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(Mailing Address * Yoshikazu Higami, 2641 Yamazaki, Noda~shi, Chiba 278-8510, Japan)

Caloric restriction (CR) has been applied as a powerful tool in aging research. CR is accepted as a robust, repro-
ducible and simple experimental manipulation known to extend both median and maximum lifespans, and to retard and

suppress a broad spectrum of pathophysiological changes in a variety of mammals. In general, CR delays skeletal and
sexual maturation, reduces body size with less adiposity, lowers body temperature, modulates hyperglycemia and insu-

linemia, alters lipid and energy metabolisms, protects against internal oxidative and environmental stresses, and acti-

vates mitochondrial biogenesis and sirtuins. Based on the adaptive response hypothesis against food shortage, I pro-

pose that CR promotes adipose tissue remodeling and modulates energy metabolism via sterol regulatory element

binding protein (SREBP) 1c, a master transcriptional factor of fatty acid biosynthesis. Activation of de #ovo fatty acid
biosynthesis regulated by SREBP1c might play an important role in the anti—aging and lifespan extension by caloric
restriction.

Key words : caloric restriction, aging, lipid metabolism, adipose tissue remodeling, SREBP1c
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PARP1 is an important enzyme involved in various patho-physiological phenomena such as ischemia/
reperfusion (I/R) injury, which occurs when blood flow is restored after cerebral infarction, myocardial
infarction and transplantation of various organs. I/R-induced PARP1 over-activation is mediated by pro-
duction of reactive oxygen species and is involved in NF-xB transactivation. For these reasons, PARP1 is

Keywords: an attractive target for strategies to protect against I/R injury. We previously reported that an MDM2
N“tlfn3a inhibitor Nutlin3a, a cis-imidazoline compound, induces PARP1 degradation in a p53 and proteasome-
?:;lll‘;‘gb dependent manner. In this study, we evaluated the effect of Nutlin3a analogs, Nutlin3b and Caylin2,

; on PARP1 degradation. Like Nutlin3a, Caylin2, but not Nutlin3b, induced PARP1 degradation in both
Poly(ADP-ribose) polymerasel . . ; <

p53 3T3-L1 and 3T3-F442A. This result occurred almost in parallel with p53 accumulation. Furthermore Cay-

MDM2 lin2-induced PARP1 degradation was not observed in p53 deficient mouse embryonic fibroblasts or in the

Proteasome presence of the proteasome inhibitor MG132. These results suggest that Caylin2 induces PARP1 degrada-

tion by the same mechanism as Nutlin3a. Finally, we showed that Nutlin3a or Caylin2 treatment induces

reversible PARP1 down-regulation without an inflammatory response. For protection against I/R injury,

our results support the usability of the p53 inducible cis-imidazoline compounds, Nutlin3a and its ana-

logs, as PARP1 inhibitors.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Poly(ADP-ribosyl)ation, which is the post-translational protein
modification, is involved in cell replication, DNA repair, cell death,
and inflammation [1,2]. PARP1 is the most abundant PARP family
member in cells, and is dramatically activated by DNA breaks.
Therefore, massive DNA damage induces over-activation of PARP1,
and then decreases ATP levels via over-consumption of cellular
NAD", which is required for the ATP production in glycolysis and
TCA cycle pathways. It has been also reported that PARP1 over-
activation is involved in ischemia/reperfusion (I/R) injury, which
occurs during the restoration of blood flow after cerebral infarc-
tion, myocardial infarction and organ transplantation [3-5]. For
these reasons, PARP1 is an attractive target for protection against
I/R injury [6].

We previously reported that Nutlin3a, an MDM2 ubiquitin li-
gase antagonist, induces p53 and proteasome-dependent PARP1
protein degradation [7]. It has been thought that Nutlin3a is a can-
didate for anti-tumor drugs, because MDM2 inhibition by Nutlin3a
induces p53 stabilization, followed by p53-dependent apoptosis in

* Corresponding authors. Fax: +81 4 7124 3676.
E-mail addresses: nokita7@rs.noda.tus.ac.jp (N. Okita), higami@rs.noda.tus.ac.jp
(Y. Higami).
! These authors equally contributed to this work.

