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details.

decreased, at 24 h and 48 h the blood concentrations were at the
same levels of those after i.v. injection (Supplemental Fig. S3B).

These findings are consistent with general observations about mac-
romolecular drugs and polymer therapeutics. For example, compared
with conventional small molecule drugs, large molecules including
polymer conjugates, micelles, and nanoparticles usually show signifi-
cantly prolonged circulation times because their size prevents renal
clearance. Support for this idea comes from many examples, not only
from laboratory research but also from clinical experiences with such
drugs as pegylated interferon and others [12-15,26]. We thus believe
that clinical development of SMA/CORM2 is possible.

More importantly, the major advantage of macromolecular drugs is
their disease-targeted delivery. As opposed to normal tissues, tumor tis-
sues and inflammatory tissues demonstrate unique pathophysiological
characteristics, e.g. highly active angiogenesis and enhanced vascular
permeability because of overproduction of many vascular mediators in-
cluding bradykinin, NO, and vascular endothelial growth factors. Macro-
molecular drugs larger than 40-50 kDa (the renal threshold) will thus
extravasate into and accumulate in diseased tissues but will show less
distribution in normal tissues because of reduced extravasation from
normal blood vessels [12-15].

The term coined for this phenomenon is the ERP effect. It is now an
important standard in the design and development of drugs, especially
anticancer drugs [12-15,26,27]. Because of the EPR effect, SMA/CORM2,
which is a polymer micelle with a prolonged circulation time as de-
scribed above (Fig. 3A, Table 1), may accumulate selectively in patho-
logical lesions. To verify this interpretation, we utilized a murine
colitis model and investigated the tissue distribution of SMA/CORM2
after its i.v. administration. The total CO liberated by saponin was used
to estimate the behavior of SMA/CORM2 and free CORM2. After i.v. in-
jection of SMA/CORM2, the results, which agreed well with the expecta-
tion as based on the EPR effect, showed a significantly greater CO
increase (9 times higher) in colitis tissues compared with that for free
CORMZ, and high CO levels continued for at least 24 h, with the peak
at 4 h (Fig. 3C). Similar results were also found when SMA/CORM2
was given by oral route though the peak levels of CO was lower

(Supplemental Fig. S3C). Furthermore, at 4 h after i.v. injection of
SMA/CORM2, the CO concentration in colitis tissues was significantly
higher than that in normal colon and in most normal organs including
the kidney, lung, and heart but not the liver and spleen (Fig. 3D). The
distribution in the liver and spleen was probably due to capture of the
polymer micelles by the rich reticuloendothelial system in the liver
and spleen; similar phenomena were observed for many other poly-
meric drugs and nanoparticles [15,28,29]. However, because both liver
and spleen are rich in heme proteins, the CO in those organs may also
derive partly from those proteins during circulation.

On the basis of the findings described above, we found superior in vivo
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442
443
444
445
446
447

pharmacokinetics of SMA/CORM2 compared with pharmacokinetics of 44

free CORM2 (Fig. 3B, C, D), which resulted from the EPR effect. The
prolonged circulation time and selective accumulation of SMA/CORM2
in diseased tissues led to greatly improved CO bioavailability, which sug-
gests that SMA/CORM2 have many advantages as a CO donor in the treat-
ment of inflammatory diseases. We therefore investigated the therapeutic
potential of SMA/CORM2 in a murine colitis model, as described below.

3.4, Invivo therapeutic effect of SMA/CORM2 on DSS-induced murine colitis

In this investigation, we studied both systemic (i.v. injection) and
oral administration of SMA/CORM2. Because of the good pH stability
of SMA/CORM2 over a wide pH range (Fig. 2B), we expected that the mi-
celles would not be rapidly destroyed in the stomach and that they may
thus reach colitis lesions and have a local therapeutic effect.

