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Figure 1

Fig. 1. Ilustration of the EPR effect. (a) Tumor-selective accumulation of the putative macromolecular drug
Evans blue-albumun complex (MW 67 kDa). The blue color in the macroscopic image indicates
macromolecular drug delivery to S-180 tumor implanted in the skin of mice at 24 h after i.v. injection of Evans
blue (10 mgkg). The tumor sites (T, circles, and arrows) show progressive accumulation of Evans
blue-albumin, in both small and large tumor. (b) Scanning electron microscopic image of metastatic hiver
cancer. The tumor (T, circle) is a micrometastatic tumor nodule; even this small nodule shows leakage of a
polymer (polyarylate), which is not seen in the surrounding normal tissue (N, in the liver). (Adapted from refs

[231). Dewhirst et al showed that tumor angiogenesis becomes visible when 100-300 tumor cells present [100].
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Figure 2.
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Fig. 2. Influence of the size and charge of macromolecules on their distribudon in tumors and plasma
concentration. (a) HPMA copolymers, labeled with ' and of different sizes, were injected iv. into
turmor-bearing mice. The percentage of the injected dose of HPMA i tumor and in urine was calculated.
{Adapted from ref [16,23,24]). (b) L-Asparaginase derivatives (MW 120 kD3g) with different isoelectric points
{pl) after chemical modification were injected Lv. into rabbits {2500 TU/kg), after which the remaining activity
of each L-asparaginase derivative was measured and their half-life values in systemic circulation were

calculated. {Adapted from ref [39D



Figure 3
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Fig. 3. Diagrammatic representation of the EPR effect and the effect of AT-{I-induced enhancement of
macromolecular drug delivery to normal and tumor tissue. In the lower part (tumor tissue), angiotensin [l
(AT-I) infusion induced high blood pressure (e.g., 100 mmHg — 160 mmHg), which caused endothelial
cell-cell junctions in the tumor to open and blood flow to increase, with leakage of the macromolecular drug
(dark dots). In contrast, normal blood vessels (upper part) constricts in response to AT-II, and tighten the
endothelial cell-cell junctions that cause high blood pressure, with no leakage of the drug. AT-H-induced
hypertension thus resulted in greater (2-3 fold) leakage of drug into the tumor without increased drug

accumulation into normal tissue. (Adapted from ref [24])
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Figure 4
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Fig. 4. Augmentation of the EPR effect and delivery of monoclonal antibody to the tumor by using AT-IX
and the ACE inhibitor enalapril. Human SW11116 colon cancer-bearing nude mice were injected L.v. with

1. labeled monoclonal antibody A7 with or without AT-IT and enalapril. {Adapted from ref [57])
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Figure S

(a) Tumor tissue
(hypoxic/low pH)
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Fig. 5. Nitroglycerin (NG)-induced increase in accumulation of polymer-conjugated drug in tumors.

(a) Mechanism of selective NO generation in tumor, NO was generated from nitrite, predominantly in hypoxic
tumor tissue, not in normal tissue. (b) In vivo evaluation of the potentiation of drug delivery to tumor by
nitroglycerin that was applied as an ointment to anywhere on the skin of S-180 tumor-bearing mice at a dose of
1.0 mg/mouse. Pegylated->Zn-labeled Zn-protoporphyrin was then injected i.v. into the tumor-bearing mice.
After 24 h, anesthetized mice were dissected and radioactivity of each tissue was counted. (Adapted from refs

[23,69])



Figure 6
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Fig. 6. Biodistribution of free ADR, Doxil, and ADR-micelles in the pancreatic cancer BxPC3 model in
mice. Distributions of free ADR, Doxil, and ADR-micelles (each at 8 mg/kg) with or without TGF-B receptor
inhibitor (LY364947) (1 mg/kg) were evaluated via fluorescent microscopy at 24 h after drug administration.
Bar graphs at the right show relative quantitative results for the accumulation of drugs in tumors obtained by
high-performance liquid chromatography (HPLC). Treatment with TGF-B receptor inhibitor resulted in about a
two~told enhancement of accumulation of Doxil and ADR micelles. Error bars in the graphs represent standard
errors; P values were calculated by using Student’s ¢ test. T, nests of tumor cells in tumor tissues; Doxil,

pegylated liposome; Ctrl, control without the inhibitor; Inhib, inhibitor. See text for detail. (Adapted from ref
[871)



