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Abstract: Various protein factors, including telomerasg and WRN helicase, are involved in telomere maintenance. Res-
veratrol (Rsv), a polyphenol that extends the lifespan of diverse species is an activator of SIRT1, a NAD" dependent de-
acetylating enzyme in mammalian cells. Here, We examitied the changes in gene expressions and promoter activities of
WRN helicase and telomerase after Rsv treatment. This treatment increased the amount of RN transcript and protein
product by activating its promoter and telomerase promoter activity and gene expression. However cell proliferation was
not changed. This suggests that Rsv induces telomere maintenance factors like WRN helicase without affecting cell pro-

liferation.

Keywords: BLM, Resveratrol, Telomerase, Spl, TERT, WRN.

INTRODUCTION

Aging or senescence is a complicated biological process

and various factors are involved in its regulatory molecular

. mechanisms [1-3]. Telomeres, which are the ends of eukary-
otic chromosomes, function to protect chromosome ends, .
from fusion and degradation [4]. In human fibroblasts, te-
lomeres are shortened by repeated cell divisions and their
length correlates with cellular senescence [4,5]. Progeria
syndrome patients are known to show premature aging that
is different from normal process. Studies on the human
progeroid diseases suggest that nuclear structure and DNA
repair systems play important roles in the control of the ag-
ing process and life span [6]. Werner’s syndrome (WS) pa-
tients show also premature aging accompanied with chromo-
somal instability by mutations on the WRN gene, which is
involved in DNA repair and telomere maintenance [7]. These
observations imply that aging of organisms is controlled by
the nuclear functions especially chromosomal maintenance.

Alternatively, aging can be explained by a mitochondrial
free radical theory [1]. Reactive oxygen species (ROS) are
generated by mitochondrial respiration, and the highly reac- -
tive ROS damage inner cellular components including lipids,
proteins, and DNA [8]. In some cases, caloric restriction
(CR) could reduce ROS production and increases expression
of ROS-metabolizing enzymes such as catalase and superox-
ide dismutases (SODs) [9]. CR extends the mean and maxi-
mum life spans of numerous organisms [10]. One of the mo-
lecular mechanisms induced by CR is the activation of sir-
tuins, a conserved family of NAD'- dependent deacetylases
[11]. Resveratrol (Rsv), which is a polyphenol contained in

*Address correspondence to this author at the Department of Gene Regula-
tion, Faculty of Pharmaceutical Sciences, Tokyo University of Science,
2641 Yamazaki, Noda, Chiba 278-8510, Japan;

Tel: +81 4 7121 3616; Fax: +81 4 7121 3608;

E-mail: uchiumi@rs.noda.tus.ac.jp

1874-6098/11 $58.00+.00

grape skins and red wine, can activate sirtuin-mediated
deacetylation [12,13]. Although, it has been reported that
Rsv has no obvious effect [14], Rsv could increase median
and maximum life spans of yeast, nematode, and fruit flies
[12]. In addition, Rsv was reported to improve survival of
high-calorie diet mice [15], also suggesting that this com-
pound is a CR mimetic drug. The molecular mechanism of
the extension of life span caused by CR is thought to be
similar to that caused by Rsv. In order to establish a treat-
ment for aging cells to keep a potency to proliferate and dif-
ferentiate, it is required to investigate cellular signals in-
duced by Rsv.

In this study, we show that Rsv increases WRN promoter
activity, and that its gene and protein expressions are accom-
panied by up-regulation of telomerase in HeLa S3 cells.
Moreover, the viability of the cells was not influenced by the
treatment for 24 h. These observations suggest that Rsv is an
activator of telomerase and WRN without affecting cell
death signals.

MATERIALS AND METHODS
Cell Culture

Human cervical carcinoma (HeLa S3) cells were grown
in Dulbecco’s modified Eagle’s (DME) medium (Nacarai,
Tokyo, Japan), supplemented with 10% fetal bovine serum
(FBS) (Sanko-Pure Chemical, Tokyo, Japan) and penicillin-
streptomycin at 37 °C in a humidified atmosphere with 5%
CO,.

Cell Viability Assay (MTS Assay)

An MTS assay was performed as described in the product
manual. In brief, cells were cultured in microtiter plate wells
with 20 pl of MTS [3-(4,5-dimethylthiazol-2-y1)-5-(3-car-
boxymethoxyphenyl)-2(4-sulfophenyl)-2H-tetrazolium]  so-
lution (Promega, Madison, WI) per well (containing 100 ul

© 2011 Bentham Science Publishers Ltd.




