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Fig. 5. The body weight change and plasma measurements in female rats. (a) Body weight changes-on euhydration and 12, 24 and 48 ‘h of dehydration. (g)
Body weight changes on 2, 6 and 12 h of rehydration. All data are presented as percentages from the beginning of the experiments. (¢) Plasma sodium con-
centration (P-Na) in male rats, (o) Plasma osmolality (P-Osm) in male rats. E, od /ib. to water; D 12 h, water deprivation for 12 h; D 24 h, water deprivation
for 24 h; D 48 h, water deprivation for 48 h; R 2 h, water deprivation for 46 h + ad /ib. to water for 2 h; R 6 h, water deprivation for 46 h + ad /ib. to water
for 6 h; R 12 h, water deprivation for 46 h + od /ib. to water for 12 h. **P < 0.01 versus all other groups. All data are presented as the mean £ SEM.

cells increase in the AP (Figs 7e-a and 8) and the NTS (Figs 7e-b
and 8).

In the RVLM, the number of mRFP1 positive cells following 2 h
of rehydration (Fig. 7e-c) were not statistically changed compared
to dehydration (Fig. 8). After 6 h of rehydration, basal, euhydrated
levels of mRFP1 expression were restored in all brainstem regions
(Figs 7r-a-f-c and 8) and this low level of expression was main-
tained to the 12-h rehydration time point (Figs 76-a-6-c and 8).
Similar results were seen in female rats, with no significant differ-
ences identified between the sexes.

Expression patterns of c-Fos-LI positive cells in the brain
and brainstem

Expression of c-Fos-LI cells in male and female rats was observed
in the OVLT, MnPO, SFO, SON, PVN, AP, NTS and RVLM in euhydrat-
ed rats, 48 h dehydrated rats, and in rats dehydrated for 46 h then
rehydrated for 2, 6 or 12 h (Fig. 9). Quantification of transgene
expression involved counting the number of c-Fos-LI positive cells.
In all the regions examined, very few c-Fos-LI positive cells were
seen in the euhydrated state (Fig. 9a-a-A-h, p-a-p-h). Dehydration
resulted in a significant increase in the number of c-Fos-LI positive
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cells in all the observed regions (Fig. 98-a-8-h, e-a-t-h). Then the
number of the cells returned to the euhydrated level after 12 h of
rehydration (Fig. 9c-a-c-h, F-a-F-h). There were no significant dif-
ferences identified between the sexes.

Discussion

The present study has revealed the effects of chronic osmotic stim-
ulation and subsequent water rehydration on mRFP1 fluorescence
in specific forebrain and the brainstem regions of male and female
c-fos-mRFP1 transgenic rats. We observed strong mRFP1 signals
after dehydration in all the osmosensitive areas, as previously
reported in Fos immunostaining studies (8-10). This may suggest
that the mRFP1 signals have at least equal sensitivity or more to
immunostaining for Fos protein. However, the assessment of mRFP1
expression is relatively straightforward, and acts as a facile and
sensitive proxy by which to quantify neuronal activity in osmosen-
sitive neurones.

In the male and female forebrain SON and PVN, the hindbrain
RVLM, and in the OVLT (a forebrain circumventricular organ, CVO),
12 h of dehydration resulted in a massive and significant increase
in the number of mRFP1 positive cells, and this did not change at

