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- The difference in plasma concentrations of endoxifen and 4-hydroxy-
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Student’s ¢ test. null: CYP2D6*5, *21 and *36-*36
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Table 3 Association between tamoxifen dose and incidence of adverse events (all grades according to CTCAE v4.0)

Adverse events CYP2D6 genotype Event/no event, After compared After compared
no of patients (%) to before to *1/*1
Before After (30 or Odds ratio P value Odds ratio P value
(20 mg/day) 40 mg/day) (95% CI) (95% CI)
Hot flashes *1/*%] 9/1 (90.0%) -
*]/decreased and *1/null  27/9 (75.0%) 18/9 (66.7%) 0.67 (0.22-2.00) 0.58 0.22 (0.02-2.04) 023
Decreased/decreased and  19/2 (90.5%) 19/3 (86.4%) 0.67 (0.10-4.45) 1.00 0.70 (0.06-7.74)  1.00
decreased/null
Hyperhidrosis *1/%1 9/1 (90.0%) -
*]/decreased and *1/null  21/15 (58.3%) 14/13 (51.9%) 0.77 (0.28-2.1) 0.62 0.12 (0.01-1.08)  0.056
Decreased/decreased and 13/8 (61.9%) 10/12 (45.5%) 0.51 (0.15-1.73) 0.36 0.09 (0.01-0.86) 0.024
decreased/null
Vaginal discharge  *1/*] 7/3 (70.0%) -
1/decreased and *1/null  30/6 (83.3%) 21/6 (77.8%) 0.70 (0.20-2.47) 0.75 1.50 (0.29-7.65)  0.68
Decreased/decreased and  12/9 (57.1%) 18/4 (81.8%) 3.38 (0.84-13.5) 0.10 1.93 (0.34-10.91) 0.65
decreased/null
Trregular *1/%1 1/9 (10.0%) -
menstruation *1/decreased and *1/null  3/33 (8.3%) 0/27 (0.0%) 0.17 (0.01-3.52) 0.25 0.12 (0.00-3.07) 0.27
Decreased/decreased and 2119 (9.5%) 2/20 (9.1%) 0.95 (0.12-7.44) 1.00 0.90 (0.07-11.25) 1.00
decreased/null
Nausea or *1/*] 1/9 (10.0%) -
vomiting *1/decreased and *1/null  6/30 (16.7%) 3/24 (11.1%) 0.63 (0.14-2.76) 0.72 1.13 (0.1-12.27)  1.00
Decreased/decreased and  4/17 (19.0%) 3/19 (13.6%) 0.67 (0.13-3.44) 0.70 1.42 (0.13-15.64) 1.00
decreased/null
Eye disorders *1/*%] 4/6 (40.0%) -
*1/decreased and *1/null  17/19 (47.2%) 12/15 (44.4%) 0.89 (0.33-2.44) 1.00 1.20 (0.27-5.25) 1.00
Decreased/decreased and 8/13 (38.1%) 11/11 (50.0%) 1.63 (0.48-5.47) 0.54 1.50 (0.33-6.83) 0.71
decreased/null
Malaise *]/*%] 713 (70.0%) -
*]/decreased and *1/null  21/15 (58.3%) 12/15 (44.4%) 0.57 (0.21-1.57) 0.32 0.34 (0.07-1.62) 0.27
Decreased/decreased and  8/13 (38.1%) 7/15 (31.8%) 0.76 (0.22-2.67) 0.75 0.20 (0.04-1.01) 0.062
decreased/null
Reproductive *1/%1 0/24 (0.0%) -
fi}i, Steg‘ *]/decreased and *1/null  2/43 (4.4%) 0/30 (0.0%) 0.28 (0.01-5.95) 0.87 - -
ensc;’;nfeftsl‘—i al Decreased/decreased and 0/29 (0.0%) 1/20 (4.8%) 4.12 (0.16-106.01) 0.84 3.59 (0.14-92.84) 0.84
thickening decreased/null
Thromboembolic *1/*] 1723 (4.2%) -
event *]/decreased and *1/null  1/44 (2.2%) 0/30 (0.0%) 0.47 (0.02-11.94) 1.00 0.26 (0.01-6.59) 0.85
Decreased/decreased and 0/29 (0.0%) 0/20 (0.0%) - - 0.36 (0.01-9.43) 1.00
decreased/null
Hepatobiliary *1/*1 0/24 (0.0%) -
disord;:)rs-. " *1/decreased and *1/null  0/45 (0.0%) 2/28 (6.7%) 7.71 (0.36-166.39) 0.74 4.30 (0.20-93.90) 0.85
;’;gifirc 2‘;‘;’;0;5 Decreased/decreased and 029 (0.0%) 021 (0.0%) - - - -
decreased/null
CI confidence interval
Decreased: *10, *41; null: *5, *21, *36-*36
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increase of tamoxifen dose for the patients with
CYP2D6*1/¥10, *1/null, *10/*10, *10/null, and *41/null
genotypes was an useful method to achieve the plasma
levels of active metabolites of tamoxifen which was seen in
the patients with CYP2D6*1/*] genotype.