2 Current Aging Sc;'ence, 2011, Vol. 4, No. 1

of cell culture) and incubated for 3 h in a 37 °C, 5% CO,
humidified incubator. Absorbance at 570 nm was measured
by microtiter plate reader (Thermo electron Corp, Vantaa,
Finland) and normalized by absorbance at 630 nm.

Construction of Luc-Reporter Plasmids

Luciferase (Luc) reporter plasmids carrying the human
WRN, BLM, HELB, TERT, and p2] promoter regions were
designated pGL4-BLM, pGL4-HELB, pGL4-WRN, pGL4-
TERT, and pGL4-p21 [16]. The Luc reporter plasmid that
contains 5°-flanking region of the human Pifl gene was
named pGLA4-Pifl [17].

Transient Trangfection and Luc Assays

Plasmid DNAs were transfected into HeLa S3 cells by"

the DEAE-dextran method [16,18]. After 6 to 24 h of trans-
fection, frans-Resveratrol (Cayman Chem., Ann Arbor, MI)
was added to the culture medium. After a further 16 to 40 h
of incubation, cells were collected and lysed with 100 pl of 1
x Cell culture lysis reagent, mixed, and centrifuged at 12,000
x g for 5 sec. The supernatant was stored at — 80 °C. The Luc
assay was performed with a Luciferase assay system
(Promega), as described previously [16,18].

Reverse Transcriptase Polymerase Chain Reaction (RT-

PCR)

RT-PCR was carried out as described previously [16,18]..

First-strand cDNAs were synthesized with ReverTra Ace
(Toyobo, Tokyo, Japan), random primers (Takara), and total
RNAs extracted from HeLa S3 cells. Primer pairs to amplify
human BLM, HELB, WRN, Spl, and f-actin cDNAs have
been reported previously [16], and the primers for amplify-
ing SIRTI cDNAs were hSIRT1-468; 5°- GCGATTGGGTA
CCGAGATAAC -3° and hASIRT1-652; 5’- GTTCGAG-
GATCTGTGCCAATC -3°. Conditions for the PCR were as
follows: 94 °C 30 sec, 55 °C 30 sec, and 72 °C 1 min, with
27 (BLM), 26 (WRN and HELB), 22 (Spl), 22 (SIRTI), and
20 (B -actin) cycles. PCR products were electrophoresed on
5% acrylamide gels and stained with ethidium bromide.

Quantitative Real-time PCR

Real time PCR analysis was carried out using the
Mx3000P Real-Time QPCR System (Stratagene, La Jolla,
CA) as described previously [16]. For PCR amplification,
cDNAs were amplified using SYBR Green Realtime PCR
Master Mix (Toyobo) and 0.3 uM of each primer pair. The
primer pairs for amplifying GAPDH c¢DNA were
hGAPDHS556; 5°- TGCACCACCAACTGCTTAGC-3’ and
hGAPDH642; 5’- GGCATGGACTGTGGTCATGAG-3’.
Amplification was carried out initially for 30 sec at 94 °C,
followed by 40 cycles (94 °C 30 sec, 55 °C 30 sec, and 72°C
1 min). Quantitative PCR analysis for each sample was car-
ried out in triplicates. Relative gene expression values were
obtained by normalizing Cr (threshold cycle) values of target
genes in comparison with Cr values of the GAPDH gene
using the AACy method. -
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Western Blot Analysis

Western blot analysis was carried out as previously de- .
scribed [16], with antibodies against WRN, and Spl (Santa
Cruz Biothchnology, Santa Cruz, CA) followed by addition
of horseradish peroxidase (HRP)-conjugated secondary anti-
body (Calbiochem, Darmstadt, Germany). Signal intensities
were quantified with an LAS4000 system and MultiGauge
Softare (Fuji Film, Tokyo, Japan).