© 2013 British Society for Neuroendocrinology
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Fig. 6. Digital images of representative examples of monomeric red fluorescent protein 1 (mRFP1) expression patterns in the forebrain in female rats. The
white dotted lines show the location of analysis (a-a-A-e). The conditions used in these studies are shown at the bottom of each vertical column, and the
brain areas being assayed are shown on the left. E, ad /ib. to water; D 12 h, water deprivation for 12 h; D 24 h, water deprivation for 24 h; D 48 h, water
deprivation for 48 h; R 2 h, water deprivation for 46 h + ad /ib. to water for 2 h; R 6 h, water deprivation for 46 h + ad fib. to water for 6 h; R 12 h, water
deprivation for 46 h + ad /ib. to water for 12 h; OT, optic tract; 3V, third ventricular; OVLT, organum vasculosum of the lamina terminalis; MnPO, median pre-
optic nucleus; SFO, subfornical organ; SON, supraoptic nucleus; PVN, paraventricular nucleus. Scale bar = 500 pm.
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Fig. 7. Digital images of representative examples of monomeric red fluorescent protein 1 (mRFP1) expression patterns in the brainstem in female rats. The
white dotted lines show the location of analysis (a-a-A-c). The conditions used in these studies are shown at the bottom of each vertical column, and the
brain areas being assayed are shown on the left. E, ad /ib. to water; D 12 h, water deprivation for 12 h; D 24 h, water deprivation for 24 h; D 48 h, water
deprivation for 48 h; R 2 h, water deprivation for 46 h + ad [ib. to water for 2 h; R 6 h, water deprivation for 46 h + ad /ib. to water for 6 h; R 12 h, water
deprivation for 46 h + ad /ib. to water for 12 h; 4V, fourth ventricular; AP, area postrema; NTS, nucleus of the solitary tract; RVLM, rostral ventrolateral
medulla. Scale bar = 500 pm.

24 or 48 h of dehydration. Thus, regardless of the degree of
progressive bodily water depletion, there is no change in the num-
ber of mRFP1 positive cells beyond the initial induction over the
first 12 h of the stimulus. This is also the case for the female
forebrain OVLT CVO. However, in contrast, progressive dehydration
induced a gradual increase in mRFP1 positive cells in the male
MnPO and SFO forebrain CVOs. The physiological significance of

© 2013 British Society for Neuroendocrinology

this sexual dimorphism remains to be determined. Note that we
studied randomly cycling female transgenic rats, and we concede
that oestrous cycle differences may skew our results to an
unknown extent. Several studies report that there are oestrogen
receptors in the MnPQ and SFO (11,12). Oestrogen may attenuate
Fos induction in the MnPO and SFO after physiological stimuli such
as dehydration.

Journal of Neuroendocrinology, 2013, 25, 478-487



c-fos-mRFP1 transgene expression in dehydrated/rehydrated rats 485

100

90

80

70

60

50

40

30

Number of mRFP1 positive cells

20

OVIT  MnPO  SFO

D %24
=
## g

N

AP NST

Z B

Fig. 8. Changes in number of monomeric red fluorescent protein 1 (mRFP1) positive cells in the forebrain and brainstem in female rats. E, ad /ib. to water
(n=6); D 12 h, water deprivation for 12 h (n = 6); D 24 h, water deprivation for 24 h (n = 6); D 48 h, water deprivation for 48 h (n =7); R 2 h, water
deprivation for 46 h + ad /ib. to water for 2 h (n = 12); R 6 h, water deprivation for 46 h + ad /ib. to water for 6 h (n = 6); R 12 h, water deprivation for
46 h + od lib. to water for 12 h (n = 6). *P < 0.05 versus E and R 12 h. **P < 0.01 versus E, R 6 h and R 12 h. *P < 0.05 versus E and R 12 h. ¥P < 0.05
versus E, R 6 h and R 12 h. #*P < 007 versus all other groups. OVLT, organum vasculosum of the lamina terminalis; MnPO, median preoptic nucleus; SFO,
subfornical organ; SON, supraoptic nucleus; PVN, paraventricular nucleus; AP, area postrema; NTS, nucleus of the solitary tract; RVLM, rostral ventrolateral

medulla. Data are presented as the mean £ SEM.

Strikingly, dehydration had no inductive effect on mRFP1 expres-
sion in the NTS. Gottlieb et al(8) have reported an increase in c-fos
in the NTS and AP after 48 h dehydration, which is consistent with
our c-Fos-LI study (Fig. 9). The rats that they used were Sprague-
Dawley rats (250-350 g body weight). It is likely that strain and
weight differences contribute to the differences between their
experiments and ours. For example, water deprivation for 48 h may
develop different degrees of hypovolemia, which resulted in differ-
ential mRFP1 expression in the NTS and AP (14).

