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[177]. Nesfatin-1 has been shown to colocalize with sev-
eral well-described peptides, including CART, CRH, OXT,
and AVP [178]. Double-labeling immunohistochemistry in
these areas has revealed that nesfatin-1 is colocalized with
feeding-related factors such as CRH, OXT, POMC and CART
[177-179]. Central administration of «-MSH increases
NUCB2 mRNA in the hypothalamus [180]. Anorectic effect
by icv administration of nesfatin-1 was mediated by OXT
in the PVN [181,182]. Icv administered nesfatin-1 decreased
food intake and inhibited gastroduodenal motility in mice
[183]. Nesfatin-1 and OXT both suppresses food intake in
fa/fa Zucker rats, and leptin-induced satiety is unaltered
by immunoneutralizing nesfatin-1 IgG [176,182]. These
results suggest that nesfatin-1 induces anorexia in a leptin-
independent and melanocortin-dependent manner [176,182].

4.6. Prolactin-releasing peptide (PrRP)

Prolactin-releasing peptide (PrRP) was isolated as an
endogenous ligand of an orphan G-protein-coupled receptor
(GPR10/hGR3) and belongs to the RFamide peptide [183].
Initial studies showed that PrRP could stimulate prolactin
release both in vitro [184] and in vivo [185,186], giving rise
to the name of this peptide. However, recent morphologi-
cal and physiological studies have shown that PrRP is not
a hypophysiotropic prolactin-releasing factor [187-189], but
have suggested rather that PrRP was involved in a wider range
of neuroendocrine and autonomic functions [190,191].

PrRP-synthesizing cells have been identified in the dor-
somedial hypothalamic nucleus (DMH), the Al region of
the ventrolateral medulla (VLM) and the A2 region of the

NTS in the medulla oblongata [192-196]. Icv administration -

of PrRP significantly increased plasma OXT and AVP lev-
els [197] and to stimulate ACTH secretion via CRH from the
parvocellular cells in the PVN [198]. As stress activates med-
ullary and hypothalamic PrRP neurons, PrRP and NA may
both function cooperatively in neuroendocrine responses to
stress [180,199]. Icv administration of anti-PrRP antibodies
to rats attenuates OXT secretion in response to conditioned
fear [199]. Our previous study showed that central admin-
istration of PrRP induced the expression of c-fos gene in
the PVN and increased plasma corticosterone levels in con-
scious rats [200]. Moreover, we showed that the restraint
stress and acute inflammatory stress upregulated the expres-
sion of PrRP gene in the NTS and the VLM. The nociceptive
stimulus upregulated the expression of PrRP gene in the ven-
trolateral medulla. We also showed that pretreatment with
an anti-PrRP antibody significantly attenuated nociceptive
stimulus induced the expression of the c-fos gene in the PVN.
These results indicate that PrRP may be potent and important
mediator of stress responses.

PrRP neurons in the brainstem were activated by CCK
[77] and PrRP mediates CCK-induced satiety [201]. Icv or
microinjection of PrRP inhibits feeding [180,202] but does
not induce nausea [203]. Icv co-administration of PrRP and
leptin resulted in additive reduction in food intake and body

weight gain, and that PrRP mRNA levels were reduced in
Zucker (fa/fa) rats with mutated leptin receptor and in fasted
rats [78]. Thus, PrRP is regulated by leptin. PrRP promotes
release of the feeding inhibition factors, o-MSH and neu-
rotensin [203]. It is possible that a-MSH and neurotensin
contribute to the inhibitory effect of PrRP. Icv administration
of PrRP also increased the core temperature and oxygen con-
sumption in male rats [204]. These results indicate that PrRP
may affect energy homeostasis by the reduction of food intake
and the increase in energy expenditure. Icv administration of
PrRP activated OXT neurons at the PVN in mice, which was
significantly reduced in GPR10 knockout mice, which is the
phenotype of PrRP knockout mice [199]. The roles of PrRP
on energy homeostasis were supported by studies on GPR10
knockout mice, which became hyperphagic and obese [205].
More recent study showed icv administration of RFamide-
related peptides (RFRP-1 and RFRP-3), which are belong to
RFamide peptide such as PrRP, increased the plasma OXT
level and activated the OXT neurons [206]. RFamide peptide,
including PrRP and RFRP, may play a role in the control of
energy metabolism.