In this DSS-induced colitis model, the colitis group that had no
SMA/CORM2 treatment manifested severe diarrhea accompanied
by hematochezia at day 7, as indicated by the increased DAI values
(Fig. 4A), along with the decrease in body weight (Fig. 4B). Diarrhea
markedly improved with SMA/CORM2 given either by i.v. injection
or oral administration. The SMA/CORM2 treatment groups had signif-
icantly lower DAI values during the experimental period and manifest-
ed no apparent loss of body weight compared with normal animals
(Fig. 4A and B). Moreover, the colon was significantly shortened,
which is an index of colitis, in mice with DSS-induced colitis (Fig. 4C),
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Fig. 3. In vivo pharmacokinetics of SMA/CORM2. (A) After i.v. administration of SMA/CORM2 or free CORM2 in healthy BALB/c mice, CO in circulation (mostly bound to hemoglobin) was
measured by means of NOC7 to liberate CO, and the results were quantified by using gas chromatography. (B) The total CO, which included both hemoglobin-bound CO and CO derived
from circulating SMA/CORM2 micelles, was quantified similarly but after using saponin. The net difference between the total CO and the hemoglobin-bound CO was utilized to evaluate the
kinetics of SMA/CORM2 and free CORM2 in blood. After i.v. injection of SMA/CORM?2 or free CORM2 to mice with DSS-induced colitis, CO concentrations in colonic tissues with colitis and in
normal tissues were measured by using the same saponin method. (C) Time course of the CO concentrations in colitis tissues. (D) CO concentrations in each tissue including colitis tissues
at 4 h after iv. injection of SMA/CORM2. Data are means 4 SD; n = 4-8. *p < 0.05, *p < 0.01. See text for details.

whereas the colon length improved markedly after SMA/CORM2
treatment; no significant difference in colon length was observed be-
tween SMA/CORM2-treated mice and normal mice (Fig. 4C). The pro-
tective or therapeutic effect of SMA/CORM2 on colitis was also
supported by histological examination of colon tissues in each group.
Fig. 4D illustrates the tissue damage (e.g. necrosis and ulcers, as indicat-
ed by arrows) found in mice with DSS-induced colitis, whereas mice
treated with SMA/CORM2 had much less tissue damage and a histolog-
ical appearance that was similar to that of normal mice. These findings
clearly suggest the therapeutic potential of SMA/CORM2 for inflamma-
tory colitis.

SMA/CORM2 was also administered 3 days after DSS treatment,
when symptoms of colitis appeared, which is a reasonable protocol for
SMA/CORM2 as a therapeutic drug and a preventive agent. More impor-
tantly, SMA/CORM2 was administered only once, after which a

Table 1

Pharmacokinetic parameters of SMA/CORM2 and free CORM2.
Agent ty (h)? AUC® (pg/mi/h) Total body clearance (L/h/kg)
CORM2 0.6 103 967.6
SMA/CORM2 212 1712 589

2 Plasma t;, required to reach haif-concentration at time zero by interpolation.
® Area under the plasma concentration vs. time curve.

significant therapeutic effect was achieved, and this effect was main-
tained for at least 3-4 days (Fig. 4A and B). These results thus support
the superior in vivo pharmacokinetics of SMA/CORM2, i.e. prolonged
CO bioavailability and circulation time of SMA/CORM2 (Fig. 3A and B),
which also strongly suggest the advantage of SMA-COMR2 compared
with free CORM2. In a previous report, Takagi et al. examined the effect
of free CORM2, applied twice daily during the experiment, on DSS-
induced colitis and found that the pathological changes of colitis tended
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to improve, but these trends were less significant [10]. The advantages of 494

SMA/CORM2 compared with free CORM2, e.g. water solubility, slow and
constant release of CO, and improved pharmacokinetics, will thus great-
ly strengthen its therapeutic applicability, not only because of its in-
creased therapeutic effect but also because of better patient compliance.