Similarly, and in contrast to the forebrain CVOs, including the os-
mosensitive SFO, the AP, a hindbrain CVO, does not up-regulate
mRFP1 as a consequence of chronic dehydration. We have previ-
ously used Affymetrix microarray expression profiling (Affymetrix,
Santa Clara, CA, USA) to compare those genes that are significantly
regulated by chronic (72 h) dehydration in the SFO (15) and AP
(16). Interesting, many more genes (305) were regulated in the SFO
compared to the AP (53), suggesting that the SFO is much more
sensitive to chronic water deprivation that the AP. Furthermore, the
genes regulated by chronic dehydration in the SFO may be tran-
scriptional targets of c-fos.

As well as documenting the effects of chronic dehydration on
mRFP1 expression in the brains of our transgenic rats, we also
investigated the consequences of 2, 6 and 12 h of rehydration.
Strikingly, and in marked contrast to the lack of responses to
chronic dehydration, 2 h of rehydration induced a massive but
transient increase in mRFP1 expression in the AP and NTS; by 6 h,
expression was back to basal levels. The NTS is involved in gusta-
tory processing (17) and we speculate that the NTS shows increases
in mRFP1 positive cells associated with water intake. ‘The NTS
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receives afferent projections from other brain regions and a variety
of organ systems (6,18), which may also play a role in.the expres-
sion of mRFP1 after rehydration. The privileged location of the AP
outside of the blood-brain barrier makes this sensory circumven-
tricular organ a vital player in the control of autonomic functions
by the central nervous system (19). It has been described that the
AP is involved in nausea and vomiting (20). Although details of the
mechanism are unknown, it may be presumed that the AP responds
by nausea that occurs after rehydration.

After 2 h of rehydration, the number of mRFP1 positive cells in
the OVLT, MnPO and SFO was as same as in the dehydrated state.
These three forebrain CVOs have been described to contain osmo-
sensitive neurones that project to the SON and PVN, and they play
an important role in cardiovascular regulation and body fluid
homeostasis (5,21,22). It has been suggested that Fos immunostain-
ing in the OVLT and MnPO after rehydration is a result of sustained
activation of the renin-angiotensin system (23).

The number of mRFP1 positive cells returned to the euhydrated
state in the SON and PVN after 6 h of rehydration, and were atten-
uated in the OVLT and MnPO, then completely returned to the basal
euhydrated levels after 12 h of rehydration in all the areas we
observed. Previous studies suggested that the number of cells that
were immunostained for Fos in the SON returned to the euhydrated
levels after only 2 h of water intake (8). It is thus possible that our
mRFP1 Fos-surrogate has a different half-life to the native Fos
protein, or that our transgene is subject to marginally different
regulatory control. .

Previous studies have revealed that the MnPO is involved norad-
renergic control of body fluid volume, and it has been suggested

© 2013 British Society for Neuroendocrinology
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medulla. Data are presented as the mean &= SEM.

that the system may play an important role in the elicitation of
hypovolaemia-induced dipsogenic response (24). The SFO has been
described as an integral player in fluid homeostasis, and has been
implicated in the de novo synthesis of angiotensin Il (25). The
increases of mRFP1 positive cells in the RVLM may indicate the
activation of baroreceptor reflex. It is expected that the blood pres-
sure changed by water deprivation and rehydration, and these may
the cause of increases of the mRFP1 positive cells in the RVLM.

In conclusion, we determined the expression patterns of mRFP1
in the transgenic central nervous system after osmotic stimuli. Both
acute and chronic osmotic stimulation caused the induction of
mRFP1 fluorescence in osmosensitive areas in c-fos-mRFP1 trans-
genic rats. Our results are similar to previous studies of Fos immu-
nostaining (8-10) and it was demonstrated to be of at least
equivalent sensitivity compared to native Fos protein detection.
Thus, the c-fos-mRFP transgenic rats are useful animal model for
various physiological studies including the central responses to
acute and chronic osmotic challenges. Coupled with deep-brain ‘op-
trode’ detection of mRFP1 (26), it may be possible to detect neuro-
nal activation in living, conscious animals.