Subjects who carry at least one decreased-function allele
(CYP2D6*10 or CYP2DG6%*41) or one null allele, remain to
have a certain level of enzymatic activity although it is
lower than the CYP2D6*1/*%] genotype. Therefore,
increased dose is an effective way to overcome the problem
of reduced enzymatic activity and to increase the level of
active metabolites for these populations. However, we
could not evaluate the effects of increasing dose in the null/
null patients because no null/null patient participated in this
study. Recently, Irvin et al. reported that endoxifen con-
centration in PM patients, who were defined as homozy-
gote for inactive alleles, was still lower after increasing
tamoxifen dose to 40 mg/day (12.9 ng/ml) than that of
patients classified as extensive metabolizers, who carry two
alleles with normal activity (29.2 ng/ml) [28]. It should be
noted that dose-adjustment strategy is useful for patients
carrying at least one decreased-function allele or one null
allele, while the postmenopausal patients with null/null
genotype of CYP2D6 might be more beneficial to take
aromatase inhibitors instead of increased dose of tamoxi-
fen, although further verification is required.

It has been well known that several adverse events were
observed during tamoxifen therapy [29]. Hot flash is one of
the most common adverse events, which was observed in up
to 80% of patients prescribed with tamoxifen, and approxi-
mately 30% of them are relatively severe [29]. In this study,
no significant difference was observed in the incidence of hot
flash between the groups before and after increasing
tamoxifen dose (Table 3). The incidence of hot flash has
been suggested to be associated with the CYP2D6 genotypes
[16, 30], implying association with plasma levels of endox-
ifen and 4-hydrotamoxifen. The results from our preliminary
investigation suggest that dose adjustment from 20 to 30 mg/
day of tamoxifen for the patients with CYP2D6*1/*10 and
*]/null and 40 mg/day for the patients with *10/*10, *10/
null, and *47/null may not affect the risk of adverse events,
although tamoxifen and N-desmethyltamoxifen showed
higher plasma concentrations in the patients receiving higher
tamoxifen dose than those of CYP2D6*1/*1 patients with
20 mg/day of tamoxifen. Further analysis using a larger
number of patients is required to evaluate the influences of
increase of tamoxifen dose on adverse events.

In conclusion, the dose-adjustment study based on the
CYP2D6 genotypes indicated that the increase of tamoxi-
fen dose was able to increase the endoxifen plasma con-
centration, -and expected to improve the prognosis of the
tamoxifen-treated patients who show decreased CYP2D6
activity by genetic polymorphisms. A prospective large-
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scale study is required to confirm our dose-adjustment
strategy for improvement of tamoxifen therapy in breast
cancer patients.
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Abstract

We conducted a genome-wide association (GWA) meta-analysis of 4,604 endometriosis cases and
9,393 controls of Japanese! and European? ancestry. We show that rs12700667 on chromosome
7p15.2, previously found in Europeans, replicates in Japanese (P= 3.6 x 1073), and confirm
association of rs7521902 on 1p36.12 near WNT4. In addition, we establish association of
rs13394619 in GREBI on 2p25.1 and identify a novel locus on 1222 near VEZT (rs10859871).
Excluding European cases with minimal or unknown severity, we identified additional novel loci
on 2p14 (rs4141819), 6p22.3 (rs7739264) and 9p21.3 (rs1537377). All seven SNP effects were
replicated in an independent cohort and produced P< 5 x 1073 in a combined analysis. Finally, we
found a significant overlap in polygenic risk for endometriosis between the European and
Japanese GWA cohorts (P= 8.8 x 10711), indicating that many weakly associated SNPs represent
true endometriosis risk loci and risk prediction and future targeted disease therapy may be
transferred across these populations.

Endometriosis (MIM131200) is a common gynecological disease associated with severe
pelvic pain, affecting 6-10% of women in their reproductive years’* and 20-50% of women
with infertility®. Endometriosis risk is influenced by genetic factors and has an estimated
heritability of around 51%3.