4.7. Secretin

Secretin is best known for its role as a duodenal hormone
released in response to acidification of the intestinal lumen
[207]. Secretin, however, can also activate vagal sensory
nerves [208,209]. Secretin is synthesized within the brain
and can activate hypothalamic neurons [210-213]. Peripheral
administration of secretin induced Fos expression in the SON
[209,214]. Icv administration of secretin also increases Fos
expression in SON neurons and increases secretion of OXT
and AVP, and secretin receptors are found in the SON and the

-magnocellular area of the PVN [215]. Secretin also activates

vagal primary afferent neurons [210]. Furthermore, lacking
secretin receptors mice exhibit defects in social and cogni-
tive behaviors [216]. Although the treatment of secretin was
beneficial in autism and associated gastrointestinal abnor-
malities [217], its efficacy was not confirmed in subsequent
clinical trials [218]. Moreover, these studies have suggested
on the existence of a specific relationship between autism
and inflammatory bowel disease [218]. Recently, the com-
bined administration of secretin and OXT inhibited chronic
colitis in rats [219]. These results suggested that the admin-
istration of both secretin and OXT would develop a novel
treatment of inflammation-associated intestinal disorder.

5. Perspective

Although OXT was discovered over 60 years ago, the pri-
mary role of OXT has not been known yet. In this review,
we know that OXT has relationship with various physio-
logical and pathophysiological functions. OXT works as a
hormone in the periphery and as a neurotransmitter in the
CNS. The importance of OXT in milk ejection and uterine
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contraction is well known. Recently, we showed the central
effects of some neuropeptides, such as adrenomedullin fam-
ily and other peptides in OXT release in rats. OXT is also
involved in lots of physiological and pathological functions
such as appetite, anxiety, antinociception, social recognition
and stress, with many neuropeptides. In each function, the
relationship between OXT and neuropeptides is not fully
understood. OXT may be an important key in some disease
and develop a novel treatment for them. We anticipate that
further studies can clarify the relationship with between OXT
and neuropeptides.
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Cisplatin has been widely used; however, various disadvantageous side effects afflict patients. Riklkun-
shito (RKT), a traditional Japanese herbal medicine, has been widely prescribed in Japan to improve
anorexia; but the mechanisms are unknown. Here we studied whether RKT could improve anorexia
induced by cisplatin and changes in feeding-regulating peptides in the hypothalamus in rats. Adult
male rats were divided into 4 groups: water +saline (WS), water +cisplatin (WC), RKT +saline (RS), and
RKT +cisplatin (RC) groups. Water or RKT (1 g/kg) was intragastrically administered for 4 days, from day

Keywords:

AdaTerty ~1 to day 2, and saline or cisplatin (6 mg/kg) was intraperitoneally (i.p.) administered at day O. After i.p.
Cisplatin administration, cumulative food intake, water intake, urine volume and body weight were measured.

Feeding ' The rats were then decapitated, followed by removal of the brain, and feeding-regulating peptides in the

Neuropeptides hypothalamus were measured by in situ hybridization histochemistry. In the three-day measurements,
Hypothalamus there were no significant changes in cumulative water intake and urine volume, The body weight and
Rikkunshito cumulative food intake in WC significantly decreased compared to WS, whereas these were not observed

in RC. Pro-opiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART) in the arcu-
ate nucleus (ARC) in WC significantly increased, and neuropeptide Y (NPY) in the ARC decreased compared
to WS, whereas those in RS and RC were comparable to WS, These results suggest that RKT may have
therapeutic potential for anorexia induced by cisplatin.

© 2013 Published by Elsevier Inc.

1. Introduction

Cisplatin is widely used for a variety of malignant tumors. It
demonstrates anti-tumor effects by inhibiting the replication of
DNA [7], but it has various side effects, such as loss of appetite,
nausea and vomiting. It has been suggested that serotonin receptors
are involved in the occurrence of nausea and vomiting from the use
of cisplatin [17]. 5-HT3 receptor antagonist, steroids and metoclo-
pramide have been used for the treatment of nausea and vomiting
caused by cisplatin. However, in Japan, Rikkunshito (RKT) has also
been used empirically for patients who suffer from anorexia caused
by cisplatin,

RKT, a traditional Japanese herbal medicine, or “kampo”,
is widely prescribed in Japan for the treatment of the various

* Corresponding author at: Department of Physiology, School of Medicine, Uni-
versity of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku,
Kitakyushu 807-8555, Japan. Tel.: +81 93 691 7420; fax: +81 93 692 1711.
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disorders, such as upper gastrointestinal symptoms in patients
with functional dyspepsia, gastroesophageal reflux disease,
dyspeptic symptoms in postgastrointestinal surgery patients,
and chemotherapy-induced dyspepsia in cancer patients
[6,15,16,20,23]. The largest component of RKT is “Hesperidin”
[22], which is a polyphenol that is contained in the peels of some
kinds of oranges. It has been reported in in vitro experiments that
RKT could act as an antioxidant [4].