© 2013 British Society for Neuroendocrinology
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Abstract We examined the effects of serotonin (5-HT)
depletion induced by peripheral injection of 5-HT synthesis
inhibitor p-chlorophenylalanine (PCPA) on the expression
of feeding-regulating peptides expressions by using in situ
hybridization histochemistry in adult male Wistar rats.
PCPA pretreatment had no significant effect on basal levels
of oxytocin, corticotropin-releasing hormone (CRH), thy-
rotropin-releasing hormone (TRH), pro-opiomelanocortin
(POMC), cocaine and amphetamine-regulated transcript
(CART), neuropeptide-Y (NPY), agouti-related protein
(AgRP), melanin-concentrating hormone (MCH) or orexin
in the hypothalamus. Food deprivation for 48 h caused a
significant decrease in CRH, TRH, POMC, and CART, and
a significant increase in NPY, AgRP and MCH. After PCPA
treatment, POMC and CART did not decrease despite food
deprivation. NPY was significantly increased by food
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deprivation with PCPA, but was attenuated compared to
food deprivation without PCPA. These results suggest that
the serotonergic system in the hypothalamus may be
involved in the gene expression of POMC, CART, and NPY
related to feeding behavior.

Keywords Serotonin - Feeding - Neuropeptides -
Hypothalamus - p-chlorophenylalanine

Introduction

Many physiological behaviors, including emotion, mem-
ory, learning, awakening, attention, thermoregulation, and
feeding, are manipulated by the serotonergic system [1-4].
With regard to feeding behavior, although its regulation by
serotonin (5-HT) is broadly well described, the mecha-
nisms or central pathways that mediate this behavior are
still poorly understood. While current approaches to iden-
tifying the mechanisms of feeding regulation have focused
on feeding-regulating neuropeptides [5], possible interac-
tions between monoamine and neuropeptides in appetite
regulation have been clarified [6, 7].
p-chlorophenylalanine (PCPA) depletes brain serotonin
(5-HT) by synthetic inhibition [8, 9], of which systemic
pretreatment for 2 days resulted in 95 % depletion in
hypothalamic serotonin [10]. This pharmaceutical enables
us to explicate the interactions between 5-HT and feeding-
regulating neuropeptides. Generally, anorexigenic pep-
tides, such as corticotropin-releasing hormone (CRH) [11]
and thyrotropin-releasing hormone (TRH) [12, 13], are
down-regulated by food deprivation; conversely, orexi-
genic peptides, such as neuropeptide-Y (NPY) [14] and
melanin-concentrating hormone (MCH) [15], are up-regu-
lated. If the feeding-regulating neuropeptides do not
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change despite food deprivation after PCPA pretreatment,
it can be referred that the neuropeptides may have possible
interactions with 5-HT.

Several studies have demonstrated the correlations
between 5-HT and hypothalamic feeding-regulating neu-
ropeptides [8, 9, 16-18], although which kind of feeding-
regulating peptides are affected by the serotonergic system
is unclear. Here, we comprehensively examined the inter-
actions between the serotonergic system and feeding-reg-
ulating neuropeptides in the hypothalamus after 48 h food
deprivation with or without PCPA pretreatment, using
in situ hybridization histochemistry (IHC) in rats.

Materials and methods
Animals

Adult male Wistar rats (180-190 g body weight) were
individually housed and maintained in temperature con-
trolled (23-25 °C) conditions under a 12.12 h light/dark
cycle (lights on at 0700 hours). All experiments were
performed in strict accordance with the guidelines on the
use and care of laboratory animals issued by the Physio-
logical Society of Japan, and were approved by the Ethics
Committee of Animal Care and Experimentation of Uni-
versity of Occupational and Environmental Health.

Test substance

PCPA (Sigma-Aldrich Japan, Tokyo, Japan) was dissolved
in 0.9 % sterile physiological saline (Otsuka Pharmaceu-
tical, Tokyo, Japan) (0.6 mg/1 mL).