Two large endometriosis GWA studies!-2 have reported genome-wide significant
associations. The first, in a Japanese sample of 1,423 cases and 1,318 controls obtained from
the BioBank Japan (BBJ), with 484 cases and 3,974 controls for replication, implicated a
SNP (rs10965235) in the CDKN2BAS gene on chromosome 9p21.3 (overall odds ratio (OR)
=1.44, 95% CI 1.30-1.59; P=5.57 x 10712)1. The second, by the International Endogene
Consortium (IEC) in a sample of European ancestry from Australia (2,270 cases and 1,870
controls) and the UK (924 cases and 5,190 controls), with 2,392 cases and 2,271 controls
from the US for replication, identified an intergenic SNP (rs12700667) on 7p15.2 (overall
OR = 1.20, 95% CI 1.13-1.27; P=1.4 x 107)2. These two studies did not report replication
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of each other’s top locus, partly because rs10965235 is monomorphic in Caucasian
populations. The European study did find association with rs7521902 (OR = 1.16, 95% CI
1.08-1.25, P=9.0 x 1075) near the WNT4 gene on 1p36.12, that was reported to be
suggestively associated in the Japanese (OR = 1.20, 95% CI 1.11-1.29, P=2.2 x 107%),

Encouraged by the WNT4 association and with accumulating evidence for many complex
traits that the number of discovered variants is strongly correlated with experimental sample
size®, we sought to increase the ratio of controls to cases in the Australian GWA cohort and
to perform a formal meta-analysis of the Australian (QIMR), UK (OX) and Japanese (BBJ)
GWA data.

To increase the power of the Australian GWA dataset we matched the existing QIMR cases
and controls? on ancestry to individuals from the Hunter Community Study (HCS)’. After
stringent quality control (QC), the combined QIMRHCS GWA cohort consisted of 2,262
endometriosis cases and 2,924 controls, increasing the number of controls by 1,054 and the
Australian effective sample size by 24%. We also performed more stringent QC
incorporating the OX dataset, resulting in a revised OX GWA cohort of 919 endometriosis
cases and 5,151 controls. All cases in the QIMRHCS and OX studies have surgically
confirmed endometriosis and disease stage from surgical records using the rAFS
classification system3, subjects are grouped into stage A (stage I or II disease or some
ovarian disease with a few adhesions; n= 1,680, 52.8%) or stage B (stage III or IV disease;
n=1,357, 42.7%), or unknown (n= 144, 4.5%). Details of the final GWA and independent
replication case-control cohorts are summarized in Table 1 and a schematic of our study
design is provided in Fig. 1.

Meta-analysis of all endometriosis 4,604 cases and 9,393 controls for the 407,632 SNPs
overlapping in the QIMRHCS, OX and BBJ GWA data, showed that the A allele of
1s12700667 at the European 7p15.2 locus (OR = 1.22, 95% CI 1.13-1.31, P=7.2 x 1078)
also replicates in the Japanese GWA data (OR = 1.22, 95% CI 1.07-1.39, P=3.6 x 1073),
producing an overall OR of 1.22 (95% CI 1.14-1.30) and P=9.3 x 10710 in the GWA meta-
analysis; we also confirmed association with allele A of rs7521902 at the 1p36.12 WNT4
locus (OR = 1.18, 95% CI 1.11-1.25, P= 4.6 x 1078) (Table 2).

The GWA meta-analysis identified a novel locus on 12922 near the VEZT gene (allele C of
rs10859871 OR = 1.18, 95% CI 1.12-1.25, P= 5.5 x 107%). We also established association
with allele G 0f rs13394619 in the GREBI gene on 2p25.1 (OR =1.12, 95% CI 1.06-1.18,
P=2.1 x 1075), previously reported (OR = 1.35, 95% CI 1.17-1.56, P=3.8 x 105) in a
small independent Japanese GWA study of 696 cases and 825 controls by Adachi et al
(2010)°. The G allele of rs13394619 approached conventional genome-wide significance (P
<5 x 1078) in combined analysis of the QIMRHCS, OX, BBJ, Adachi500K and Adachi6.0
GWA data (OR = 1.15, 95% CI 1.09-1.20, P=6.1 x 1078) (Table 2). In addition to the three
genome-wide significant SNPs on chromosomes 1, 7 and 12 (157521902, rs12700667,
rs10859871), the Manhattan plot of the all endometriosis GWA meta-analysis results
(Su;s)plementary Fig. 1) showed 34 SNPs reached genome-wide suggestive association (P<
107).

