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Somatic RHOA mutation in angioimmunoblastic T cell

lymphoma

Mamiko Sakata-Yanagimoto!22, Terukazu Enamil-?2, Kenichi Yoshida®3-?2, Yuichi Shiraishi%, Ryohei Ishii®,
Yasuyuki Miyake!, Hideharu Muto!, Naoko Tsuyama®, Aiko Sato-Otsubo?3, Yusuke Okuno?, Seiji Sakata’,

Yuhei Kamadal, Rie Nakamoto-Matsubara!, Nguyen Bich Tran!, Koji Izutsu®?, Yusuke Sato®3, Yasunori Ohtal?,
Junichi Furutall, Seiichi Shimizu!?, Takuya Komeno!, Yuji Sato!4, Takayoshi Ito!%, Masayuki Noguchil®,

Emiko Noguchil’, Masashi Sanada?3, Kenichi Chiba%, Hiroko Tanaka!8, Kazumi Suzukawal>1°,

Toru Nanmoku'?, Yuichi Hasegawal, Osamu Nureki’, Satoru Miyano*18, Naoya Nakamura?%, Kengo Takeuchi®’,

Seishi Ogawa?323 & Shigeru Chibal21:23

Angioimmunoblastic T cell lymphoma (AITL) is a distinct
subtype of peripheral T cell lymphoma characterized by
generalized lymphadenopathy and frequent autoimmune-like
manifestations’-2. Although frequent mutations in TET2, IDH2
and DNMT3A, which are common to various hematologic
malignancies®#4, have been identified in AITL5-8, the molecular
pathogenesis specific to this lymphoma subtype is unknown.
Here we report somatic RHOA mutations encoding a
p.Gly17Val alteration in 68% of AITL samples. Remarkably, all
cases with the mutation encoding p.Gly17Val also had TET2
mutations. The RHOA mutation encoding p.Gly17Val was
specifically identified in tumor cells, whereas TET2 mutations
were found in both tumor cells and non-tumor hematopoietic
cells. RHOA encodes a small GTPase that regulates diverse
biological processes. We demonstrated that the Gly17Val
RHOA mutant did not bind GTP and also inhibited wild-type
RHOA function. Our findings suggest that impaired RHOA
function in cooperation with preceding loss of TET2 function
contributes to AlTL-specific pathogenesis.

AITL accounts for approximately 20% of all T cell lymphoma cases!.
On the basis of gene expression profiling, the normal counterparts
of AITL tumor cells are proposed to be follicular helper T cells
(Try cells), a subset of helper T cells'2. Peripheral T cell lymphoma,

not otherwise specified (PTCL-NOS) represents a more heterogene-
ous category of mature T cell lymphomas, including a subset sharing
some features of AITL>.

To explore the relevant gene mutations responsible for the patho-
genesis of AITL, we performed whole-exome sequencing!? of three
AITL and three PTCL-NOS samples (Supplementary Table 1). Of
the targeted sequence, 86.5% was analyzed by >20 independent
reads on average (Supplementary Figs. 1 and 2). In total, we identi-
fied and confirmed 87 non-silent somatic mutations (4-27 (median
of 12.5) per sample) by Sanger sequencing and/or deep sequencing
(Fig. 1a and Supplementary Table 2), including 79 missense and 5
nonsense single-nucleotide variants (SNVs) and 1 non-frameshift
and 2 frameshift deletions. The numbers of non-silent mutations
were lower than reported in B cell neoplasms!!:12, although rela-
tively low tumor contents, which were suspected owing to mutant
allele frequencies of generally less than 0.25 (median of 0.11), could
have compromised sensitivity in detecting mutations (Fig. 1a).
Recurrent mutations were found in only one gene, RHOA, in which
identical ¢.50G>T mutations predicted to result in a p.Gly17Val
alteration were identified in one PTCL-NOS and three AITL speci-
mens (Fig. 1a,b and Supplementary Fig. 3). No allelic imbalances
were observed at the RHOA locus (Supplementary Fig. 4).