In addition, as we expected, oral application of SMA/CORM2 pro-
duced therapeutic effects that were similar to those of the i.v. route
(Fig. 4), because of their similar pharmacokinetics of CO generation
in vivo especially the local CO production in colitis tissues (Supple-
mental data Fig. S3A, C). These results also indirectly supported the
pH stability of SMA/CORM2, and SMA/CORM?2 should thus maintain
micellar stability while traveling through the stomach and entering
the intestine. We recently reported that SMA micelles were more
quickly taken up by cells compared with other polymeric micelles
such as pegylated compounds [30]. Also, during their internalization,
micelles may partly undergo disintegration in the cell membrane, as
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Fig. 4. Therapeutic effect of SMA/CORM2 on DSS-induced murine colitis. The DSS-induced colitis model was established by oral administration of 2% DSS for 1 week. During the experi-
ments, colitis symptoms were recorded daily to obtain the DAl values. On day 3, when colitis symptoms appeared, SMA/CORM2 was administered i.v. or orally (p.0.). On day 7, when severe
colitis appeared, mice were killed, the length of the colon was measured, and histological examination of the colon was performed. (A and B) Daily changes in DAI values and body weights
of the mice, respectively. (C) Length of the colon of mice with or without SMA/CORM2 treatment. (D) Histology of the colon tissues of different groups after H&E staining. Arrows indicate
necrosis and ulcers in the mucosa of the colon. See text for details. Values are means + SD; n = 18-22; *p < 0.05, **p < 0.01, SMA/CORM2 treatment group vs. DSS-induced colitis group.

shown by the lecithin-related release of CO (Fig. 2A). This may be in- micelles may enter the circulation through the intestine to exert

cluded in the mechanisms by which SMA/CORM2 produces its ther- therapeutic effect systemically, some may exhibit therapeutic effect :

apeutic effect via the oral route. Namely, while some SMA/CORM2 locally against colitis.
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Fig. 5. Suppression of inflammatory cytokines (MCP-1, TNF-cy, and IL-6) by SMA/CORM2 in DSS-induced murine colitis. The experimental protocol is the same as that described for Fig. 4.
On day 7 of the experiment, mice were killed and serum samples were collected for measurement of the cytokines by using ELISA. Values are means 4 SD; n = 6-8. See text for details.
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3.5. SMA/CORM2-induced suppression of the production of inflammatory
cytokines in DSS-induced murine colitis

DSS-induced colitis, as an inflammatory disease, involves the gener-
ation of various inflammatory cytokines. In the present study, we also
found increased serum levels of MCP-1, TNF-v, and IL-6 in mice receiv-
ing DSS (Fig. 5). SMA/CORM2 treatment significantly suppressed these
cytokine levels to almost normal levels (Fig. 5). These findings are con-
sistent with the improved symptoms and pathology of colitis after treat-
ment with SMA/CORM2, as Fig. 4 shows.

Many researchers have reported potent anti-inflammatory effects of
CO [31], including reduced production of inflammatory mediators in
macrophages after various stimuli such as bacterial endotoxin, cytokines,
and hypoxia-reoxygenation [32-34], and decreased levels of proinflam-
matory proteins such as inducible NO synthase, cyclooxygenase 2, and
prostaglandins [35]. In addition, the major producers of inflammatory
cytokines—infiltrated neutrophils and activated macrophages [36,37]—
are the main sources of ROS in inflammatory diseases, which suggests
the involvement of ROS in the inflammatory process. Bulua et al. recently
reported that ROS are crucial for bacterial endotoxin-stimulated macro-
phages for the production of several proinflammatory cytokines, which
is an essential feature of innate immunity [38]. CORM2 also reportedly
had tissue protective effects against ischemia-reperfusion injury of the
liver, which is a widely known ROS-related disease [9]. These data,
both previous reports and the findings described here in this study,
therefore suggest that the anti-inflammatory and anti-oxidative effects
of CO are probably the major mechanisms involved in the therapeutic ac-
tivity of SMA/CORM2 in inflammatory colitis.

