. :
In this study, we examined the effect of temperature,
anticancer drugs, and antioxidants on ROS production. We
used MAT-Lu prostate cancer cells since hyperthermia
therapy has often been applied to prostatic cancer patients
{14, 15], and thus it is necessary to evaluate the effect of
hyperthermia on this cancer cell type. We demonstrated
their effect on ROS production, and make potential sug-
gestions for future use of antioxidants in cancer patients.

Materials and methods
Materials

We used the following anticancer drugs; vinblastine (VBL.)
(Nihon Kayaku, Japan), cisplatin (CIS), (Pfizer, Japan),
adriamycin (ADR), (Wako, Japan), docetaxel (DTX),
(Sanofi Aventis, Japan). Similarly, as antioxidants, we used
N-acetyl-cysteine (NAC), (Sigma, Japan), retinoic acid
(Sigma), quercetin (Sigma), catechin (Wako), Intein
(Sigma), B-carotene (Sigma), and ascorbic acid (Wako).

Cell culture

Rat prostatic adenocarcinoma cells (R3327-MAT-Lu) were
cultured in RPMI-1640 medium supplemented with 10%
FBS and 250 nM dexamethasone, which were kindly pro-
vided by Dr. J, T. Isaacs (Johns Hopkins University, MD,
USA). Cells were incubated at 37°C in 5% CO,. In some
experiments, cells were incubated at 42°C as hyperthermic
treatment (see below). Rat cardiac fibroblasts were isolated
from adult rats (250-300 g, male) by using a modification
of published methods [16]. Fibroblasts were separated from
cardiac myocytes by gravity separation and grown to
confluence on 10-cm cell culture dishes at 37°C with 90%
air with 10% CO, in growth media (DMEM with 10%
FBS, 1% penicillin, and 1% streptomycin).

Hyperthermic stress and measurement of reactive
oxygen species

Cells were plated in 24-well culture plates (5.0 x 10% cells/
well) overnight. Cells were then treated with various agents,
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including anticancer drugs, at 37°C for 3 h. For hyperther-
mic treatment, cells were further incubated in the presence or
absence of various reagents at 42°C for 1 h. The intracellular
ROS level was then measured using a fluorescent dye 2,7~
dichlorofluorescein diacetate (DCFH-DA) (Life technolo-
gies, Japan) as previously described [17]. In the presence of
oxidant, DCFH is converted into the highly fluorescent 2',7-
dichlorofluorescein. Cells were first washed with PBS, and
serum-free DMEM containing 10 pM DCFH-DA was added
to each well. Cells were then incubated at 37°C for 45 min,
ROS production was measured using a microplate reader
equipped with a spectrofiucrometer (PerkinElmer ARVO
MX, Japan) at an emission wavelength of 538 nm and
extinction wavelength of 485 nm,

Statistical analysis

Data are expressed as means -k SEM. Data was analyzed
by one-way ANOVA followed by Tukey post hoc using
Graph-pad Prism software. Statistical significance was set
at p < 0.05.

Results
Effect of temperature on ROS generation

It is known that cancer cells exhibit higher metabolism than
normal cells. High metabolic. rate may be reflected by
increased ROS generation, in particular, upon hyperther-
mia. Accordingly, we compared the effect of temperature
on ROS production between MAT-Lu prostate cancer cells
and normal fibroblasts obtained from the cardiac tissue. It is
known that fibroblasts grow rapidly and thus possess high
metabolic rate in comparison to other normal cell types.
As shown in Fig. 1a, ROS production was lower at 32°C
than at 37°C while it was higher at 42°C. Thus, ROS
production was increased in a temperature-dependent
manner, at least in prostate cancer cells. In contrast, ROS
production in cardiac fibroblasts was not increased at 42°C
in comparison to that at 37°C (Fig. 1b). Thus, ROS pro-
duction by hyperthermia was increased only in cancer cells.