Telomerase Amplification Protocol (TRAP) Assay

Cell pellets (3x10%) were treated with 200 ul of ice-cold 1
x CHAPS lysis buffer (10 mM Tris-HCI [pH 7.5], 1 mM
MgCl,, 1| mM EGTA, 0.1 mM Benzamidine, 5 mM p-
mercaptoethanol, 0.5% CHAPS, and 10% Glycerol), incu-
bated on ice for 30 min, and centrifuged at 12,000 x g for 20
min at 4 °C. The supernatant was then stored at —80 °C.
TRAP assays were performed with a TRAP assay kit
(Chemicon, Temecula, CA) as described previously [16].
Signal intensities of the DNA ladders and internal controls
were quantified with MultiGauge Software.

RESULTS
Proliferation of HeLa S3 Cells After Rsv Treatment
" As shown in Fig. (1), the proliferation of HelLa S3 cells

~ was not suppressed after 24 h treatment with 40 uM of Rsv

measured by MTS. This suggests that Rsv does not induce
cell-damaging signals in these experimental conditions.

=
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Fig. (1). Resveratrol (Rsv) does not affect proliferation of HeLa S3
cells. HeLa S3 cells were treated with Rsv (1-40 uM) for 24 h. Re-
sults represent cell viabilities measured by the MTS assay. The
results show the mean + SD of eight independent experiments.

Augmentatiﬁn of Expression of DNA Helicase-encoding
Genes by Rsv

Quantitative real time PCR showed that the expression of
the WRN, HELB, and Spl genes increased by the increase of
the concentrations of Rsv up to 10 uM in the culture medium
for 24 h (Fig. 2B). On the other hand, BLM gene expression
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Fig. (2). Changes in gene expressions of various genes after Rsv
treatment. (A) HeLa S3 cells were treated with 10 uM Rsv for 0, 4,
6, 8, 16, and 24 h (lanes 1, 2, 3, 4, 5 and 6, respectively). Total
RNAs were extracted from the cells, and synthesized cDNAs were
subjected to PCR with appropriate primer pairs to amplify BLM,
HELB, WRN, Spl, SIRTI, and S -actin cDNA. (B) HeLa S3 cells
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were treated with different concentrations of Rsv (0 to 10 uM) for
24 h. Realtime PCR analyses were performed with cDNA prepared
from similar experimental conditions as described above. Results
show relative gene expressions of WRN, BLM, HELB, and Spl
compared with that of GAPDH. The results show the mean + SD of
three independent assays. (C) Realtime RT-PCR was carried out to
analyze WRN and Pifl gene expression in HeLa S3 cells after 10
uM of Rsv treatment for 0 to 24 h. The results show relative
WRN/GAPDH, and Pifl/GAPDH gene expression ratios compared
with those of Rsv non-treated cells. The values are the mean + SD
of four independent experiments. .

was not greatly changed. Next, we examined whether the
amounts of WRN transcripts were accumulated in a time-
dependent manner. As shown in Fig. (2C), the relative
amount of WRN transcripts was greater than those of the Pif]
transcripts after 4-24 h treatment of 10 uM of Rsv.

Effect of Rsv on the WRN Promoter

To test whether human WRN, BLM, TERT, p2l, and
HELB promoters are affected by Rsv treatment, transient
transfection experiments were carried out (Fig. 3A). Luc
activities of pGL4-WRN, -BLM, -HELB, -TERT, and -p21
transfected cells were normalized to that of the pGL4-Pifl
transfected cells, because Pifl has been suggested to have a
negative effect on telomere elongation [19]. As shown in
Fig. (3A), relative Luc activities of these reporter-vector
transfected cells were augmented by 10 uM Rsv.

To compare time-dependent responses of the promoters
precisely, HeLa S3 cells were treated with Rsv after 6 h of
transfection and collected after further incubation from 0 to
40 h. Increases in the WRN/Pifl and TERT/Pif] promoter
activity ratios were observed after 24 h of treatment (Fig.
3B). Next, Rsv was added after 24 h of transfection, and the
cells were harvested after further O to 48 h incubation (Fig.
3C). In these experimental conditions, the magnitude of fold
activation of the pGL4-WRN transfected cells after 24 to 48
h Rsv treatment was greater than that of the pGL4-Pif] trans-
fected cells. Taken together, these results indicate that Rsv
up-regulates the WRN and TERT promoters in HeLa S3 cells.