Figure 7
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Fig. 7. CO-enhanced accumulation of Evans blue-albumin complex in tumors. (a) Different
concentrations of the CO-releasing agent CORM-2 were administered subcutaneously, followed by 1.v.
injection ot Evans blue (10 mg/kg). The dye-albumin complex was allowed to extravasate for 2 h. (b)At24h
after the 1.v. injection of an HO-1 inducer, pegylated hemin (10 mg/kg hemin equivalent), Evans blue was
injected as in (a). After another 24 h, mice were killed and dissected to obtain the tissues. Contrel mice were
not treated with pegylated hemin. The blue dye complexed with albumin in each tissue was extracted with

formamide, and the degree of extravasation was quantitied by means of absorbance at 620 nm. (Adapted from

ref {25])
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Table 1. Characteristics of the EPR effect of nanomedicine or macromolecular drugs

No interaction with blood components or blood vessels, no
Biccompatibility antigenicity, no clearance by the reticuloendothelial system,
no cell lysis

Maostly days to weeks, in great contrast to passive targeting (in
which low-MW molecules are rapidly cleared into the
systemic circulation in a few min. of, low molecular weight
contrast agent {(see text).

Dirug retention time
frd
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Table 2. Plasma clearance tmes of selected modified and

native proteins in vive
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- . . s e . ; ¢ £
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Xenogeneic
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Formaldehyvde e Fo Formaldehyde . D‘ L,.{ ; ]
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) ) xenogeneic
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th-Maerogiohulin- . 125 - fnhibitor-protein complex R
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Stightly surface modified,
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We synthesized N-(2-hydroxypropyl)methacrylamide polymer conjugated with zinc protoporphyrin (HPMA-
ZnPP) and evaluated its application for tumor detection by imaging and treatment by light exposure using
in mouse sarcoma model. To characterize HPMA-ZnPP micelle, we measured its micellar size, surface charge, sta-
bility, photochemical, biochemical properties and tissue distribution. In vivo anti-tumor effect and fluorescence
imaging were carried out to validate the tumor selective accumulation and therapeutic effect by inducing singlet
oxygen by light exposure. HPMA-ZnPP was highly water soluble and formed micelles spontaneously having hy-
drophobic clustered head group of ZnPP, in aqueous solution, with a hydrodynamic diameter of 82.8 4-41.8 nm
and zeta-potential of + 1.12 mV. HPMA-ZnPP had a long plasma half-life and effectively and selectively accumu-
lated in tumors. Although HPMA-ZnPP alone had no toxicity in S-180 tumor-bearing mice, light-irradiation sig-
nificantly suppressed tumor growth in vivo, similar to the cytotoxicity to Hela cells in vitro upon endoscopic
light-irradiation. HPMA-ZnPP can visualize tumors by fluorescence after i.v. injection, which suggests that this
micelle may be useful for both tumor imaging and therapy. Here we describe preparation of a new fluorescence
nanoprobe that is useful for simultaneous tumor imaging and treatment, and application to fluorescence endos-
copy is now at visible distance.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Photodynamic therapy (PDT) employs a photosensitizer and cyto-
toxic light-induced singlet oxygen ('0,) generation. '0, generation
damages DNA, RNA, proteins and lipids, which leads to cell death. Por-
phyrin derivatives usually generate cytotoxic 0, after light irradiation
that corresponds to the absorption wavelength of porphyrin derivatives
[1-3]. Laserphyrin® and Photofrin® and others are well known porphy-
rin derivatives that are approved for limited use in conventional clinical
PDT for early-stage lung (bronchogenic) or superficial cancer accessible
to exciting light (laser irradiation at 630 nm) [4,5]. However, small mo-
lecular photosensitizers are expected to be distributed throughout the
body including skin and other organs, and most have limited tumor se-
lectivity or tumor-imaging capacity. Thus, they would cause cutaneous
hyper-photosensitivity as the major adverse effect, which limits thera-
peutic success.