Given the substantially greater genetic loading of moderate to severe (Stage B)
endometriosis (rAFS stage III or IV disease) compared to minimal (Stage A) endometriosis
(rAFS stage I or II disease)?, a secondary analysis was performed for the SNPs reaching
genome-wide suggestive association, where the association results from QIMRHCS and OX
Stage B cases versus controls, were meta-analyzed with the BBJ association results (stage
information not available).
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After excluding endometriosis cases with minimal (rAFS stage I-1I) or unknown severity in
the QIMRHCS and OX cohorts, GWA meta-analysis implicated novel loci on 2p14 (allele C
of rs4141819 OR = 1.22, 95% CI 1.14-1.32, P=6.5 x 1078), 6p22.3 (allele T of rs7739264
OR =1.21, 95% CI 1.13-1.30, P=5.8 x 1078) and 9p21.3 (allele C of rs1537377 OR =
1.22,95% CI 1.14-1.30, P=1.0 x 1078) (Table 2, Supplementary Fig. 2, Supplementary
Table 1-2 and Supplementary Note).

Annotated plots showing evidence for association in the combined QIMRHCS, OX and BBJ
GWA data of genotyped SNPs across the seven implicated loci from the analysis of all cases
and of stage B cases only are provided in Supplementary Figs. 3-9. Imputation up to the
1000 Genomes reference panel produced more significant Pvalues and helped resolve the
associated region at the 1p36.12 (rs56318008, P,y = 1.3 x 10710), 2p25.1 (rs77294520,
Pitagen = 8.6 x 1078), 2p14 (152861694, Pytagep = 7.9 x 107), 6p22.3 (rs6901079, Py; = 1.9
x 1078), 9p21.3 (rs7041895, Pytagen = 5.1 x 10710) and 12q22 (rs11107968, Py =3.9 x
107%) loci (Fig. 2 and Supplementary Figs. 10-16). Of particular note, the most significant
imputed SNPs on 1p36.12, rs56318008 and rs3820282 (Py; = 1.6 x 10719), are located 22 bp
5" and withinthe WNT4 gene, respectively.

Interestingly, the most associated genotyped SNP at 9p21.3 (rs1537377) is 55 kb
centromeric to the genome-wide significant SNP reported in the original BB GWA!
(rs10965235) located in the CDKNZBAS gene, and 49 kb 3 to the transcription end site of
CDKNZBAS. SNP 1510965235 is monomorphic in Caucasian populations and we
investigated the independence of rs10965235 and rs1537377 in the BB GWA data. Firstly,
in the BBJ GWA data, alleles of rs10965235 and rs1537377 are very weakly correlated,
with linkage disequilibrium (LD) metrics of 2 = 0.028 and D’ = 0.461. Secondly, the allelic
association Pvalues for rs10965235 and rs1537377 are P=1.6 x 107 and P=1.8 x 1072,
respectively. After conditioning on rs10965235, weak residual association remains at
rs1537377 (P=9.0 x 1072). Consequently, the data suggest there may be two independent
genetic risk factors near the CDKN2BAS locus on 9p21.3. CDKN2BAS is a long non-
coding RNA adjacent to and transcribed from the opposite strand to CDKNZB (p15),
CDKNZ2A (p16) and ARF(pl4). Loss of heterozygosity of CDKN2A and hypermethylation
of the CDKNZA promoter have been reported in endometriosis!%11,

To further validate the seven SNPs implicated by the meta-analysis, we carried out a
replication study using a cohort of 1,044 cases and 4,017 controls obtained from the
BioBank Japan independent of the BBJ GWA cohort. As shown in the forest plots of risk
allele effects estimated using all cases versus controls (Fig. 3), the effects (ORs) were in the
same direction for all seven implicated SNPs across the GWA and replication cohorts. With
the exception of rs12700667, which was previously replicated (P= 1.2 x 1073) in 2,392
cases and 2,271 controls from the US2, and rs4141819 (with a marginal P=5.1x 1072), all
SNPs were replicated at the nominal P< 0.05 threshold (Table 2). All seven SNPs surpass
the conventional genome-wide significant threshold of P<5 x 1078 after combined analysis
of the GWA and replication cases and controls (Table 2). A conservative adjustment of the
rs4141819 total Pvalues (Py; = 8.5 x 1078; Pypoep = 4.1 x 1078) for performing two
independent GWA studies (all and stage B endometriosis cases versus controls) would
produce P> 5 x 1078 (Py1_adjusted = 1.7 % 1077; PyageB-adjusted = 8-2 % 1078). However, the
accurately imputed (Rsq > 0.95) SNP rs2861694 (Pytagep = 7.9 * 107%), in strong LD with
rs4141819 (#2=0.981, D' = 1.0; and 2 = 0.867, D’ = 1.0, in the 379 European and 286
Asian 1000 Genomes reference samples, respectively), would remain genome-wide
significant (PstageB-adjusted = 1.6 % 1079),