Expression of WRN Protein After Rsv Treatment

The data above indicate that the WRN promoter responds
to Rsv and that transcripts are accumulated in the cells. To
examine WRN protein expression, Western blotting with
samples from cells treated with 10 uM Rsv was performed.
WRN protein expression increased more than three fold
compared with the control level after 16 h Rsv treatment
(Fig. 4). Surprisingly, the amount of WRN protein in 24 h
Rsv-treated cells decreased, accompanied by a decrease in
Spl protein expression (Fig. 4B). Because WRN gene ex-
pression increased continuously after 24 h Rsv treatment
(Fig. 2), WRN protein might be down-regulated or degraded
at the post-translational level.

Activation of Telomerase by Rsv Treatment

Because similar responses in RN promoter and
gene/protein expressions were observed after Rsv, as in the
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Fig. (3). Effect of Rsv on WRN, and TERT promoter activities. (A)
HeLa S3 cells were transiently transfected with pGL4-WRN (col-
umns 1 and 2), pGL4-BLM (columns 3 and 4), pGL4-hTERT (col-
umns 5 and 6), pGL4-p21 (columns 7 and 8), pGL4-HELB (col-
umns 9 and 10), and pGL4-Pifl (columns 11 and 12). After 6 h
incubation, cells were treated with 10 pM Rsv for a further 16 h
then Luc samples were prepared. The results show relative Luc
activities of these reporter plasmid-transfected cells compared with
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that of pGL4-Pifl vector transfected cells. The values are the mean
+ SD of four independent assays. (B) Similar experiment described
in the legend to (A) was performed. Fold activation indicates the
WRN/Pifl and TERT/Pifl promoter activity ratios of Rsv treated
cells compared with those of Rsv- non-treated cells. The results
show the mean + SD of three independent assays. (C) HeLa S3
cells were treated with Rsv after 24 h of transfection. After further
24 h incubation, cells were harvested and Luc assays were per-
formed. The results show relative Luc activities of these reporter
plasmid-transfected cells compared with that of Rsv non-treated
cells. The values are the mean + SD of three independent assays.
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Fig. (4). Rsv treatment-induced amount of WRN in whole protein
extracts from HeLa S3 cells. (A) HeLa S3 cells (1.0 x 10°) were
treated with Rsv (10 pM) for 0, 4, and 8 h. Proteins extracted from
Rsv-treated cells were separated by a 7.5% SDS-PAGE, and West-
em blotting was performed with anti-WRN and anti-B-actin anti-
bodies (upper and lower panels, respectively). Then, each band was
quantified and results show relative WRN/B-actin protein expres-
sion ratio compared to that of the Rsv non-treated cells. (B) HeLa
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S3 cells were treated with 10 uM Rsv for 0, 8, 16 and 24 h and
Western blotting was performed with anti-WRN, anti-B-actin, and
anti-Spl antibodies. The signal intensity of each band was quanti-
fied and the results show relative protein levels compared with that
of Rsv-non-treated cells.

case of 2DG treatment [16], we speculated that telomerase
might be activated by Rsv. As confirmation, a TRAP assay
was performed with the protein samples from HeLa S3 cells
reated with 10 uM Rsv for 8 to 24 h (Fig. 5A). The results
showed that telomerase activity reached its highest point at
16 h treatment and decreased after a further 8 h (Fig. 5B).

The pattern of changes of telomerase after Rsv treatment is

similar to that of WRN.

DISCUSSION

Genes suggested as controlling the aging process encode
proteins involved in DNA-damage responses, DNA-repair
synthesis, telomere maintenance, insulin signaling, ROS
metabolism, and construction of nuclear membranes [1,3,6].
In other words, the aging process could be affected by altera-
tion of variety of gene expression induced by epigenetic and
environmental changes. On the other hand, it seems that the

A

Time after Rsv Addition (h)
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life spans are pre-set or pre-determined by the genome of the
organism because the maximum life spans of species are
almost constant. From a genetic study of C. elegans, it has
been suggested that the insulin-mediated signal transduction
system plays an important role in controlling life span [20,
21].