Prompted by this discovery, we screened RHOA mutations
in an extended cohort of 72 AITL and 87 PTCL-NOS samples by
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Figure 1 Discovery of a RHOA mutation encoding p.Glyl7Val in PTCL

by whole-exome sequencing. (a) Somatic mutations identified in three
AITL and three PTCL-NOS samples are shown with the frequencies

of mutation alleles plotted. Red and blue filled circles indicate the

RHOA mutation encoding p.Glyl17Val and TETZ2 mutations, respectively.
Mutations of TET2, IDHZ and DNMT3A that were not found by whole-
exome sequencing (WES) but were identified later by targeted deep
sequencing are also depicted by open diamonds: blue, TETZ; orange,
DNMT3A; purple, IDH2. (b) Positions of RHOA alterations. Nucleotide-
binding domains are represented by yellow boxes. The effector domain

is represented by a red box. (c) Positions of alterations in the TET2,
DNMT3A and IDH2 proteins. Black, red and yellow arrowheads indicate
missense, frameshift and nonsense mutations, respectively. The cysteine-
rich and double-strand B-helix (DSBH) domains of TET2 are represented
by a yellow and a red box, respectively. proline-tryptophan-tryptophan-
proline (PWWP), zinc-finger (ZNF) and methyltransferase (MTase) domains
of DNMT3A are shown by light blue, blue and purple boxes, respectively.

deep sequencing of all coding sequences (n = 79) or the mutational
hotspot (c.50G>T; p.Glyl7Val) (n = 80) of RHOA (Supplementary
Fig. 1 and Supplementary Table 3). RHOA mutations were found
in 66 of the 159 specimens, with a much higher frequency in AITL
(51/72; 70.8%) than PCTL-NOS (15/87; 17.2%) (Fig. 1b, Table 1 and
Supplementary Table 4). We identified no RHOA mutations other
than the ¢.50G>T (p.Gly17Val) mutation except for an in-frame dele-
tion (c.49_51delGGA) resulting in a p.Gly17del (PTCL33) alteration
and a missense SNV (c.482C>A) resulting in a p.Ala161Glu (PTCL59)
alteration in cases negative for the p.Gly17Val alteration (Fig. 1b and
Supplementary Table 4). We validated all low-frequency mutant RHOA
alleles (frequency of 0.02—0.05) using an independent deep sequencing
platform (Online Methods). No RHOA mutations encoding p.Gly17Val
were found in other hematologic malignancies, including in myeloid
neoplasms (n = 142), mature B cell neoplasms (n = 91) and mature
T cell neoplasms other than AITL and PTCL-NOS (n =11) (Table 1),
suggesting that the RHOA mutation encoding p.Gly17Val is highly
specific to AITL and PTCL-NOS among hematologic malignancies.
According to the pathologic definition in the Online Methods>?, we
classified 21 of 59 immunohistochemically characterized PTCL-NOS
cases as Try-like PTCL-NOS cases. Thirteen of the 21 Tgy-like PTCL-
NOS cases (61.9%) had the RHOA mutation encoding p.Gly17Val,
whereas none of the remaining 38 PTCL-NOS cases had this mutation
(P < 0.001) (Supplementary Table 5). Given that almost all AITL
cases showed Tgy-like features, these findings implied a strong cor-
relation between the RHOA mutation encoding p.Glyl7Val and the
Tgy-like phenotype of PTCL, similar to the correlation previ-
ously shown between TET2 mutations and the Tgy-like phenotype
of PTCL®. No clinical parameters were significantly different in

the mutation-positive and mutation-negative cases (Supplementary
Fig. 5 and Supplementary Table 6).