The Q-Q plots for the QIMRHCS, OX and BBJ GWA data (Supplementary Fig. 17a-c)
reflect our stringent quality control, while the GWA meta-analysis Q-Q plot (Supplementary
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Fig. 17d), reveals a significant preponderance of small Pvalues <1073, suggesting many of
these nominally significant SNPs likely represent true signals'2. To further examine the
shared genetic risk across our European and Japanese populations we performed polygenic
prediction analysis!3 to evaluate whether the aggregate effects of many variants of small
effect in the BBJ GWA cohort, could predict affection status in the European GWA cohorts.
The BBJ-derived risk scores significantly predicted affection status in the QIMRHCS (R2 =
0.0064; P=6.9 x 1077), OX (R% = 0.0057; P= 9.6 x 107°) and combined QIMRHCS+0X
all endometriosis case-control sets (R2 = 0.0054; P= 8.8 x 10711). For the individual and
combined QIMRHCS and OX case-control sets, the variance explained peaked in the SNP
sets with BBJ GWA P< 0.1, using all GWA meta-analysis SNPs (Fig. 4a) and after
excluding all SNPs within £2500 kb of the seven implicated SNPs listed in Table 1 (Fig.
4b). Analogously, performing the prediction in reverse, the QIMRHCS+OX-derived risk
scores significantly predicted affection status in the BBJ case-control set (R% = 0.0106; P=
3.3 x 107%) (Supplementary Fig. 18 and Supplementary Note).

A gene-based GWA analysis using VEGAS!, which accounts for gene size and LD
between SNPs, revealed 1,184 genes with a combined P< 0.05 and the top three ranked
genes associated with endometriosis to be WNT4on 1p36.12 (P=5.0 x 107™%), VEZT on
12q22 (P=5.7 x 10"7) and GREBI on 2p25.1 (P=2.5 x 107) (Supplementary Table 3). In
addition to having genome-wide significant SNPs near these three genes, the WN74 and
VEZT genes easily surpass our conservative gene-based significant association threshold of
P<2.85 x 107° (calculated as P= 0.05 / 17,538 independent genes). WNT4 encodes for
wingless-type MMTYV integration site family, member 4 and is important for the
development of the female reproductive tract!® and steroidogenesis!®. VEZT encodes
vezatin, an adherens junction transmembrane protein that is down regulated in gastric
cancer! 7. GREBI encodes growth regulation by estrogen in breast cancer 1, an early
response gene in the estrogen regulation pathway involved in hormone dependent breast
cancer cell growth!8. For the four remaining implicated regions on 2p14, 6p22.3, 7p15.2 and
9p21.3, no genes were significant (P< 1.3 x 1073) after adjusting VEGAS results for testing
37 genes across all seven regions, see Table 2, Supplementary Figs. 3-9 and Supplementary
Table 4.

In conclusion, given their high gene-based ranking, proximity to genome-wide significant
SNPs, known pathophysiology and reported gene expression (Supplementary Note and
Supplementary Fig. 19), the WNT4, VEZT and GREBI genes are strong targets for further
studies aimed at understanding the molecular pathogenesis of endometriosis. Our results
also suggest that a considerable number of SNPs nominally implicated (e.g. P<0.1) in the
European and Japanese GWA cohorts represent true endometriosis risk loci. Moreover, the
significant overlap in common polygenic risk for endometriosis indicates genetic risk
prediction and future targeted disease therapy may be transferred across these populations.

ONLINE METHODS
GWA samples and phenotyping

Initially, 2,351 surgically-confirmed endometriosis cases were drawn from women recruited
by The Queensland Institute of Medical Research (QIMR) study!® and a further 1,030 cases
were obtained from women recruited by the Oxford Endometriosis Gene (OXEGENE)
study. Australian controls consisted of 1,870 individuals recruited by QIMR? and 1,244
individuals recruited by the Hunter Community Study (HCS)’. UK controls encompassed
6,000 individuals provided by the Wellcome Trust Case Control Consortium 2 (WTCCC2).
Approval for the studies was obtained from the QIMR Human Ethics Research Committee,
the University of Newcastle and Hunter New England Population Health Human Research
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Ethics Committees, and the Oxford regional multi-centre and local research ethics
committees. Informed consent was obtained from all participants prior to testing?.