0006-291X/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.bbrc.2012.03.091

tumor cells [8]. The discovery of Nutlin3a-induced PARP1 degrada-
tion prompted the use of Nutlin3a as a PARP1 inhibitor. Further-
more, considering that p53 has the potential to up-regulate
anti-oxidant and anti-inflammatory genes [9-11], Nutlin3a may
be a potent anti-I/R drug that has multiple points of action. How-
ever, the Nutlin3a pharmacophore that induce PARP1 protein deg-
radation has not been identified. In the present study, to clarify
whether Nutlin3a analogs were also able to induce PARP1 protein
degradation in a manner similar to Nutlin3a, we examined the ef-
fect on PARP1 degradation by the commercially available Nutlin3a
enantiomer, Nutlin3b [12,13], and by the Nutlin3a derivative,
Caylin2 [14]. Furthermore, by using compounds possessing PARP1
degradation activity, we evaluated the reversibility of PARP1 deg-
radation and the effect on anti-inflammatory IL6 gene expression.

2. Materials and methods
2.1. Cell culture and drugs

Mouse fibroblast 3T3-L1 and 3T3-F442A cell lines were pur-
chased from the RIKEN Bioresource Center (Japan) and the Euro-
pean Collection of Animal Cell Cultures (UK), respectively. The
cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM, low glucose) (WAKO, Japan) with 10% fetal calf serum
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Fig. 1. Caylin2 but not Nutlin3b decreases in PARP1 protein levels in mouse fibroblasts. (A) Structures of Nutlin3a, Nutlin3b, and Caylin2. Mouse fibroblast 3T3-L1 (B) or 3T3-
F442A (C) were treated with the indicated concentrations of Nutlin3a, Nutlin3b or Caylin2 for 8 h. The cell lysates were analyzed by Western blotting using the indicated
antibodies (left pannel). Quantitative data are shown (right panel). In the p53 panel, the arrow and asterisk show the p53 and nonspecific bands, respectively. All experiments

were performed at least three times, and representative data is shown.

and 1% penicillin/streptomycin (Sigma). p53+/+ or —/— MEFs were
prepared as described previously [7]. The established MEFs were
maintained in DMEM (high glucose) with 10% FCS, 0.1 mM 2-
mercaptoethanol, and 1% penicillin/streptomycin. The proteasome
inhibitor MG132 was purchased. from WAKO (Japan). Nutlin3a,
Nutlin3b, and Caylin2 were supplied by Cayman (USA).

2.2. Western blotting

Cell preparation and Western blotting were performed as de-
scribed previously [7]. As primary antibodies, anti-PARP1 (clone
C-2-10, WAKO, Japan), anti-p53 (clone Ab-1, Calbiochem, USA),
anti-B actin (clone AC-15, SIGMA, USA), or anti-CASP7 (clone 1F3,
MBL, Japan) antibodies were used. For secondary antibodies, horse-
radish peroxidase-conjugated F(ab’), fragment of goat anti-mouse
IgG or anti-rabbit IgG (Jackson Immunoresearch, USA) were used.
The specific proteins were visualized with ImmunoStar LD reagent
(WAKO, Japan) and LAS3000 (Fuji Film, Japan), and the data were
analyzed using MultiGauge software (Fuji Film, Japan).

2.3. RNA purification and RT-PCR

RNA purification and RT-PCR were performed using RNAiso
PLUS, FastPure RNA Kkit, PrimeScript Reverse Transcriptase and

random hexamers (all from TaKaRa, Japan) as described previously
[7]. The PCR was performed using Platinum Tag DNA Polymerase
High Fidelity (Invitrogen, USA) and primers for TNFux (forward, 5'-
CCCTCACACTCAGATCATCTTCTC-3; reverse, 5'-GCCTTGTCCCTTGAA
GAGAACC-3') IL6 (forward, 5'-GCCTTCCCTACTTCACAAGTCC-3; re-
verse, 5'-CAGAATTGCCATTGCACAAC-3'), or TBP (forward, 5'-CAG
TACAGCAATCAACATCTCAGC-3'; reverse, 5'-CAAGTTTACAGCCAAG-
ATTCACG-3') as follows: initiation step, at 94 °C for 1 min; amplifi-
cation step, at 94 °C for 1 min, at 60 °C for 15, at 68 °C for 15s;
termination step, 68 °C 15 s. PCR products were subjected to 1.8%
agarose gel electrophoresis, stained with ethidium bromide, and
visualized with LAS3000. The data was analyzed using MultiGauge
software (Fuji Film, Japan).