4. Conclusions

We successfully prepared a water-soluble micellar CO donor, SMA/
CORM2, by using the biocompatible amphiphilic polymer SMA. In addi-
tion to much improved water solubility, these micelles exhibited
sustained and slow CO release, as well as superior in vivo pharmacokinet-
ics, i.e. prolonged t1 7 in circulation and selective accumulation in inflam-
matory tissues. In our DSS-induced murine colitis model, SMA/CORM?2
showed marked therapeutic and tissue protective effects, probably
through CO released from the micelles, which produced anti-oxidative
and anti-inflammatory effects. We thus anticipate that SMA/CORM2 mi-
celles can be applied to the treatment of IBD as well as other ROS-related
inflammatory diseases including ischemia-reperfusion injury, bacterial
and viral infections, and hypertension, and thus further investigations
of these SMA/CORM2 micelles are warranted.
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Abstract

Cancer chemotherapy for solid tumors has had limited success. Despite enthusiasm
about molecular target and antibody drugs, cancer vaccines, and “missile therapy” with
incredible prices, retrospective evaluations revealed disappointing outcomes. This
review discusses causes of these unsuccessful modalities, conventional drugs,
photodvnamic therapy, and problems with drug-screening models. One cause may be
attributed to extensive genetic polymorphism in human solid tumors.  Also, few
therapeutic modalities fully utilized universal or common characteristics of solid
cancers. We investigated the more universal component of solid tumors—vasculature
and neovasculature. Solid tumors have a unique vascular architecture and
hyperproduction of vascular mediators such as nitric oxide and bradykinin. Our
tumor-selective drug delivery utilizes the mechanism based on the enhanced
permeability and retention (EPR) effect of macromolecular drugs, a unique feature of
solid tumors. The characteristics of the EPR effect can improve tumor-selective
macromolecular drug delivery, followed by release of active principle because of the

low pH in solid tumors, and can thus improve therapeutic ouicome.

Keywords: cancer chemotherapy, cause of failure, EPR effect, molecular target drugs, drug

design, health care cost

Abbreviations

MW: molecular weight: ROS! reactive oxygen speciess VEGF! vascular endothelial
growth factor; BGE: epidermal growth factor; PEG! polyethylene glycol: EPR! enhanced
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IN-(2-hydroxypropyDmethacrylamide; SMA' styrene-co-maleic acid: NCS:

neocarzinostatin: NOz nitrite: NO: nitric oxide: P-THP: polymer-conjugated
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pirarubicin: P-ZnPP! polymer-conjugated zinc protoporphyrin: PDT: photodynamic

therapy

1. Introduction

1-1. Background. Reviewing 60 years of the history of cancer chemotherapy reveals
only imited success for treatment of leukemia and non-solid tumors.  In the past few
decades, tumor-targeting (or "ﬁlissﬂe") therapy. such as molecular target drugs (e.g., for
specific receptors or kinases), antibody conjugates, cancer vaccines, and advanced
technology-based nanomedicines, in addition to many conventional drugs of low
molecular weight (MW), have been developed to treat various cancers. However, when
patients have stage 11 or IV disease, as is the case for most cancer patients seen in
clinical settings, they usually have metastatic cancers that most frequently affect the
lvmph nodes, liver, lungs, bones, and brain, as well as other organs.  Furthermore,
many cancers develop resistance to multiple drugs and fail to respond effectively to
these drugsV. Therefore, at these stages of disease, therapeutic modalities are quite
limited. In addition, in recent years several extensive trials of vaccines against prostate,

tung, pancreatic, and skin cancers all failed to produce positive results. Despite these

4
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medical and scientific failures, negative results are rarely analyzed and reported in the

scientific literature.

1-2. Analyses of chemotherapeutic failures

. These therapeutic failures are attributed fo many causes, as described below.

1-2-1, Indiscriminate drug distribution to normal fissues and tumors, with no

tamor-selective drug deliverr;  The first reason for these chemotherapeutic fatlures is

that conventional low-MW cancer drugs, most of which are cyvtotoxic, are distributed

indiscriminately throughout the entire body, in various organs and tissues, with little

tumor-selective drug accumulation. Therefore, systemic toxicity, including nausea,

anorexia, bone marrvow suppression, hematotoxicity, peripheral neurotoxicity, alopecia,

diarrhea, and kidney and liver toxicity, frequently occurs, and increasing the drug doses

is not possible because the doses used are already approaching the maximum tolerable

dose. In addition to these adverse effects, immunological suppression, which is often

observed in these patients, provides cancers with an environment for easier growth and

progression.

1-2-2 Genetic diversity or heterogeneity. The second reason for

chemotherapeutic failures is that cancer cells in vivo mutate continuously during