To solve this problem, one can utilize macromolecular photosensi-
tizers, which have much longer half-lives in circulation and gradually
and selectively accumulate in tumor tissues because of the EPR

* Corresponding author at: Institute for DDS, Sojo University, Ikeda 4-22-1, Kumamoto,
860-0082, Japan. Tel.: +81 96 326 4114; fax: +81 96 326 3185.
E-mail address: hirmaeda@ph.sojo-u.acjp (H. Maeda).

0168-3659/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
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(enhanced permeability and retention) effect, accompanying much
less accumulation in normal tissue [6-11]. Our group previously
reported that biocompatible macromolecules (MW >40 kDa) showed
the EPR effect and accumulated selectively in tumors [6,12,13]. For the
EPR effect to operate, the macromolecular surface charge is as impor-
tant a determinant as is molecular size; a neutral to slightly negative
charge and MW of >40 kDa are preferable for tumor targeting
[6,12,14]. In this study, we utilized a conjugate of zinc protoporphyrin
(ZnPP) and 12-kDa N-(2-hydroxypropyl)methacrylamide (HPMA)
copolymer, which has a neutral charge and is highly biocompatible.
The conjugate behaved as a large macromolecule (apparent MW is
198-kDa), as do many polymer conjugates of low-molecular-weight
micellar drugs that show preferential tumor accumulation [15-18].
Light-irradiated (at 420 nm, absorption max of ZnPP) ZnPP effec-
tively generates '0, and thereby exhibits potent cytotoxicity [18,19].
ZnPP is also a potent inhibitor of heme oxygenase-1 (HO-1), or
HSP-32, which is a survival factor. HO-1 is highly upregulated in many
cancer tissues in vive and confers an antioxidative function to cells.
Therefore, inhibition of HO-1 by ZnPP makes tumor cells more vulner-
able to oxystress, the result being selective tumor regression. Most of
normal cells are not affected because HO-1 in normal cells is expressed
only at low level and insignificant. However, ZnPP is highly hydro-
phobic and soluble only in alkaline solutions or organic solvents. This
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insolubility of ZnPP in physiological aqueous solution hampers its ther-
apeutic application. To overcome this obstacle, we developed water-
soluble ZnPP micelles: one is styrene maleic acid copolymer (SMA)
micelles that encapsulate ZnPP and forms nanomicelles (SMA-ZnPP),
the other is pegylated ZnPP (PEG-ZnPP) [18-22]. Both ZnPP micelles
alone exhibited antitumor activity, and light irradiation greatly en-
hanced this activity [18]. Despite high tumor accumulation of PEG-
ZnPP and significant antitumor activity, the maximum ZnPP loading in
PEG-ZnPP is theoretically about 6% (wt/wt), so the intravenous (i.v.)
dose of PEG-ZnPP may become several grams to achieve therapeutic
concentrations. Although ZnPP loading of SMA-ZnPP can be increased
to about 50%, SMA-ZnPP micelles tended to accumulate predominantly
in the liver and spleen [23]. Therefore, we aimed to develop another
type of ZnPP micelles with greater tumor targeting and adequate load-
ing of ZnPP.

Here, we describe the synthesis of HPMA-ZnPP, which spontaneously
formed micelles in aqueous solution. We examined its size distribution,
spectroscopic property, micelle stability, generation of 10,, cellular up-
take, tumor and tissue distribution and antitumor activity in vivo when
used with xenon light-irradiation. Other important results concern simul-
taneous in vivo fluorescence imaging of the whole animal from outside,
and the therapeutic effect of the polymer-photosensitizer conjugate.