Determination of hypothalamic monoamine
concentrations

Hypothalamic concentrations of noradrenaline (NA),
dopamine (DA), and 5-HT were measured by high-per-
formance liquid chromatography with electrochemical
detection (HPLC-ECD). PCPA or saline were administered
by intraperitoneally (i.p.) injection daily for 2 days. The
rats were decapitated 48 h after second saline (n = 8) or
PCPA (n = 8) treatment followed by removal of the
hypothalamus. Briefly, samples were frozen onto dry-ice
and stored at —80 °C before the measurements. Samples
were homogenized in 0.2 M perchloric acid and centri-
fuged (8,000g) at 4 °C for 30 min. The supernatant was
collected and analyzed with HPLC-ECD system (Hitachi,
Japan). HPLC-ECD conditions were a modified method of
Wetherell et al. [19]. Briefly, separations were performed
using a 4.6 x 150 mm ODS C;g column. The mobile
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phase consisted of 0.1 M Na,PO,, 0.8 mM OSA, 0.5 M
EDTA, and 10 % methanol, and was adjusted to pH 3.63
with phosphoric acid. Column temperature was 40 °C, flow
rate 1.0 mL/min, and the detector was set at a potential of
+0.75 V relative to an Ag/AgCl reference electrode. The
working standard solution was prepared in 0.2 M per-
chloric acid containing 0.5 mM EDTA and 0.05 mg/mL
DHBA was stored at —80 °C.

Experimental procedure

All the rats had ad libitum access to water throughout the
experiments. The rats were divided into four groups:
saline + ad libitum access to food (SAF, n = 13), sali-
ne + food deprivation for 48h (SFD, n = 13),
PCPA + ad libitum access to food (PAF, n = 14), and
PCPA + food deprivation for 48 h (PFD, n = 14). Saline
(10 mL/kg body weight as a single daily dose) or PCPA
(200 mg/10 mL/kg body weight as a single daily dose) was
administered i.p. at day O and day 1 (0900-1000 hours).
After the administration of saline or PCPA at day 1, food
was deprived in SFD and PFD. Body weights and food
intake in all the experimental groups were measured every
24 h from day 1 to day 6.

On day 3, some of those rats (SAF, n = 7, SFD, n = 7,
PAF, n = 8, PFD, n = 8) were decapitated immediately
after the treatment without being anesthetized, followed by
prompt removal of the brain onto dry ice, then storing at
—80 °C. Trunk blood samples were taken during decapi-
tation, and were collected into chilled reaction tubes
(Greiner Bio-One) containing an aprotinin/EDTA mixture.
The blood samples were Immediately,centrifuged for
10 min at 4 °C, 1,000g, after which, a 15-uL sample of
plasma was taken for measuring plasma osmolality (P-
Osm) using a ONE-TEN osmometer (FISKE, Norwood,
MA, USA), 500 pL for plasma 5-HT (SRL, Tokyo, Japan),
500 pL for plasma leptin (SRL), 1,000 pL for plasma
active and desacyl ghrelin (SRL), and 10 pL for measuring
plasma glucose (PG) using a Medisafe Reader GR-101
(Terumo, Tokyo, Japan). Finally, 100 pL of 1 M HCI was
added to each tube for measuring active and desacyl
ghrelin in order to protect against decomposition.