Effect of ascorbic acid on ROS production

We then examined the effect of ascorbic acid, which has
been used in cancer treatment as part of chemotherapy, but
is also known as a major antioxidant. In the presence of an
increasing concentration of ascorbic acid (10 uM-
100 mM), ROS production was decreased in a concentra-
tion-dependent manner at 37°C (Fig. l¢). Similar inhibi-
tion was observed at 42°C. Thus, ascorbic acid potently
inhibited the production of ROS.
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Fig. 1 ROS production in cancer cells and normal cells at different
temperatures. 2 ROS production in cancer cells at 32, 37, and 42°C.
Prostate cancer cells were incubated at different temperatures,
followed by determination of ROS production (mean  SEM;
n =4, *p < 0.05). b ROS production in cardiac fibroblasts at 37
and 42°C. Cardiac fibroblasts were incubated at different tempera-
tres similarly, followed by determination of ROS production
{mean + SEM; n = 4, ¥p < 0.05). ¢ ROS production was determined
with cancer cells in the presence of an increasing concentration of
ascorbic acid (10 uM--100 mM). Prostate cancer cells were incubated
at 37°C, followed by determination of ROS production (mean £
SEM; n = 4, *p < 0.05)

Effect of anticancer drugs on ROS production

Anticancer drugs may induce cytotoxicity through various
mechanisms. We examined the effect of these anticancer
drugs, which have been widely used in many cancer cell
types, including prostate cancer, on ROS production. We
first determined the ECy, values of these drugs in prostate
cancer cells, which were 200 nM for VBL, 15 uM for CIS,
7.5 pM for ADR, and 1 mM for DTX. When prostate
cancer cells were incubated with these drugs at the ECsq

value concentration, ROS production was slightly, but
significantly, increased with VBL and CIS, but not with
DTX and ADR at 37°C (Fig. 2a). When hyperthermic
treatment at 42°C was added, ROS production by VBL and
CIS became even greater (Fig. 2a). Thus, hyperthermia by
itself can increase ROS production, which is further
enhanced in the presence of certain anticancer drugs.

We then examined the effect of ascorbic acid in the
presence of anticancer drugs. ROS production was potently
inhibited by 1 mM ascorbic acid in the presence of any
anticancer drugs (Fig. 2b). ROS production at 37°C was
similar among these anticancer drugs. However, when
hyperthermic treatment at 42°C was added, ROS produc-
tion was significantly greater with VBL (Fig. 2b). Thus,
ascorbic acid may negate ROS production induced by
certain anticancer drugs at 37°C; however, it cannot negate
ROS production of VBL at 42°C. Accordingly, anticancer
drug-induced ROS enhancement may be retained in
hyperthermia for VBL, but not others.

Effect of ascorbic acid on ROS production by Resovist

Resovist is super-paramagnetic iron oxide nanoparticle that
has been used as MRI contrast agent. Because of its
magnetic property, similar compounds have been used as
source of heat production in hyperthermic therapy. We
found that the ROS production was increased in the pres-
ence of 10 uM Resovist at 37°C, suggesting that Resovist
can produce ROS with cancer cells. When ascorbic acid
was added, ROS production was negated or instead
decreased (Fig. 3). Thus, ascorbic acid could potently
inhibit ROS production induced by Resovist.

Effect of various antioxidants on ROS production

Patients may take various dietary supplements during
cancer chemotherapy. In some cases, patients may take
supplementary antioxidants on the top of anticancer drugs.
We thus examined the effect of these antioxidants and
related drugs, namely, N-acetyl cysteine (NAC), retinoic
acid, quercetin, catechin, lutein, and f-carotene, on ROS
production. We used these antioxidants at concentrations as
previously demonstrated to be effective in various assays
[11, 18, 19]. We examined their effect on VBL and CIS,
which increased ROS production in the above assays.