2. Materials and methods
2.1. Materials

Male ddY mice were purchased from Kyudo Co., Ltd, Saga, Japan.
Protoporphyrin IX, zinc acetate, triethylamine, dimethylaminopyridine,
diethylether, Tween 20 and egg lecithin of reagent grade were
purchased from Wako Pure Chemical, Osaka, Japan. 1-Ethyl-3-(3-
dimethylaminopropy!)carbodiimide and 3-(4,5-dimethyl-2-thiazolyl)-
2,5-diphenyl-2H-tetrazolium bromide (MTT) were purchased from
Dojindo Chemical Laboratory, Kumamoto, Japan. 2,2,6,6-Tetramethyl-
4-piperidone (4-oxo-TEMP) was purchased from Tokyo Chemical In-
dustry, Tokyo, Japan. The HPMA polymer (mean MW ~12 kDa) we
used contains one free amino group at the end, and was prepared at
the Institute of Macromolecular Chemistry, Prague, Czech Republic.

2.2. Synthesis of HPMA-ZnPP

Scheme 1 shows the synthesis of HPMA-ZnPP conjugate, in which
conjugation of carboxyl group of free ZnPP with either hydroxyl group or
amino group of HPMA (mean MW 12 kDa) was carried out to form ester
and amide bonds, respectively. In brief, 570 mg of HPMA as Scheme 1
and 281 mg of ZnPP were mixed in 50 ml of DMSO at 50 °C and reacted
by addition of 1.0 g of triethylamine, 1.2 g of dimethylaminopyridine
and 1.9 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydro-
chloride as a catalyst for 12 h at 50 °C in the dark. After the reaction,
HPMA-ZnPP conjugates were precipitated by addition of diethylether
(200 ml), and reaction catalyst in the supernatant was removed by cen-
trifugation. The conjugates were washed three times with diethylether
to remove the reaction catalyst and DMSO. HPMA-ZnPP was puri-
fied via gel permeation chromatography (Bio-Beads SX-1, BioRad,
Hercules, CA) using dimethylformamide (DMF) as elute. Peak frac-
tion of elutes was ultrafiltrated with membrane filter with a cutoff
molecular size of 100 kDa, to remove decomposed or unreacted
small molecules and to replace the DMF to distilled water. Fluffy
powder (635 mg) was obtained by lyophilization.

2.3. Gel permeation column chromatography

Analytical gel permeation column chromatography of HPMA-ZnPP
was performed with Bio-Beads SX-1 using a column (¢=2.5 cm, L=
60 cm) and eluted with DMF at a flow rate of 0.1 ml/min. 1.5 ml

fractions of elutes were measured at absorbance at 422 nm, which
corresponded to ZnPP absorbance.

2.4. Fluorescence spectroscopy and fluorescence polarization

HPMA-ZnPP at 10 pg/m! was dissolved in PBS containing Tween
20 (0.0005-0.5%) or urea (1-9 M), and fluorescence spectra were
measured with a fluorescence spectrophotometer (FP-6600; JASCO,
Tokyo). HPMA-ZnPP (2.5 pg/ml) or free ZnPP (0.5 pg/ml) was dis-
solved in DMF, and sample solutions were then excited at 420 nm
by a fixed polarized light; fluorescence emission at 590 nm was
recorded at parallel (0°) and perpendicular (90°) angles of the second-
ary polarizer, which was equipped in a Model FP-6600 fluorescence
spectrophotometer. The fluorescence polarization value (P value) was
calculated by using the equation P=(I,,—1,)/(l,,+1,), where l,,=
fluorescence intensity of the parallel component and I, = fluorescence
intensity of the perpendicular component. The fluorescent polarization
value is proportional to the molecular size of the fluorescent probe [24].

2.5. High performance liquid chromatography (HPLC)

Cleavage of ester bond of this conjugate HPMA-ZnPP was analyzed
by using HPLC (Prominence, Shimadzu, Kyoto, Japan) with the
multimode size exclusion column GF-310 HQ (300x7.5 mm) with
photodiode array detection at 422 nm, which was eluted with a mix-
ture of 30% DMSO and 70% methanol containing 10 ppm trifluoroacetic
acid at 1.0 mi/min.

2.6. Dynamic light scattering and zeta potential

HPMA-ZnPP or HPMA was dissolved in 0.01 M phosphate-buffered
0.15 M saline (PBS, pH 7.4) at 1 mg/ml and was filtered through a
0.2 pm filter attached to a syringe. The particle size and surface charge
(zeta potential) were measured by light scattering (ELS-Z2; Otsuka
Photal Electronics Co. Ltd., Osaka).