3. Results

3.1. Caylin2. but not Nutlin3b induces a decrease in PARP1 protein
levels in mouse fibroblast cell lines

Although we previously reported that Nutlin3a induces PARP1
protein degradation, we did not address whether Nutlin3a analogs
also have the potential to induce PARP1 degradation [7]. Here, we
investigated the inducibility of PARP1 degradation by two such
analogs, Nutlin3b and Caylin2 in mouse fibroblast cell lines
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Fig. 2. Caylin2-induced PARP1 degradation is p53 status and proteasome-dependent. (A) p53+/+ and p53—/— MEFs were treated with the indicated concentrations of Caylin2
for 8 h. Cell lysates were analyzed by Western blotting using the indicated antibodies (left panel). Quantitative data are shown (right panel). Each 2 to 3 clones of p53+/+ and
p53—/— MEFs were analyzed and representative data are shown. (B) 3T3-L1 cells were treated with 20 pM Caylin2 for the indicated times. The proteins were subjected to
Western blotting. (C) 3T3-L1 cells were treated with 20 pM Caylin2 in the presence or absence of 5 M MG132 proteasome inhibitor (MG) for 8 h, and cell lysates were then

subjected to Western blotting using the indicated antibodies.
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Fig. 3. Nutlin3a or Caylin2 treatment induces reversible PARP1 down-regulation without an inflammatory response. (A) 3T3-L1 cells were treated with Nutlin3a (2.5 or 5 uM)
or Caylin2 (10 or 20 uM) for 4 h. After these treatments, cells were also cultured in normal growth medium without treatment for a further 20 h. The cell lysates were
analyzed by Western blotting using the indicated antibodies. (B, C) 3T3-L1 cells were treated with 2.5 pM Nutlin3a or 5 uM Caylin2 for 4 h. The protein and RNA expression

were analyzed by Western blotting (B) or RT-PCR (C).

(Fig. 1). Nutlin3b is an inactive enantiomer of Nutlin3a, whereas
Caylin2 is a Nutlin3a derivative in which trifluoromethyl groups
are substituted for chlorine on the 2 phenyl rings (Fig. 1A)
[8,12]. As shown in Fig. 1B and C, for both cell lines, 1-20 uM Nut-
lin3a treatment markedly decreased PARP1 protein levels in a
dose dependent manner, whereas 100 uM Nutlin3a treatment
had no effect, as per our previous report. p53 accumulation was
dose dependent, increasing with the concentration range. Addi-
tionally, after 100 pM Nutlin3a-treated, both cell lines were de-
tached from the culture dish and appeared to die without
significant CASP7 activation. This observation was consistent with
our previous data [7]. Nutlin3b treatment did not markedly alter
p53 protein levels in either cell line. In 3T3-L1 cells, Nutlin3b

treatment did not affect PARP1 protein level (Fig. 1B). On the
other hand, in 3T3-F442A cells, only 100 pM Nutlin3b treatment
decreased the PARP1 protein level (Fig. 1C). Similar to the Nut-
lin3a treatment, 100 uM Nutlin3b-treated cells seemed to die
without significant CASP7 activation. Interestingly, Caylin2 treat-
ment showed a signature profile of PARP1 protein in both cell
lines. 20 pM Caylin2 treatment induced a significant decrease in
PARP1 protein and 100 pM Caylin2 treatment induced PARP1
cleavage, which is considered as an apoptotic hallmark as well
as activation of apoptotic caspases such as CASP2, 3, 6, 7, 9, and
10 [15-17]. Indeed, a trypan blue exclusion assay showed that
Caylin2-treated cells were viable at 20 M and dead at 100 pM
(Supplemental Fig. 1).
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3.2. PARP1 down-regulation by Caylin2 treatment is p53 and
proteasome-dependent

Since we previously reported that Nutlin3a-induced PARP1 deg-
radation occurs in a p53 and proteasome dependent manner, we
sought to confirm using the same methods as our previous report
whether Caylin2-induced PARP1 degradation is inhibited by p53
depletion or proteasome inhibition. As shown in Fig. 2A, p53 WT
MEFs, but not p53 KO MEFs, displayed decreasing PARP1 protein
levels in a Caylin2 dose dependent manner. Furthermore, as shown
in Fig. 2B, Caylin2-induced PARP1 degradation was inhibited by co-
treatment with the proteasome inhibitor MG132. These results
indicate that Caylin2, like Nutlin3a, induces PARP1 degradation
in a p53 and proteasome-dependent manner.