CR or reduced caloric intake is the only conclusive and
reproducible intervention that can slow aging and maintain
health in mammals [22]. Given that insulin enhances cellular
glucose intake, CR might have the opposite effect of insulin
signaling. Previously, we indicated that 2DG, a potent in-
hibitor of glucose metabolism, up-regulated the WRN gene
and protein expressions accompanied by activation of telom-
erase in HeLa S3 cells [16]. Recent studies have suggested
that Rsv also has positive [23] and negative [24] effects on
telomerase activity. The effect of Rsv on telomerase might
be dependent on whether the experimental conditions induce
apoptosis or not. Recently, it was reported that Rsv activates
an ATM/ATR-dependent DNA damage response [25].
Therefore, if apoptosis was not induced, Rsv would up-
regulate chromosomal DNA maintenance factors including
telomerase. In this study, we observed the positive effect of
Rsv on WRN gene expression and telomerase activity with-
out growth inhibition for 24 h. Rsv is known to be a CR mi-
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Fig. (5). Rsv treatment induces telomerase activity in HeLa S3 cells. (A) CHAPS lysis buffer extracts (20 ng) from HeLa S3 cells were ana-
lyzed by the TRAP assay. HeLa S3 cells were treated with 10 uM Rsv for 0 (lanes 1-3), 8 (lanes 4-6), 16 (lanes 7-9), and 24 h (lanes 10-12).
Lanes 14 to 25 represent backgrounds with samples that were incubated at 85°C for 10 min. 1 x CHAPS (lane 13) and TSRS (lanes 26) rep-
resent negative and positive controls, respectively. Lane M represents a 100-bp ladder marker. (B) Signal intensities of TRAP-products and
internal controls were quantified and telomerase activities were calculated as described in the manufacturer’s protocol. Histograms show
relative telomerase activities compared with Rsv non-treated cells. Results show the mean + SD of three independent assays.
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metic drug that activates sirtuin (SIRT1)-mediated deacetyla-
tion [12] and the activation of SIRT1 by Rsv treatment has
been reported to improve mitochondrial function [26]. These
observations suggest that common signal molecules, such as
FoxO [27], might have been affected by 2DG or Rsv to up-
regulate promoter activities of the WRN and TERT genes. In
addition, NF-xB activity has been reported to be inhibited by
Rsv [28]. Therefore, NF-kB might be one of the candidates
for the regulation of the WRN and TERT promoters. From
comparison of the DNA sequence motifs of the WRN and
TERT promoters, multiple GC-boxes or Spl binding se-

quences are commonly found in both promoter regions [16],”

suggesting that GC-box binding factors are affected by CR
mimetic compounds to co-regulate telomere maintenance.
factors. Because the Spl protein decreased after Rsv treat-

ment (Fig. 4B), other GC-box associating factors might be"

involved in the positive regulation of the WRN and TERT
promoters. However, these possibilities are yet-to be eluci-
dated.

2DG, as a CR mimetic drug, has a very narrow therapeu-
tic range bordering on toxicity, making it difficult to be used
as a drug candidate for human beings [22]. On the other
hand, Rsv activates SIRT1 but it could induce cell-death or
apoptosis [24]. Further analyses are needed to indicate the
transcription factor(s) that are responsible for the up-
regulation of WRN and TERT gene expressions by these CR

mimetic compounds. Introduction of the expression vectors ~

of these transcription factors with siRNAs for ¢cDNAs of

glucose metabolizing enzymes into cells might protect chro=

mosomes and telomeres, thereby elongating life span without
toxic effects.
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ABBREVIATIONS

BS = Bloom’s syndrome

CR = Caloric restriction

2DG = 2-deoxy-D-glucose

FCS = Fetal calf serum

HELB = Helicase B

HGPS = Hutchinson-Gilford progeria syndrome

Luc = Luciferase

MTS = 3-(4,5-dimethylthiazol-2-y1)-5-(3-carboxy-
methoxyphenyl)-2(4-sulfophenyl)-2H-
tetrazolium; inner salt

ROS = Reactive oxygen species

Rsv = Resveratrol

RT-PCR = Reve'rse transcriptase polymerase chain
reaction

SDS-PAGE = SDS-polyacrylamide gel electrophoresis

Uchiumi ef al.

SOD = Superoxide dismutase

TBS = TRIS buffered saline

TRAP = Telomerase amplification protocol
WS = Werner’s syndrome.
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ERERHDOZALD G AT A —HIRICES
Pl - FaERIEHD A=A L
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Wig: H o) —HIE (caloric restriction : CR) &, Z{ERZIH, MBI EROFHEEEE
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DI A 1) —DHFIR (caloric restriction : CR)
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fHIFR (dietary restriction, food restriction), X%
V¥ —fHIBR (energy restriction) & »WHEIH, M
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