2.7. Transmission electron microscopy (TEM)

A drop of HPMA-ZnPP (0.1 mg/ml) was applied to a copper grid
coated with carbon film and air-dried. The micelle image and size of
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Scheme 1. HPMA-ZnPP synthesis. Chemical structures and conjugation pathway. ZnPP
was conjugated to the secondary hydroxyl group and the terminal amino group of
HPMA.
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HPMA-ZnPP were analyzed by using a transmission electron micro-
scope (Tecnai F20; FE], Hillsboro, OR).

2.8. Electron spin resonance (ESR) spectroscopy

ESR spectra were measured by using an ESR spectrometer at 25 °C
(JES FA-100; JEOL, Tokyo). Sample solutions containing 200 pg/ml
HPMA-ZnPP (or 40 pg/ml ZnPP) and 20 mM 4-oxo-TEMP with or
without light irradiation were evaluated. Samples in a flat quartz
cell (Labotec, Tokyo) were irradiated (28 mW/cm?) by using xenon
light at 400-800 nm (MAX-303; Asahi Spectra, Tokyo) for indicated
times. The ESR spectrometer was usually set at a microwave power
of 1.0 mW, amplitude of 100-kHz and field modulation width of
0.1 mT.

2.9. Cytotoxicity assay

Hela cells were maintained in DMEM supplemented with 10%
fetal calf serum under 5% CO»/air at 37 °C. HPMA-ZnPP or ZnPP was
added 24 h after plating HeLa cells at 3000 per well in 96-well plates.
Irradiation with fluorescent blue light having peak emission at
420 nm (TL-D; Philips, Eindhoven, Netherland) with 1.0 J/cm? per
15 min was then performed. After 48 h of culture, the MTT assay
was carried out to quantify viable cells, with absorbance at 570 nm
as described by instruction of the manufacture.

2.10. Intracellular uptake

HPMA-ZnPP or free ZnPP was added at a concentration of 20 pg
ZnPP equivalent/ml 48 h after plating Hela cells at 25,000 cells per
well in 24-well plates (1.9 cm?/well). At indicated time periods, cells
were washed with PBS and added with 2 ml ethanol followed by soni-
cation (20 W, 30 s) to extract the HPMA-ZnPP or free ZnPP. Concentra-
tion of ZnPP was measured by fluorescence intensity (Ex. 422 nm, Em.
590 nm).

2.11. In vivo antitumor activity

The care and maintenance of animals were undertaken in accor-
dance with the institutional guidelines of the Institutional Animal Care
and Use Committee of Sojo University. Mouse sarcoma S-180 cells
(2x10° cells) were implanted s.c. in the dorsal skin of ddY mice.
When tumor reached to diameter of about 5 mm, 15 mg/kg of ZnPP
equivalent drugs in saline was injected i.v. Then after 24, 48 and 72 h,
tumor was irradiated by xenon light (MAX-303; Asahi Spectra) at
400-800 nm (20 mW/cm?) for 5 min as described. Tumor volume
(mm?) was calculated as (W?xL)/2 by measuring the length (L) and
width (W) of the tumor on the dorsal skin.

2.12. Pharmacokinetics and tissue distribution of HPMA-ZnPP

When S-180 tumor in mice with tumor diameter of approximately
10 mm, injected iv. was 15 mg of ZnPP equivalent per kg of free ZnPP
or HPMA-ZnPP. At the indicated times, mice were killed, perfused
with physiological saline and dissected, and then tissues were weighed,
DMSO (1 ml per 100 mg of tissue) was added, and samples were ho-
mogenized and centrifuged (12,000 g, 25 °C, 10 min) to precipitate in-
soluble tissue debris, and ZnPP and HPMA-ZnPP in the supernatant
were quantified by fluorescence intensity (excitation at 422 nm, emis-
sion at 590 nm).