As shown in Fig. 4a~f, these antioxidative compounds
exhibited various degrees of antioxidative effects. NAC
showed the most potent inhibition on ROS production;
ROS production was decreased by a quarter in prostate
cancer cells, VBL or CIS did not further increase ROS
production in the presence of NAC at either 37 or 42°C,
suggesting the ROS production by these anticancer drugs
was completely suppressed by NAC. Thus, NAC showed
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Fig. 3 Effect of Resovist on ROS production. ROS production was
determined in the presence of 10 pM Resovist and/or 1 mM ascorbic
acid at 37°C. Prostate cancer cells were incubated for 45 min,
followed by ROS production assays (mean:t SEM; n =4,
*p < 0.05)

similar, but perhaps greater, antioxidative effect compared
to ascorbic acid. Retinoic acid, quercetin, and lutein
showed comparable results to each other. They inhibited
ROS production at both 37 and 42°C. However, both VBL
and CIS could increase ROS production in the presence of
these antioxidants, suggesting that these antioxidants could
not inhibit anticancer drug-mediated ROS production.
Catechin and f-carotene are best known as general anti-
oxidants. However, they did not inhibit ROS production, at
either 37 or 42°C, in the absence or presence of anticancer
drugs. Thus, the effects of many antioxidants are not
always the same.

@ Springer

NAC inhibited ROS production regardless of the presence
of anticancer drugs, while catechin or f-carotene did not
inhibit ROS production. Lutein, quercetin, and retinoic acid
inhibited ROS production in the absence of anticancer
drugs, while they did not inhibit the ROS production as
induced by anticancer drug. Thus, these antioxidants
should be taken carefully by patients since they may var-
iably affect the effect of anticancer drugs, at least in their
ROS production.

ROS as a cause of cytotoxicity of anticancer drugs has
been extensively studied in the past [20, 21]. CIS may
interfere with mitochondrial membrane function and thus
increases ROS production. Paclitaxel, which is comparable
to DTX, may regulate membrane NOX release, and
increases ROS production [22-25]. We found that both CIS
and VBL increased ROS production in prostate cancer
cells. Hyperthermic therapy potentiates ROS production,
leading to enhanced cytotoxicity [26]. We also found that
increased temperature enhanced ROS production by CIS
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Fig. 4 Effect of various
antioxidants on ROS
preduction. ROS production
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of 200 nM VBL or 15 uM CIS
at 37 or 42°C. Various
antioxidants, i.e., 10 mM NAC
(N-acetyl-cysteine), 50 nM
retinoic acid, 100 nM quercetin,
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and VBL. Thus, both cancer chemotherapy and hyper-
thermic treatment enhanced ROS production, at least in
prostate cancer cells.

With increasing public interest in antioxidant therapy,
many nutritional supplements have been taken by the
general public including cancer patients. There have been
multiple studies that have examined the interaction
between anticancer drugs and antioxidants. However, the
results of these studies are not in agreement with each
other. Anticancer drugs may produce ROS, which may
damage cancer cells [27, 28]. Thereby, some studies
demonstrated that antioxidants reduced the effect of these
anticancer drugs [29]. In contrast, others demonstrated that
ROS production was enhanced by antioxidants [30]. More
specifically, ascorbic acid can quench ROS within the cell,
and thus stabilize mitochondrial membrane, leading to
protection of the cell [13, 26]. Although previous studies
have demonstrated that ascorbic acid increased the effect of
anticancer drags, more recently attenuation of anticancer
drug effect has also been reported [26].

We found that antioxidants indeed exhibited various
effects on ROS production. NAC, which by itself scav-
enges ROS [18], potently decreased ROS production, and
ROS production by anticancer drugs was also negated.
Thus, the use of NAC may hamper the effect of anticancer
drugs. In contrast, lutein, quercetin, and retinoic acid,
which are also known as ROS scavengers, decreased ROS
production. However, they were not potent enough to
inhibit the ROS-producing effect of anticancer compounds.
Thus, these antioxidants may be taken safely by cancer
patients during chemotherapy and hyperthermic therapy.
Catechin and f-carotene are known as antioxidants and are
contained in various kinds of foods, such as green tea or
carrot [11, 12]. However, they did not exhibit inhibitory
effect on ROS production regardless of the presence of
anticancer drugs, suggesting that they do not interfere with
such drug effects. Thus, cancer patients may take these
antioxidants as well as foods containing these antioxidants.