To investigate the correlation between mutations in RHOA and
other genes, we also resequenced TET2, IDH1, IDH2 and DNMT3A
in addition to RHOA in the subcohort of 79 PTCL (AITL, 46; PTCL-
NOS, 33) cases (Supplementary Figs. 1 and 6). A total of 97 TET2
mutations were identified in 54 of the 79 PTCL specimens (68.4%)
(AITL, 38 (82.6%); PTCL-NOS, 16 (48.5%)). Similarly, we found
DNMT3A mutations in 21 PTCL specimens (26.6%) (AITL, 12
(26.0%); PTCL-NOS, 9 (27.3%)). We identified IDH2 mutations affect-
ing Argl72 (p.Argl72Met, p.Argl72Thr, p.Argl72Ser, p.Argl72Lys
and p.Argl72Gly) in 14 cases (17.7%) (AITL, 14 (30.4%); PTCL-
NOS, 0 (0%)) (Figs. 1c and 2a, Supplementary Tables 7 and 8, and
Supplementary Note). No IDHI mutations were identified. Several
mutations in TET2, IDH2 and DNMT3A, which had escaped detec-
tion in the whole-exome sequencing analysis, were newly identified
in the same whole-exome sequencing cohort by this targeted rese-
quencing. Our inability to detect these mutations using whole-exome
sequencing might be explained by their low allelic mutational bur-
dens and/or by low sequencing coverage in whole-exome sequencing
(Fig. 1a). Unexpectedly, however, TET2 and DNMT3A mutations with
high-frequency alleles were also newly found in three and two cases,
respectively (Fig. 1a). The cause of our inability to identify TET2
and DNMT3A mutations by whole-exome sequencing might be the
presence of substantial numbers of mutant reads in the reference bone
marrow samples (Supplementary Fig. 7, Supplementary Tables 9
and 10, and Supplementary Note).

Remarkably, mutations in RHOA, TET2 and IDH2 showed strong
correlations; all RHOA-mutated cases also had TET2 mutations
(P < 0.001), and all but one of the IDH2 mutations were confined to
tumors also having RHOA and TET2 mutations (P < 0.001) (Fig. 2a
and Supplementary Note). The predominant TET2 alleles showed sig-
nificantly higher allelic burden than mutant RHOA and IDH2 alleles
in most cases (TET2 versus RHOA, P < 0.001; TET2 versus IDH2,
P =0.001; Fig. 2b,c), whereas RHOA and IDH2 mutations had similar
allele frequencies (Fig. 2d). Skewed distributions of relative allele
frequencies among these mutations strongly suggested that TET2
mutations predated RHOA and/or IDH2 mutations in most cases.

Table 1 RHOA mutation encoding p.Gly17Val in various
hematologic malignancies
Disease

Number of mutated cases (%)
n=170

T cell malignancies

AITL2 51/72 (70.8)

PTCL-NOS 15/87 (17.2)
with AITL features 13/21 (61.9)
without AITL features 0/38 (0)
NDb 2/28(7.1)

Other T cell malignancies 0/11 (0)

B cell malignancies n=291
DLBCL 0/44 (0)
Follicular lymphoma 0/19 (0)
Other B cell malignancies 0/28 (0)

Myeloid malignancies n=142
AML 0/89 (0)
MDS 0/36 (0)
MPN 0/14 (0)
MDS/MPN 0/3 (0)

DLBCL, diffuse large B cell lymphoma; AML, acute myeloid leukemia; MDS, myelo-
dysplastic syndrome; MPN, myeloproliferative neoplasm.

3lncluding one case with RHOA p.Glyl7del and one case with RHOA p.Alal61Glu.

bNot determined.
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Figure 2 Relationship between RHOA, TETZ2, IDHZ2 and DNMT3A
mutations in PTCL. (a) Distribution of mutations in RHOA, TET2, IDH2
and DNMT3Ain 79 PTCL (46 AITL and 33 PTCL-NOS) samples that
were analyzed by targeted deep sequencing. Two or three distinct TET2
mutations and two distinct DNMT3A mutations were identified in
multiple samples. Dark blue and dark green indicate samples having a
single TETZ2 or DNMT3A mutation, respectively, and light blue and light
green indicate samples having multiple TETZ or DNMT3A mutations.
(b—e) Comparison of the allele frequencies of two selected mutations in
samples harboring mutations in TET2 and RHOA (b), TETZ2 and IDH2 (c),
RHOA and IDHZ2 (d) and TET2 and DNMT3A (e). Each axis shows the
frequencies of the mutant alleles. When multiple mutations existed in

a single gene, the frequencies of major alleles are indicated. Data were
analyzed statistically by Wilcoxon rank-sum test.

