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Figure 2 The EPR effect in metastatic tumors. (a) Metastatic tumors in the lung,
originating from subcutaneously implanted colon 26 tumor, were visualized by staining
with Evans blue-albumin. This result is similar to the primary tumor staining seen in
Figure 1a and d. (b) Metastatic tumor (T) in the liver originating from the spleen
was visualized via scanning electron microscopy. The tumor (MoCR) was implanted in
the spleen of the CBA mouse; see text for details Used by permission from Daruwalla et

al. [76].

Control

=g,

HPMA-ZnPPp.
+

Light = S

Figure 3 Photodynamic therapy in DMBA-induced breast cancer. A rat bearing the
autochthonous breast tumor received no drug (control) or 15 mg/kg PHPMA-ZnPP i.v.,
and then tumors were irradiated with xenon light at 24 and 48 h after PHPMA-ZnPP
administration and were observed at the times indicated. Complete tumor eradication
was seen on day 60. The control is a similar tumor-bearing rat that did not receive
ZnPP polymer but had the same dose of light irradiation. The control tumor continued

to grow, as seen in human breast cancer.
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Novelty and impact of the work.

This article describes comparison of two different types of antitumor polymer-conjugated
drugs; LP (linear polymer)-THP and SP (spherical polymer, dendrimer)-THP -conjugates,
respectively, and clarified tissue distribution, therapeutic efficacy, and toxicity. Excellent tumor
selective accumulation was observed after i.v. administration of both polymeric drug-conjugates.
Both showed far superior therapeutic effect, and least toxicity, than parental low MW free THP
(pirarubicin). Especially, SP-THP showed remarkable therapeutic efficacy against not only
implanted tumor model but also chemical- induced autochthonous tumor in the colon, which warrant
further development.



Abstract

Previously we showed that linear poly(N-(2-hydroxypropyl)methacrylamide)
conjugates of pirarubicin (THP), LP-THP, with MW about 39 kDa, exhibited far better tumor
accumulation and therapeutic effect than that of parental free THP. To improve the pharmacokinetics
of LP-THP further, high-MW conjugate of poly(amido amine) (PAMAM) dendrimer grafted with
semitelechelic HPMA copolymer (PHPMA) was synthesized [star polymer (SP); 400 kDa] and
conjugated with THP via hydrazone bond-containing spacer (SP-THP). Here we describe the
synthesis of the SP-THP conjugate and evaluation of its antitumor action in in vitro and in vivo
system. SP-THP consists of 2 generation dendrimer in the core, of which surface amino groups
were grafted with LP-THP. THP was conjugated to SP to form SP-THP via acid cleavable
hydrazone bonding, which responds to acidic milieu of tumor tissue. As a consequence, it would
release free THP, by active therapeutic principle, at the lysosomes and endosomes of tumor cells.
SP-THP exhibits larger hydrodynamic diameter (25.9 nm) in aqueous solution than that of LP-THP
(8.6 nm) as observed by light scattering and size exclusion chromatography. Because of the larger
size, the tumor AUCsy.7, of SP-THP was 3.3 times higher than that of LP-THP. More importantly,
released free THP was retained selectively in the tumor tissue for at least up to 72h after
administration of SP-THP. Tumor level of THP was 10 — 30 times higher than in the normal tissue,
resulting in much lower side effect compared to conventional free THP. In in vivo antitumor study,
S-180 tumor-bearing mice, and chemically with AOM / DSS-induced colon tumor-bearing mice
were used to compare the therapeutic efficacy of SP-THP and LP-THP. SP-THP exhibited superior
antitumor effect to LP-THP against both S-180 and AOM / DSS-induced colon tumor.
Introduction

4'-O-tetrahydropyranyl doxorubicin (Pirarubicin®, or THP) is an anthracycline antibiotic
used for treatment of various cancers in such organs as breast, head and neck, cervix, and lymphoma,
etc '. An intrinsic problem of low-MW anticancer drugs is also applicable to THP (MW 628); its
body distribution is indiscriminate in all normal tissues and organs before tumor delivery. Thus
adverse effects such as bone-marrow suppression, cardiac toxicity as well as others limit the usage of
higher dose of THP in clinical setting. Thus improvement of pharmacokinetics, especially tumor
selective delivery is the prime requirement.

Poly(N-(2-hydroxypropyl)methacrylamide =~ (PHPMA) is  highly = water-soluble
biocompatible macromolecule, namely nontoxic and non-immunogenic. > °. After intravenous
injection, high-MW PHPMA (more than 40 kDa) is retained in the systemic circulation for longer
time (> 24h) at significant concentration, thus it preferentially accumulates in the tumor tissue by
enhanced permeability and retention (EPR) effect *. By conjugating low-MW antitumor drugs to the
PHPMA, the tumor accumulation of the antitumor drug can be enhanced and the therapeutic
response for solid tumor improved.

To improve the tumor accumulation of PHPMA drug conjugates, molecular size of
PHPMA may be increased; either by branching or grafting HPMA copolymers or by their
self-assembly to form high-MW micellar structures. However, the synthesis of explicitly branched
side chains or graft polymers in comb structure is relatively difficult to control; high polydispersity
index and lower reproducibility become a concern. On the other hand, dendrimer is nearly
monodisperse, and its surface can be freely and explicitly modified, e.g. by attaching semitelechelic