Putting it together, administration of NAC and ascorbic
acid may need caution while other antioxidants may not
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require major attention, at least in terms of ROS production 4. Li LF, Wang HQ, Liu XM, Zhang HL, Qiu LH, Qian ZZ, Li W

in cancer patients. In particular, ascorbic acid is widely
used for multiple purposes, including for viral infection.
Accordingly, the current study has suggested that the use of
ascorbic acid may be considered carefully by both cancer
patients and oncologists. Further, with our findings, the
effects of ascorbic acid and its related antioxidants need to
be clinically examined in future in cancer patients who are
to be treated with chemotherapy and/or hyperthermic
therapy.
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cyclase. Am J Physiol Heart Circ Physiol 302: H2622-H2628, 2012. First
published April 13, 2012; doi:10.1152/ajpheart.00190.2012—Despite nu-
merous discoveries from genetically engineered mice, relatively few
have been translated to the bedside, mainly because it is difficult to
translate from genes to drugs. This investigation examines an antiviral
drug, which also has an action to selectively inhibit type 5 adenylyl
cyclase (ACS), a pharmaceutical correlate of the AC5 knockout (KO)
model, which exhibits longevity and stress resistance. Our objective
was to examine the extent to which pretreatment with this drug,
adenine 9-B-p-arabinofuranoside (Ara-A), favorably ameliorates the
development of heart failure (HF). Ara-A exhibited selective inhibi-
tion for AC5 compared with the other major cardiac AC isoform,
ACS, i.e., it reduced AC activity significantly in AC5 transgenic (Tg)
mice, but not in AC5KO mice and had little effect in either wild-type
or AC6Tg mice. Permanent coronary artery occlusion for 3 wk in
C57BV/6 mice increased mortality and induced HF in survivors, as
reflected by reduced cardiac function, while increasing cardiac fibro-
sis. The ACS5 inhibitor Ara-A significantly improved all of these end
points and also ameliorated chronic isoproterenol-induced cardiomyo-
pathy. As with the ACSKO mice, Ara-A increased mitogen/extracellular
signal-regulated kinase (MEK)/extracellular signal-regulated kinase
(ERK) phosphorylation. A MEK inhibitor abolished the beneficial
effects of the ACS5 inhibitor in the HF model, indicating the involve-
ment of the downstream MEK-ERK pathway of ACS. Our data
suggest that pharmacological AC5 inhibition may serve as a new
therapeutic approach for HF.

heart failure; type 5 adenylyl cyclase inhibition; adenine 9-3-D-
arabinofuranoside

DESPITE GAINS IN THE TREATMENT of heart failure (HF) with both
angiotensin and (-adrenergic receptor (B-AR) blockers, HF
still remains a major cause of death and disability. In addition,
some patients do not tolerate 3-AR blocking therapy (2). It is
conceivable that inhibiting mechanisms distal to the B-AR
signaling pathway, identified from genetically engineered
mouse models, might be a novel approach. While there have
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been numerous potential therapeutic approaches discovered
from studies in genetically engineered mice in the past two
decades, there are relatively few of these discoveries that have
been translated to the bedside, mainly because it is difficult to
translate the effects of disrupting a gene in a mouse to therapy
in patients with HF.

The goal of this investigation was to examine the extent to
which a pharmacological inhibitor of type 5 adenylyl cyclase
(ACS), 9-B-p-arabinofuranoside (Ara-A), could mimic the sal-
utary effects observed in the ACS5 knockout (KO) mice model,
which protects against cardiac stress (10, 11) and increases
longevity (15). The first goal was to determine the extent to
which Ara-A selectively inhibits AC5. The next goal was to
determine whether pretreatment with the pharmacological ACS
inhibitor ameliorates the development of cardiomyopathy and
HF following either permanent coronary artery occlusion
(CAO) or chronic isoproterenol (ISO) infusion. An additional
goal was to determine if the mechanism involved the mitogen/
extracellular signal-regulated kinase (MEK)/extracellular sig-
nal-regulated kinase (ERK) pathway, a key protective signal-
ing pathway in the AC5KO (15). The latter was accomplished
by repeating the experiments with permanent CAO in the
presence of a specific MEK blocker, U-0126.