In situ hybridization histochemistry

The removed brains were cut into 12-pum slices and thaw-
mounted on gelatin/chrome alum-coated slides. The loca-
tions of the hypothalamic areas, including the supraoptic
nucleus (SON), paraventricular nucleus (PVN), arcuate
nucleus (ARC), and lateral hypothalamic area (LHA), were
determined according to coordinates of the rat brain atlas.
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33§ 3'- end-labeled deoxyoligonucleotide complementary
to transcripts encoding oxytocin, CRH, TRH, pro-opio-
melanocortin (POMC), cocaine and amphetamine-regu-
lated transcript (CART), NPY, agouti-related protein
(AgRP), MCH, and orexin were used (oxyfocin probe
sequence, 5'-CTC GGA GAA GGC AGA CTC AGG GTC
GCA GGC-3'; CRH probe sequence, 5'-CAG TTT CCT
GTT GCT GTG AGC TTG CTG AGC TAA CTG CTC
TGC CCT GGC-3'; TRH probe sequence, 5'-GTC TTT
TTC CTC CTC CIC CCT TTIT GCC TGG ATG CTG
CGC TTT TGT GAT-3'; POMC probe sequence, 5'-TGG
CTG CTC TCC AGG CAC CAG CTC CAC ACA TCT
ATG GAG G-3'; CART probe sequence, 5'-TCC TTC TCG
TGG GAC GCA TCA TCC ACG GCA GAG TAG ATG
TCC AGG-3'; NPY probe sequence, 5'-CAA ATG GAT
GAT TGG TCA TTT CAA CAT AGA GTT GGG GGC
TTG CT-3'; AgRP probe sequence, 5'-CGA CGC GGA
GAA CGA GAC TCG CGG TTC TGT GGA TCT AGC
ACC TCT GCC-3'; MCH probe sequence, 5'-CCA ACA
GGG TCG GTA GAC TCG TCC CAG CAT-3'; and orexin
probe sequence, 5'-TCC TCA TAG TCT GGA GGC AGG
TGG AAG GGT TCC CCA CTG CTA GTG-3') The
specificity of these probes were confirmed by previous
studies [20, 21].

The probe was 3/-end-labeled using terminal deoxy-
nucleotidyl transferase and [358] dATP. The in situ
hybridization protocol has been previously described in
detail [22]. Briefly, sections were fixed in 4 % (wW/v)
formaldehyde for 5 min and incubated in saline con-
taining 0.25 % (v/v) acetic anhydride and 0.1 M trietha-
nolamine for 10 min and then dehydrated, delipidated in
chloroform, and partially rehydrated. Hybridization was
carried out overnight at 37 °C in 45 pL of hybridization
buffer under a Nescofilm (Bando Kagaku, Osaka, Japan)
cover slip. A total count of 1 x 10° c.p.m. for the oxy-
tocin transcripts and 1 X 10° c.p.m. for the CRH, TRH,
POMC, CART, NPY, AgRP, MCH and orexin transcripts
were used per slide. After hybridization, the sections
were washed 4 times with SSC (150 mM NaCl and
15 mM sodium citrate) for 1 h at 55 °C and for an
additional hour with two changes of SSC at room tem-
perature. The hybridized sections containing hypothala-
mus were exposed for autoradiography (Hyperfilm;
Amersham, Bucks, UK) for 6 h for the oxytocin probe,
5 days for the MCH and orexin probe, and 1 week for
the CRH, TRH, POMC, CART, NPY, and AgRP probe.
The resulting images were analyzed by computerized
densitometry using a MCID imaging analyzer (Imaging
Research, Ontario, Canada). The mean optical densities
(OD) of the autoradiographs were measured by compar-
ison with simultaneously exposed '*C-labeled microscale
samples (Amersham) and represented in arbitrary units
setting the mean OD obtained from control rats.

Statistical analysis

The mean = SEM was calculated from the results of the
change in body weight, cumulative food intake, plasma
measurements, and ISH studies. In the results of ISH, the
expression levels of the genes were expressed as a per-
centage of PAF. All data were analyzed by one-way
ANOVA followed by a Bonferroni-type adjustment for
multiple comparisons (Origin Pro v.8.5J; Lightstone,
Tokyo, Japan). Statistical significance was set at P < 0.05.

Results

Hypothalamic monoamine concentrations after PCPA
treatment

Hypothalamic NA, DA, and 5-HT were measured using
HPLC (Fig. 1). No statistically differences were observed
in hypothalamic NA and DA; however, hypothalamic 5-HT
levels nearly depleted in PCPA-treated group compared to
saline-treated group (Fig. 1).