All Japanese GWA case and control samples were obtained from the BioBank Japan (BBJ)
at the Institute of Medical Science, the University of Tokyo. A total of 1,423 cases were
diagnosed with endometriosis by the following one or more examinations: multiple clinical
symptoms, physical examinations, and laparoscopy or imaging tests. We utilized 1,318
female control samples consisting of healthy volunteers from Osaka-Midosuji Rotary Club,
Osaka, Japan and women in the Biobank Japan who were registered to have no history of
endometriosis. All participants provided written informed consent to this study. This study
was approved by the ethical committees at the Institute of Medical Science, the University
of Tokyo and Center for Genomic Medicine, RIKEN Yokohama Institute.

GWA genotyping and quality control (QC)

QIMR and OX cases, and QIMR controls were genotyped at deCODE Genetics on Hlumina
670-Quad (cases) and 610-Quad (controls) BeadChips (Illumina Inc), respectively. HCS
controls were genotyped at the University of Newcastle on 610-Quad BeadChips (Illumina
Inc). The WTCCC2 controls were genotyped at the Wellcome Trust Sanger Institute using
Illumina HumanHap1M BeadChips. Genotypes for QIMR cases and controls were called
with the Illumina BeadStudio software. Standard quality control procedures were applied as
outlined previously20. Briefly, individuals with call rates <0.95 then SNPs with a mean
BeadStudio GenCall score < 0.7, call rates < 0.95, Hardy-Weinberg equilibrium P< 1075,
and minor allele frequency (MAF) < 0.01 were excluded. Cryptic relatedness between
individuals was identified through a full identity-by-state matrix. Ancestry outliers were
identified using data from 11 populations of the HapMap 3 and five Northern European
populations genotyped by the GenomeEUtwin consortium, using EIGENSOFT21-22, To
increase the power of the Australian GWA dataset we ancestrally matched the existing
QIMR cases and controls? to individuals from the Hunter Community Study (HCS)”
genotyped on Illumina 610 chips. After stringent quality control, the resulting QIMRHCS
GWA cohort consists of 2,262 endometriosis cases and 2,924 controls, increasing the
Australian effective sample size by 24%.2

Quality control procedures for the OX genotype data resulted in the removal of SNPs with a
genotype call rate < 0.99 and/or heterozygosity < 0.31 or > 0.33. Genome-wide IBS was
estimated for each pair of individuals and one individual from each duplicate or related pair
(IBS > 0.82) was removed. Genotype data were combined with CEU, CHB&JPT and YRI
genotype data from HapMap 3 and individuals of non Northern European ancestry were
identified using EIGENSOFT and subsequently removed. SNPs with a genotype call rate <
0.95 were removed, and this threshold was increased to 0.99 for SNPs with MAF < 0.05. In
addition, SNPs showing a significant a) deviation from HWE (P< 1 x 107); b) difference in
call rate between 58BC and NBS control groups (P< 1 x 10™4); ¢) difference in allele/
genotype frequency between control groups (P< 1 x 107%); d) difference in call rate
between cases and controls (P< 1 x 107™#) and ¢) a MAF < 0.01 were removed.?

The BBJ cases and controls were genotyped using the Illumina HumanHap550v3
Genotyping BeadChip. Quality control included sample call rate > 0.98, identity-by-state to
exclude close relatedness samples and principal component analysis to exclude non-Asian
samples. We also performed SNP quality control (call rate of > 0.99 in both cases and
controls and Hardy-Weinberg equilibrium test P> 1.0 x 1076 in controls); 460,945 SNPs on
all chromosomes passed the quality control filters and were further analyzed.!
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GWA meta-analysis

For SNPs passing QC, tests of allelic association (--assoc) were performed using PLINK?3
in the separate QIMRHCS, OX and BB GWA datasets. The primary meta-analysis of all
endometriosis cases versus controls in the QIMRHCS, OX and BBJ GWA data was
performed using a fixed-effect (inverse variance-weighted) model, where the effect size
estimates, or B-coefficients, are weighted by their estimated standard errors, utilizing the
GWAMA software?4,

The threshold of 7.2 x 1078 for GWA studies of dense SNPs and resequence data®>
proposed by Dudbridge and Gusnanto?® was utilized to indicate genome-wide significant
association, while SNPs with P< 10~ were considered to show a suggestive association [as
used in the online ‘Catalog of Published Genome-Wide Association Studies’].