The ACS inhibitor Ara-A is a Food and Drug Administration
(FDA)-approved drug, also known as vidarabine (adenine
9-B3-D arabinofuranoside), and has been used as an anti-herpes
virus drug for many decades. The advantage of identifying
Ara-A as a potential drug for HF is that the drug has already
been FDA approved and could be rapidly moved to clinical
trials.

METHODS

Animal models. Three- to five-month-old male AC5KO (9) (on C57Bl/6
background) and cardiac-specific overexpression of ACS5 [ACS5 trans-
genic (Tg)] (7) or AC6 (AC6Tg) (7) (on FVB background) mice were
used in this study. In the CAO model, mini-osmotic pumps deliv-
ering Ara-A (15 mgkg™'-day™!), the MEK blocker U-0126 (5
mgkg~!-day™') (15), or a combination of U-0126 with Ara-A were
subcutaneously implanted 1 wk before the CAO of the left anterior
descending artery. Chronic infusion of ISO (Sigma-Aldrich, St. Louis,
MO) was performed for 7 days at a dose of 60 mg-kg~!-day™! with or
without Ara-A delivered with the mini-osmotic pumps. The dose of
Ara-A was selected on the basis of that previously used for viral
encephalopathy (13). Animals used in this study were maintained in
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Fig. 1. Selective inhibition of type 5 adenylyl cyclase (ACS5) by adenine 9-3-b-arabinofuranoside (Ara-A) (in vitro). Mouse cardiac membrane preparations were
used for A and B. Adult mouse cardiac myocytes were used for C and D. A and B: cAMP reduction with Ara-A (10 uM) was measured in cardiac membrane
preparations from myocardium of wild-type (WT), AC5 knockout (KO), ACS transgenic (Tg), and AC6Tg mice with isoproterenol (ISO) (5 uM, A) or with
forskolin (50 wM, B). C and D: cAMP reduction with Ara-A (10 pM) was measured in adult cardiac myocytes from myocardium of WT, AC5KO, AC5Tg, and
AC6Tg mice with ISO (C) or with forskolin (D). cAMP reduction by Ara-A was greater in AC5Tg than in WT, was similar between WT and AC6Tg, and was
absent in the AC5KO. These data indicate that Ara-A selectively suppresses AC5 enzymatic activity. t-Test: *P < 0.01 vs. vehicle; » = 4 experiments for A
and B and n = 5 for C and D.
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Fig. 2. Selective inhibition of AC5 by Ara-A
(in vivo). Left ventricle ejection fraction
(LVEF) was measured in response to ISO chal-
lenges in WT (4), AC5Tg (B), and AC6Tg (C)
in the presence of either vehicle, Ara-A, or
metoprolol (n = 6 animals/group). D: negative
inotropic effect of Ara-A at baseline and at a
dose of 0.02 and 0.04 pg'kg™!-min~! of ISO.
Ara-A decreased ISO-induced increases in
LVEF more in AC5Tg mice than WT or
AC6Tg mice (A-D). These data show that
Ara-A selectively suppresses ACS in vivo. In
contrast to Ara-A, the B-adrenergic receptor
(B-AR) blocker metoprolol decreased basal left
ventricle (LV) function and also completely
blocked the positive inotropic response to ISO
(A). t-Test: *P < 0.05, Ara-A vs. vehicle; TP <
0.05, metoprolol vs. Ara-A or vs. vehicle; and
#P < 0.05 vs. same ISO dose in WT or vs. same
ISO dose in AC6Tg.
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