Changes in body weight

The body weight of each group was measured from day 1
to day 6 (Fig. 2). The body weight gradually increased
during the experiments in SAF (Fig. 2). The body weight in
PAF gradually increased after day 1, but was statistically
different compared to SAF after day 1. The body weight
decreased after PCPA administration (day 1) in PFD and
PAF compared to SAF (Fig. 2). A decrease in body weight
was observed in SFD and PFD after starting food
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Fig. 1 Hypothalamic monoamine concentration after i.p. administra-
tion of saline or PCPA. These data were measured by HPLC. The
amount of each monoamine level represents % from saline group.
Data are presented as mean == SEM. ***P < 0,001 vs. saline group.
NA noradrenaline, DA dopamine, 5-H7 serotonin
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Fig. 2 Changes in body weight changes in body weight from day 1 to
day 6. Arrows indicate saline or PCPA i.p. administration. Data are
presented as mean £ SEM. *P < 0.05 vs. SAF, ¥**P < 0.01 vs. SAF
and PAF, *P <005 vs. SFD, ™P <001 vs. SFD. SAF
saline + ad libitum access to food, SFD saline + food deprivation
for 48 h, PAF PCPA + ad libitum access to food, PFD PCPA + food
deprivation for 48 h

deprivation (Fig. 2). There were no statistical differences
between the body weight of SFD and PAF after day 4.

Food intake

Cumulative food intake during the experiment was mea-
sured from day 1 to day,6 (Fig. 3). Cumulative food intake
was comparable in all among the groups at day 0 and day 1.
Cumulative food intake in SFD and PFD was null after
starting food deprivation (Fig. 3). Cumulative food intake
in PFD decreased at days 4, 5, and 6 compared to SFD
(Fig. 3).

Plasma measurement

PG, P-Osm, 5-HT, leptin, and active/desacyl ghrelin con-
centration at day 3 were measured. PG in SFD (62 + 2.4 mg/
dL) and PFD (75 &£ 4.1 mg/dL) decreased significantly
compared to that in SAF (108 £ 1.8 mg/dL) and PAF
(105 4 3.9 mg/dL). No statistical differences were seen
between SAF and PAF or between SFD and PED. There were
no significant differences in P-Osm among all the experi-
mental groups (SAF: 311 &+ 1.3 mOsm/kg; SFD:
310 £ 2.78 mOsm/kg; PAF: 307 & 2.2 mOsnvkg; PFD:
310 £+ 1.7 mOsm/kg). Plasma 5-HT level significantly
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Fig. 3 Changes in food intake Cumulative food intake (g) from day 1
to day 6. Data are presented as mean + SEM. *P < 0.05 vs. SFD,
*#*P < 0.01 vs. PFD. Saline or PCPA was i.p. administered at day 0
and day 1

decreased in SFD (384 £ 19.4 ng/mL) compared to SAF
(532 + 42.0 ng/mL) (Fig. 4a). That in PAF (75 £ 14.3 ng/
mL) and PFD (35 4 10.3 ng/mL) was almost depleted
compared to SAF and SFD (Fig. 4a). It also significantly
decreased in PFD compared to PAF (Fig. 4a). Plasma leptin
levelin SFD (1.5 =+ 0.1 ng/mL)and PFD (1.7 & 0.1 ng/mL)
significantly decreased compared to SAF (3.9 £ 0.3 ng/mL)
and PAF (3.4 & 0.5 ng/mL) (Fig. 4b). No statistical differ-
ences were observed between SAF and PAF or SFD and PED.
Plasma desacyl ghrelin in SFD (793.3 £ 83.0 fmol/mL) and
PFD (751.6 4 72.0 fmol/mL) significantly increased com-
pared to those of SAF (213.3 £ 32.9 fmol/mL) and PAF
(344 + 48.6 fmol/mL) (Fig. 4c). There were statistical dif-
ferences between SAF and PAF (Fig. 4c). Plasma active
ghrelin increased in SFD (20.2 & 6.2 fmol/mL) compared to
SAF (5.3 &£ 0.6 fmol/mL) (Fig. 4d). Those in PAF
(53.0 £ 11.6 fmol/mL) and PFD (65.8 £ 5.8 fmol/mL)
significantly increased compared to SAF and SFD (Fig. 4d).
The ratio of plasma active/desacyl ghrelin x10% in PAF
(153 £ 1.9) and PFD (9.1 & 0.9) significantly increased
compared to those in SAF (2.6 & 0.3) and SFD (2.5 £ 0.6)
(Fig. 4e). There were statistical differences between PAF and
PFD (Fig. 4e).