Mutations in DNMT3A largely overlapped and had similar allelic
burdens as TET2 mutations (Fig. 2e), but their correlation with RHOA
or IDH2 mutations was much less clear (Fig. 2a).

To determine the clonal structure of the RHOA mutation encoding
p-Gly17Val and of other gene mutations, we isolated CD4* T cells, a frac-
tion enriched for tumor cells and other fractions, from the specimens
of two cases (PTCL159 and PTCL160; Supplementary Figs. 8 and 9),
and we analyzed mutations by targeted resequencing as well as
by Sanger sequencing. In PTCL159 (PTCL-NOS in the skin),
we found the RHOA mutation encoding p.Glyl7Val, two TET2
mutations and a DNMT3A mutation (Supplementary Fig. 8 and
Supplementary Table 7). Somatic origin of these mutations was con-
firmed (Supplementary Fig. 8). We identified the RHOA mutation
encoding p.Glyl7Val in purified CD4" cells but not in CD8* cells.
One of the two TET2 mutations and the DNMT3A mutation were
identified in both CD4* and CD8* cell fractions with apparently
similar allelic burdens to each other in the two types of cells, whereas
the remaining TET2 mutation was found only in CD4" cells and was
absent in CD8* cells (Supplementary Fig. 8). These observations sug-
gested that the RHOA mutation encoding p.Glyl17Val and one of the
two TET2 mutations were confined to CD4* tumor cells, whereas the
other TET2 mutation and the DNMT3A mutation were shared by both
CD4* tumor cells and CD4* and CD8" reactive cells (Supplementary
Fig. 8). In contrast, the RHOA mutation encoding p.Gly17Val and
two TET2 mutations identified in PTCL160 (AITL) were all confined
to tumor cells (Supplementary Fig. 9, Supplementary Table 7 and
Supplementary Note). These data indicate that the RHOA mutation
encoding p.Gly17Val was a specific event in tumor cells. In contrast,
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TET2 and DNMT3A mutations seemed to have taken place in either
CD4* tumor cells or early progenitor cells such as those that give rise
to all hematopoietic cells, as previously described®”.

RHOA encodes a small GTPase, which has a highly conserved
amino acid structure across species (Supplementary Fig. 10). RHOA
operates as a molecular switch that regulates a wide variety of bio-
logical processes through cycling between an active (GTP-bound)
state and an inactive (GDP-bound) state!>14. RHOA is activated by
specific guanine-exchange factors (GEFs) that catalyze the dissocia-
tion of GDP and the rebinding of GTP, and signaling is terminated by
hydrolysis of GTP to GDP, a reaction that is stimulated by GTPase-
activating proteins (GAPs)!>14,

Three-dimensional model structures of the Glyl7Val RHOA
protein suggest compromised binding to GDP and GTP!>16
(Supplementary Fig. 11 and Supplementary Note). In fact, when
we expressed RHOA proteins in NIH3T3 cells, a substantial frac-
tion of wild-type RHOA protein bound GTP or GTPYS in a rhotekin
pulldown assayl’, whereas no GTP- or GTPyS-bound form was
pulled down for the Glyl17Val RHOA mutant (Fig. 3a), suggesting
severely reduced GTP and GTPYS binding by the Glyl7Val mutant.
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Figure 3 Dominant-negative effect of the Glyl7Val RHOA mutant on wild-type RHOA. (a) Rhotekin pulldown assay for endogenous RHOA and
exogenously expressed wild-type and Glyl7Val RHOA in NIH3T3 cells. Extracts from NIH3T3 cells expressing Flag-tagged wild-type or Gly17Val
RHOA were pulsed with GTPyS and incubated with glutathione Sepharose beads on which the RHO-binding domain of rhotekin fused to GST was
immobilized, and precipitated protein was blotted with antibodies to RHOA (left) and Flag (right) to detect active RHOA specifically. 1B, immunoblot;
WT, wild type. (b) GEF-binding activity of wild-type and Gly17Val RHOA. Lysate from NIH3T3 cells, transiently expressing ECT2 with an N-terminal
deletion, was incubated with Sepharose beads on which GST-fused wild-type or Gly17Val RHOA protein was immobilized, and precipitated protein
was blotted with antibody to ECT2.
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Figure 4 Effects of the Glyl7Val RHOA mutant on transcriptional
regulation and actin cytoskeleton formation in NIH3T3 cells.