Also, given the substantially greater genetic loading of moderate to severe (stage B)
endometriosis (rAFS stage III or IV disease) compared to minimal (stage A) endometriosis
(rAFS stage I or I disease)?, a secondary analysis was performed for suggestive SNPs (P<
1073); where the association results from QIMRHCS and OX stage B cases versus controls,
were meta-analyzed with the BBJ association results. As previously demonstrated?, the
exclusion of minimal endometriosis cases has the potential to enrich true genetic risk effects,
even taking into account the reduced sample size.

Consistency of allelic effects across studies was examined utilizing the Cochran’s Qtest?’.
Between-study (effect) heterogeneity was indicated by Q statistic Pvalues < 0.128. Meta-
analysis of SNPs associated with fixed-effect P< 1075 and showing evidence of effect
heterogeneity were also analyzed using the recently developed Han and Eskin’s random
effects model (RE2) implemented in the Metasoft software2?. In contrast to the conventional
DerSimonian-Laird random effects (RE) model3?, the RE2 model increases power under
heterogeneity?”.

Genotype imputation analysis

In order to assess the impact of variants not present on the Illumina BeadChips and better
define the associated regions, we imputed genotypes within £2500 kb of the most significant
genotyped SNP using the full reference panel from the 1000 Genomes project Interim Phase
1 Haplotypes (2010-11 data freeze, 2011-06 haplotypes). Imputation was performed
separately for the QIMRHCS, OX and BBJ GWA datasets with only the overlapping
genotyped SNPs within £2500kb of the most significant genotyped SNP, using the MaCH
and minimac programs>'-32 and following the two-step approach outlined in the online
‘Minimac: 1000 Genomes Imputation Cookbook’. Analysis of imputed genotype dosage
scores was performed using mach2dat31-32 and PLINK. The quality of imputation was
assessed by means of the Rsq statistic. Results for poorly imputed SNPs, defined as having
an Rsq < 0.3, were subsequently removed. The results from association analysis of imputed
data in the QIMRHCS, OX and BBJ datasets were then combined via meta-analysis of the
B-coefficients weighted by their estimated standard errors using GWAMA.

Replication samples and genotyping

Independent of the BBY GWA case-control cohort, a total of 1,044 cases and 4,017 controls
were obtained from the BioBank Japan and utilized for replication. We note that 653 of
these 1,044 cases were also utilized in a small GWA study (Adachi et al. 2010) of 696 cases
and 825 controls®. To utilize all available association data for rs13394619 maximally, given
there is incomplete overlap between the Adachi and our replication cases and zero overlap
between the controls, we worked with the published results for rs13394619 in Adachi et al
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(2010) and the results from comparing our non-overlapping 391 replication cases to our
4,017 replication controls.

The seven SNPs (157521902, rs13394619, rs4141819, rs7739264, rs12700667, rs1537377
and rs10859871) reaching genome-wide significance in the GWA meta-analysis were
genotyped in the independent Japanese replication cohort using the multiplex PCR-based
Invader assay (Third Wave Technologies), as previously described!.

Replication and total association analyses

Tests of allelic association were performed using PLINK in the independent Japanese
replication cohort. Because only the associations in the same direction would be considered
as replicated, one-sided Pvalues were obtained by halving the standard (two-sided) PLINK
Pvalues. To determine the total evidence for association, the one-sided replication Pvalues
were meta-analyzed with the QIMRHCS, OX, BBJ [and Adachi® 500K (290 cases and 262
controls) and 6.0 (406 cases and 563 controls) for rs13394619] GWA Pvalues using
METAL33. The Pvalues observed in each case-control cohort were converted into a signed
Z-score. Z-scores for each allele were combined across samples in a weighted sum, with
weights proportional to the square-root of the sample size for each cohort3*. Given that our
cohorts have unequal numbers of cases and controls, we utilized the effective sample size,
where Ngr =4/ (1 / Ngases + 1 / Nyonirols)*>. We also performed meta-analysis of the B-
coefficients weighted by their estimated standard errors using GWAMA to estimate the
overall odds ratio and 95% CI for the genome-wide significant SNPs.