2.13. In vivo fluorescence imaging
Tumor-bearing mice as described above were injected with 15 mg

of ZnPP (equivalent) per kgi.v. At 24 h after injection, mice were shaved
and, under isoflurane gas anesthesia, were subjected to in vivo

fluorescence imaging using IVIS XR (Caliper Life Science, Hopkinton,
MA) (excitation at 430 4 15 nm and emission at 695-770 nm). Fluores-
cent images of each tissue were also observed after dissection.

3. Results
3.1. Synthesis of HPMA-ZnPP

The carboxy! group of ZnPP was conjugated to HPMA at the second-
ary hydroxyl group and the terminal amino group (Scheme 1). Gel per-
meation chromatography of the reaction product on Bio-beads column
showed that HPMA-ZnPP had a higher molecular weight than free ZnPP,
and neither free ZnPP nor decomposition product was detected
(Fig. 1A). The total yield was 47% (wt/wt) based on ZnPP. The macromo-
lecular characteristics of HPMA-ZnPP were also examined by fluores-
cence polarization. The polarization value (P value) of free ZnPP in
dimethylformamide (DMF) was 0.0064, whereas that of HPMA-ZnPP
was 0.0378, which suggests that HPMA-ZnPP had a higher molecular
weight than ZnPP (Fig. 1B). Also HPMA-ZnPP was shown to have good
water solubility of more than 30 mg/ml in water. The ZnPP content in
HPMA-ZnPP was estimated as 20% (wt/wt) on the basis of absorbance
of ZnPP.

3.2. Micellar structure of HPMA-ZnPP

ZnPP is highly hydrophobic and is believed to form aggregates in
water by m-m stacking interactions between tetrapyrrole planes. Thus,
we anticipated that HPMA-ZnPP would form micellar structures in
aqueous solution; namely ZnPP containing head group can form a hy-
drophobic inner core as clustered head group, and a hydrophilic
HPMA chain as tail would form an outer surface layer facing toward
water. Fig. 1C shows that either amide or ester bonds between HPMA
and ZnPP are stable in DMSO and in alkaline pH (10 mM NaOH) with-
out DMSO, separately. However, alkaline treatment in DMSO efficiently
cleaved HPMA-ZnPP since the micellar structure is disintegrated in or-
ganic solvent (DMSO), and OH~- becomes accessible to ester bond
and resulted in hydrolyzes of ester bond and release of free ZnPP. Dy-
namic light scattering analyses showed that in aqueous solution of
HPMA-ZnPP it formed large micelles particles (hydrodynamic diameter:
82.8+41.8 nm), which suggests that HPMA-ZnPP was associated into
micelles in aqueous solution, whereas HPMA alone had a hydrodynamic
diameter of 5.641.9 nm (Fig. 1D). Transmission electron microscopy
also showed the micelle size of HPMA-ZnPP as 30-80 nm (Fig. 1E).
HPMA-ZnPP micelles in phosphate-buffered saline (PBS) showed almost
neutral zeta potential (+1.12 mV).

3.3. HPMA-ZnPP formed micelles via hydrophobic interaction

ZnPP has a Aax at 422 nm in organic solvents such as DMSO and
ethanol, and it exists as monodispersed free molecules. However,
when free ZnPP molecules aggregate with each other in soluble form
in aqueous solution, the Nya shifts towards a shorter wavelength
(390 nm). This blue shift was also observed when HPMA-ZnPP was
dissolved in aqueous solution (Fig. 1F). Furthermore, the blue shift de-
creased after adding detergent or Tween 20, or when dissolved in
DMSO, but not in the presence of 9 M urea (Fig. 1F). Measurement of
fluorescence intensity of HPMA-ZnPP revealed the same phenomenon;
HPMA-ZnPP fluorescence was quenched in aqueous solution, which in-
dicates a hydrophobic interaction among aromatic rings or - stacking
of ZnPP, whereas HPMA-ZnPP fluorescence intensity was restored by
adding detergent but not 9 M urea (Fig. 1G, H).

3.4. Demonstration of 0, generation from HPMA-ZnPP

The '0,-generating capacity of HPMA-ZnPP was examined by
means of ESR spectroscopy with the use of spin-trapping agent