(a—c) Effect of Gly17Val RHOA on the transcriptional activity of the SRF-RE.
(a) Activity of the SRF-RE reporter in NIH3T3 cells expressing wild-type
or mutant (Glyl4Val, Glyl7Val or Thr19Asn) RHOA protein. (b) Effect

of increasing amounts (16, 48 or 144 ng/well) of Glyl7Val RHOA on
SRF-RE reporter activity in NIH3T3 cells. (c) Effect of increasing
amounts (16, 48 or 144 ng/well) of Glyl7Val RHOA on SRF-RE reporter
activity enhanced by exogenously expressed wild-type RHOA. In each

plot in a-c, the mean = s.d. of triplicate experiments is shown.

A representative result from three independent experiments is shown.
(d,e) Effect of Gly17Val RHOA on actin cytoskeleton formation. (d) F-actin
staining with phalleidin (red) in NIH3T3 cells transiently transfected with
vector expressing wild-type or mutant (Glyl4Val, Glyl7Val or Thr19Asn)
RHOA. GFP is used as a marker for transduction with each cDNA.

(e) NIH3T3 cells stably expressing wild-type RHOA were transfected with
vector expressing Myc-tagged Glyl7Val RHOA. Scale bars in d,e, 30 um.

Moreover, the Gly17Val RHOA mutant reduced GTP binding by both the
endogenous and exogenous wild-type RHOA proteins in a dose-
dependent manner (Supplementary Figs. 12 and 13), suggesting a
dominant-negative nature for Glyl7Val RHOA. This view was further
supported by the finding that the Glyl7Val RHOA mutant bound
ECT2, one of the RhoGEFs, more tightly than wild-type RHOA,
as was previously described for Glyl7Ala RHOA!® (Fig. 3b and
Supplementary Note). The Glyl7del and Alal61Glu mutants also
showed impaired binding capacity for GTP/GTPYS and inhibited
GTP binding by wild-type RHOA protein (Supplementary Fig. 14).
Together, these results support the notion that the RHOA mutants
contribute to the pathogenesis of PTCL through the inhibition of wild-
type RHOA in a dominant-negative manner, although the amount of
mutant RHOA protein seemed to be low in both NIH3T3 cells and
primary AITL tumor cells (Supplementary Fig. 15, Supplementary
Table 11 and Supplementary Note), for an unknown reason.

In accordance with these findings, unlike wild-type RHOA
and mutant Glyl4Val RHOA, the Glyl7Val RHOA mutant did not
activate transcription from the serum response factor-responsive
element (SRF-RE)!Y (Fig. 4a,b) and instead repressed transcrip-
tion from SRF-RE activated by exogenously expressed wild-type
RHOA (Fig. 4c), as did a known dominant-negative mutant of
RHOA (Thr19Asn) (Fig. 4a and data not shown). Gly17Val as well
as Thr19Asn RHOA also attenuated actin stress fiber formation
in NIH3T3 cells, which was markedly induced by wild-type and
Gly14Val RHOA?® (Fig. 4d). Furthermore, the Glyl7Val RHOA
mutant inhibited the assembly of actin stress fibers in NIH3T3 cells
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stably expressing wild-type RHOA (Fig. 4e). All these data suggest
that the Gly17Val mutant functions in a dominant-negative manner
with respect to wild-type RHOA.