Polygenic prediction

The aim of the prediction analysis was to evaluate the aggregate effects of many variants of
small effect. We summarized variation across nominally associated loci into quantitative
scores and related the scores to disease state in independent samples. Although variants of
small effect (e.g., genotype relative risk of 1.05) are unlikely to achieve even nominal
significance, increasing proportions of “true” effects will be detected at increasingly liberal
Pvalue thresholds, e.g. P<0.1 (i.e., ~10% of all SNPs), P< 0.2, etc. Using such thresholds,
we defined large sets of “allele specific scores” in the “discovery” sample of the Japanese
BioBank (BBJ) endometriosis case-control set (1,423 cases, 1,318 controls) to generate risk
scores for individuals in the “target” sample of the QIMRHCS (2,262 cases, 2,924 controls),
OX (919 cases, 5,151 controls) and combined European (QIMRHCS+0OX) endometriosis
case-control sets (3,181 cases, 8,075 controls). The term risk score is used instead of risk, as
it is impossible to differentiate the minority of true risk alleles from the non-associated
variants. In the discovery sample, we selected sets of allele specific scores for SNPs with the
following levels of significance; P< 0.01, P<0.05, P<0.1, P<0.2, P<0.3, P<0.4, P<
0.5, P<0.6, P<0.7, P<0.8, P<0.9, P<1.0. For each individual in the target sample, we
calculated the number of score alleles that they possessed, each weighted by the log odds
ratio from the discovery sample. To assess whether the aggregate scores reflect
endometriosis risk, we tested for a higher mean score in cases compared to controls. Logistic
regression was used to assess the relationship between target sample disease status and
aggregate risk score. Nagelkerke’s pseudo B2 was used to assess the variance explained.
Prediction was performed using all 407,632 SNPs overlapping the QIMRHCS, OX and BBJ
GWA datasets, and after excluding the 6,163 SNPs within £2500 kb of the seven implicated
SNPs listed in Table 1. We also performed the predictions in reverse, using QIMRHCS
+0OX-derived risk scores to predict affection status in the BBJ case-control set.

Gene-based association analysis

Gene-based approaches can be more powerful than traditional individual-SNP-based
approaches in the presence of allelic heterogeneity. Therefore, utilizing the QIMRHCS, OX
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and BBJ GWA data, we performed a genome-wide gene-based association study using
VEGAS!, Briefly, for the 407,632 overlapping SNPs, the Pvalues from the European
GWA study (i.e., FE meta-analysis of QIMRHCS and OX GWA data) and the Pvalues from
the Japanese (BBJ) GWA study were analyzed separately using VEGAS. The VEGAS test
incorporates evidence for association from all SNPs across a gene and accounts for gene size
(number of SNPs) and LD between SNPs by using simulations from the multivariate normal
distribution. The resulting European and Japanese gene-based Pvalues were meta-analyzed
using Stouffer’s Z-score combined p-value method3. A total of 17,538 genes (including 50
kb 5’ and 3’ of their transcription start and end site, respectively!4) contained association
results for >1 SNP, so a Bonferroni adjusted significance threshold of P<2.85 x 1070
(0.05/ 17,538) was utilized to indicate genome-wide gene-based significant association.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
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Figure 3.
Forest plots of risk allele effects for the seven genome-wide significant SNP loci in the
individual and total endometriosis case-control cohorts.
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Figure 4.

Allele-specific score prediction for endometriosis, using the BBJ population as the discovery
dataset and the QIMRHCS+OX population as the target dataset. The variance explained in
the target dataset on the basis of allele-specific scores derived in the discovery dataset for
twelve significance thresholds (P< 0.01, £<0.05, P<0.1, P<0.2, P<0.3, P<04, P<0.5,
P<0.6, P<0.7, P<0.8, P<0.9, P< 1.0, plotted left to right). The y-axis indicates
Nagelkerke’s pseudo R? representing the proportion of variance explained. The number
above each bar is the Pvalue for the target dataset prediction analysis (i.e. R2 significance).
Prediction was performed using all GWA meta-analysis SNPs (a) and after excluding all
SNPs within +2500 kb of the seven implicated SNPs listed in Table 1 (b). These figures
show that the results were not driven by a few highly associated regions, indicating a
substantial number of common variants underlie endometriosis risk.
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Table 1

Summary of the endometriosis case-control cohorts

Cohort Ancestry  No. of cases (stage B) No. of controls
QIMRHCS GWA European 2,262 (905) 2,924
OX GWA European 919 (452) 5,151
BBJ GWA Japanese 1,423 1,318
GWA meta-analysis 4,604 9,393
Replication Japanese 1,044 4,017
Total 5,648 13,410
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