Feeding-regulating peptides in the SON and the PVN

The feeding-regulating peptides in the SON and the PVN
were measured by ISH followed by quantification using
MCID. The gene expression of the oxytocin in the SON and
the PVN was comparable among all the experimental
groups (Fig. 5a A-a—A-d, B-a—B-d, b). The gene expres-
sion of the CRH and the TRH in the PVN in SFD (Fig. 5a
C-b, D-b, b) and PFD (Fig. 5a D-b, D-d, b) decreased
significantly compared to those in SAF (Fig. 5a C-a, D-a,
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Fig. 4 Plasma concentrations of 5-HT, leptin, and active/desacyl
ghrelin ratio Plasma levels of 5-HT (a), leptin (b), desacyl ghrelin (c),
active ghrelin (d), and the ration of active/desacyl ghrelin (e) are

-b) and PAF (Fig. 5a C—c, D-c, b). There were no statistical

differences between SAF and PAF, or between SFD and
PFD in the gene expression of the oxytocin, CRH, and
TRH.

Feeding-regulating peptides in the ARC and the LHA

The feeding-regulating peptides in the ARC and the LHA
were measured by ISH followed by quantification using
MCID. The gene expression of the POMC and the CART in
the ARC in SFD (Fig. 6a A-b, B-b, and b) decreased sig-
nificantly compared to SAF (Fig. 6a A-a, B-a, b), whereas
those in PFD (Fig. 6a A-d, B-d, b) were comparable to
PAF (Fig. 6a A-c, B-c, b). The gene expression of the NPY
and AgRP in the ARC in SFD (Fig. 6a C-b, D-b, b) and
PFD (Fig. 6a C-d, D-d, b) increased significantly compared
to SAF (Fig. 6a C-a, D-a, b) and PAF (Fig. 6a C—, D-c, b).
With regard to the gene expression of the AgRP, there were
no significant differences between SFD (Fig. 6a D-b, b)
and PFD (Fig. 6a D-d, b). However, the gene expression of
the NPY in SFD (Fig. 6a C-b, b) and PFD (Fig. 6a C-d, b)
differed significantly. ‘

The gene expression of the MCH in the LHA in SFD
(Fig. 6a E-b, b) and PFD (Fig. 6a E-d, b) increased sig-
nificantly compared to those in SAF (Fig. 6a E-a, b) and
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shown. Data are presented as mean & SEM. **P < 0.01 vs. SAF
#%p < 0.001 vs. SAF and SFD, *P < 0.05, P < 0.01 vs. PAF,
##p < 0.001 vs. SAF and SFD, **P < 0.01 vs. SFD

PAF (Fig. 6a E-c, b). The gene expression of the MCH did
not differ between SFD and PFD.

The gene expression of the orexin was comparable
among all the experimental groups (Fig. 6a F-a—F-d, b). No
significant differences were observed between SAF and
PAF in the gene expression of the POMC, CART, NFPY,
AgRP, MCH, and orexin.

Discussion

The present study comprehensively showed the relation-
ships between the serotonergic system and feeding-regu-
lating peptides in the hypothalamus. These results imply
that the gene expression of the POMC, CART and NPY in
the ARC may be involved in the serotonergic system in the
hypothalamus.

After the PCPA treatment, hypothalamic contents of
NA, DA, and 5-HT were measured by HPLC to confirm the
depletion of 5-HT after the treatment. As shown in Fig. 1,
although NA and DA did not change with or without
PCPA, 5-HT level nearly depleted after PCPA treatment,
which was consistent with a previous report [10]. We made
sure that the 5-HT level in the hypothalamus definitely
depleted after the PCPA treatment.
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