To investigate the effect of wild-type and Gly17Val RHOA on
T cells, we established Jurkat cells inducibly expressing wild-type or
Gly17Val RHOA (Fig. 5a). When wild-type RHOA was expressed,
the proliferation of Jurkat cells was significantly decreased (WT Dox
(+) versus Mock DOX (+), P < 0.001, days 2-4; Fig. 5b), and G1-to-S
cell cycle progression was suppressed (Supplementary Fig. 16).
In contrast, inducibly expressed Glyl7Val RHOA did not affect
the growth or cell cycle progression of Jurkat cells (Fig. 5b and
Supplementary Fig. 16). We further performed mRNA sequenc-
ing analysis to examine the effect of the RHOA mutation encoding
p.Glyl7Val on gene expression, using RNA prepared from Jurkat
cells inducibly expressing wild-type or Glyl7Val RHOA or mock-
transfected cells, as well as RNA from NIH3T3 cells transiently
expressing wild-type or Glyl17Val RHOA or mock-transfected cells.
Gene Set Enrichment Analysis (GSEA)?122 demonstrated that the
serum response factor (SRF) pathway, known to be activated under
RHOA signaling??, was significantly enriched at a false discovery rate
(FDR) g value less than 0.25 for cells expressing wild-type RHOA
versus mock-transfected cells in both Jurkat and NIH3T3 cells

c d

Jurkat (SRF_C)

NIH3T3 (SRE_C)

coooo0
o= MNWHdO

Enrichment score

Rank in orderded data set

Rank in orderded data set

T WTRHOA Mock WTRHOA Mock

0 1 2 3 4
Days after induction

Figure 5 Effect of Glyl7Val RHOA on T cells. (a) Doxycycline (Dox)-induced expression of wild-type and Gly17Val RHOA in Jurkat cells. A protein blot
with antibody to RHOA is shown. B-actin is used as a loading control. (b) Proliferation of Jurkat cells inducibly expressing wild-type or Gly17val RHOA.
Absorbance (at 450 nm) was converted to cell number. The mean + s.d. of quadruplicate experiments is shown. A representative result from three
independent experiments is shown. (c,d) GSEA for Jurkat cells inducibly expressing wild-type or Gly17Val RHOA or mock transfected and NIH3T3 cells
transiently expressing wild-type or Glyl17Val RHOA or mock transfected (n = 2 each). The SRF pathway was differentially enriched in both Jurkat cells
(c) and NIH3T3 cells (d). SRF_C refers to the V$SRF_C gene set.
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(Fig. 5¢,d and Supplementary Table 12). The SRF pathway was
reported as an essential mediator of T cell development in the
thymus?42%, although we found no clue to its functional relevance in
AITL development in the literature. We did not observe enrichment of
the SRE pathway in either cell type expressing Glyl7Val RHOA compared
to mock-transfected cells or cells expressing wild-type RHOA.
These findings further support the notion that Gly17Val RHOA is a
loss-of-function mutant.

The extremely high frequency and specificity of the RHOA muta-
tion encoding p.Glyl7Val in AITL and AITL-related PTCL cases
unequivocally underscore its major role in the development of these
subtypes of PTCL (Supplementary Fig. 17). The finding of somatic
mutation of RHOA in lymphoma, particularly of a mutation with
a loss-of-function and/or dominant-negative nature, was rather
unexpected because the oncogenic potential of RHOA has been
implicated in human cancers®. However, several lines of evi-
dence previously suggested a tumor-suppressive role for RHOA in
T-lineage cells?%27, Moreover, transgenic expression of C3 trans-
ferase, an inhibitor of the Rho family of proteins (RHOA, RHOB and
RHOC) under the Lck promoter has been shown to induce thymic
T cell lymphoma in mice?8. Our observations in Jurkat cells express-
ing wild-type RHOA are also along these lines. Clearly, further studies
are warranted to clarify the molecular pathogenesis mediated by the
unique RHOA mutation encoding p.Glyl7Val in AITL and related
PTCL, and such studies might have promising implications for the
development of novel diagnostics and therapeutics.

URLs. European Genome-phenome Archive, https://www.ebi.ac.uk/
ega/; Genomon-exome, http://genomon.hgc.jp/exome/en/index.
html; Picard, http://picard.sourceforge.net/; dbSNP131, http://www.
ncbi.nlm.nih.gov/projects/SNP/; 1000 Genomes Project, http://
www.1000genomes.org/; MSigDB, http://www.broadinstitute.org/
gsea/msigdb.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. Genome sequence data are available at the European
Genome-phenome Archive under accession EGAS00001000557.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper
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