3.3. Nutlin3a or Caylin2 treatment induces reversible PARP1 down-
regulation without an inflammatory response

Since PARP1 plays roles in the maintenance of cellular homeo-
stasis through various signal transduction pathways [1,2], revers-
ible down-regulation of the PARP1 protein level is important to
protect tissues from I/R injury. Therefore we investigated the
reversibility of Nutlin3a- or Caylin2-induced PARP1 degradation.
3T3-L1 cells were treated with Nutlin3a (2.5 or 5 M) or Caylin2
(10 or 20 uM) for 4 h, and then cultured for 20 h. After 4 h of Nut-
lin3a or Caylin2 treatment (transient treatment), PARP1 protein
levels decreased, although p53 protein levels were not markedly
altered (Fig. 3A). After release from those treatments (+20 h),
PARP1 protein levels were recovered (Fig. 3A). These results show
that Nutlin3a or Caylin2-induced PARP1 degradation is reversible.
As it has been reported that Nutlin3a-induced p53 activation leads
to up-regulation of inflammatory cytokines [18], we also investi-
gated the influence on inflammation by the transient Nutlin3a or
Caylin2 treatment (Fig. 3B). 3T3-L1 cells were treated with the
indicated doses of Nutlin3a or Caylin2 for 4 h, and then analyzed
the TNFo and IL6 inflammatory genes by RT-PCR. Under these con-
ditions, Nutlin3a or Caylin2 treatment induced PARP1 degradation
in a dose dependent manner. Interestingly, we observed different
inflammatory responses under these condition (Fig. 3C). The higher
dose treatments of Nutlin3a or Caylin2 significantly induced IL6
mRNA expression. However, these doses had little effect or only
slightly induced TNFoo mRNA expression. On the other hand, the
lower dose treatments of Nutlin3a or Caylin2, which were capable
of inducing PARP1 degradation, inhibited TNFoe mRNA expression
and did not affect or only slightly inhibited IL6 mRNA expression.
Taken together with Fig. 3B and C, these results indicate that the
lower dose treatment of Nutlin3a or Caylin2 has the potential to
induce PARP1 degradation without inducing an inflammatory
response.

4. Discussion

In this study, we examined the effect of treatment by Nutlin3a
analogs on PARP1 protein levels. We demonstrated that Caylin2 in-
duces PARP1 degradation in a similar manner to Nutlin3a. Taken
together with our previous study, these results indicate that p53-
inducible cis-imidazoline compounds have the potential to induce
PARP1 degradation. In the context of using Nutlin3a, Caylin2 and
related derivatives as “PARP1 degradation inducers” for I/R injury
therapy, a major advantage of this study is that it has demon-
strated that Nutlin3a- or Caylin2-induced PARP1 degradation is
reversible (Fig. 3A). I/R injury is the tissue damage that occurs
during the ischemic and reperfusion period, and as such commonly
occurs as a result of ischemic infarction and its treatment or during
organ transplantation. In the injured tissues, PARP1 is

over-activated by reactive oxygen-mediated DNA damage, result-
ing in decreases in ATP levels via over-consumption of cellular
NAD" [1,2]. Therefore, PARP1 inhibition has protective effects on
I/R injury. Furthermore, PARP1 itself plays roles in the maintenance
of cellular homeostasis through its involvement in the regulation
of various signal transduction pathways [1,2]. Taken together, tran-
sient PARP1 degradation is valuable in regard to both protection
from I/R injury and to allowing for a quick recovery from the harm-
ful effects of PARP1 inhibition. There have been some previous re-
ports of IL6 regulation by p53 or PARP1. p53 has been reported to
repress not only IL6 but also the promoter activity of NF-kB, a tran-
scriptional factor of various inflammatory genes including IL6
[10,11]. Additionally, PARP1 activation inhibits the DNA-binding
activity of NF-xB [19]. In this study, we showed that Nutlin3a or
Caylin2 causes differential effects on inflammatory responses
depending on the magnitude of the doses used (Fig. 3C). Our re-
sults suggest that the choice of appropriate doses and timing of
treatments would be critical to obtain only the beneficial effects
on PARP1 degradation when using Nutlin3a or Caylin2 for protec-
tion from I/R injury.

Recently, it was reported that inflammasome activation of car-
diac fibroblasts is essential for myocardial I/R [20]. So far, our work
has revealed that the PARP1 degradation pathway functions effi-
ciently in fibroblast cell lines [7]. These findings support the possi-
bility of practical use of this PARP1 degradation pathway. Further
research will require several lines of investigation. Firstly, it will
be interesting to identifiy the stereocenter that specifically induces
PARP1 degradation. The chiral separation of Nutlin3 (Nutlin3a and
Nutlin3b) has been achieved, although the absolute stereocenter
has not been known [12,13]. In Caylin2 the chiral separation has
not been achieved. We predict that Caylin2a (Caylin2 of Nutlin3a
type), but not Caylin2b (Caylin2 of Nutlin3b type), may be the po-
tential to induce PARP1 degradation and are performing further
analyses now. Secondly, it will be important to explore PARP1 deg-
radation inducers that different structures than the cis-imidazoline
compounds such as Nutlin3a or Caylin2. Thus, elucidation of the
mechanism of reversible PARP1 degradation induction is impor-
tant for the optimization of compounds which induce this
phenomenon, resulting in the establishment of selective chemo-
therapeutic strategies against I/R injury.
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