Recent studies have revealed that RKT administration stimulates
peripheral ghrelin secretion [3] or selective serotonin reuptake
inhibitor [3,19] in rats with anorexia induced by cisplatin. Yak-
abi et al. demonstrated that cisplatin-induced anorexia is due
to reduced ghrelin secretion in the hypothalamus of rats [26].
However, there are few studies about the mechanism of RKT for
cisplatin-induced anorexia, and details of its actions have not been
elucidated.

Here we studied the effects of RKT on cisplatin-induced
anorexia in rats. We also assessed the impact of RKT and
cisplatin on the feeding-regulating peptides in the hypothala-
mus.
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2. Materials and methods
2.1. Animals

Adult male Wistar rats (260-290 g body weight) were individ-
ually housed and maintained in temperature controlled (23-25°C)
conditions under a 12.12 h light/dark cycle (lights on 07.00h). All
experiments were performed in strict accordance with guidelines
on the use and care of laboratory animals issued by the Physiolog-
ical Society of Japan, and were approved by the Ethics Committee
of Animal Care and Experimentation of University of Occupational
and Environmental Health.

2.2. Test substance

RKT (Tsumura & Co., Tokyo, Japan) includes eight crude herbs
(Atractylodis lanceae rhizome, Ginseng radix, Pinelliae tuber, Hoelen,
Zizyphi fructus, Aurantii nobilis pericarpium, Glycyrrhizae radix and
Zingiberis rhizoma). These were mixed and extracted with hot water
and then spray-dried to make a RKT powdered extract., The RKT
was dissolved in tap water (0.1 g/mL) for intragastrical adminis-
tration. Cisplatin (Sigma-Aldrich Japan Co. LLC,, Tokyo, Japan) was
dissolved in 0.9% sterile physiological saline (Otsuka Pharmaceuti-
cal Co. Ltd., Tokyo, Japan) (0.6 mg/1 mL).

2.3. Experimental procedure

All the rats had access to food and water ad libitum through-
out the experiments. The rats were divided into four groups:
water +saline (WS, n=7), water +cisplatin (WC, n=7), RKT +saline
(RS, n=8), and RKT+cisplatin (RC, n=8). Water (1 mL/100g bode
weight) or RKT (0.1 g/1 mL/100 g body weight) were administered
directly to the stomach using sondes per os. These were adminis-
tered from day —1 to day 2 (16.00-18.00 h), Saline (1 mL/100 g body
weight) or cisplatin (0.6 mg/1 mL/100 g body weight) were admin-
istered intraperitoneally only one time 1 h after administration of
water or RKT on day 0. Body weights were measured from day —1
to day 3 every 24 h. Food and water intake were measured from
day 0 to day 3 every 24 h.

After the treatment, at day 3, the rats were decapitated imme-
diately without being anesthetized, followed by removal of the
brain promptly onto dry ice, then storing at —80°C, Trunk blood
samples were taken during decapitation, and were collected
into chilled reaction tubes (Greiner Bio-One) containing an apro-
tinin/EDTA mixture. Blood samples were centrifuged for 10 min at
4°C, 3000 rpm. After the blood was centrifuged, a 15 L sample of
plasma was taken for measuring plasma osmolality (P-Osm) using
a ONE-TEN osmometer (FISKE, Norwood, MA, USA), 10 p.L for mea-
suring plasma glucose using a Medisafe Reader GR-101 (TERUMO,
Tokyo, Japan), 500 L for measuring plasma corticotrophin (SRL,
Tokyo, Japan), and 500 p.L for measuring plasma active and desasyl
ghrelin.

2.4, Insitu hybridization histochemistry

The removed brains were cut into 12 pum thickness, and thaw
mounted on gelatin/chrome alum-coated slides. The locations of
the hypothalamic areas, including the paraventricular nucleus
(PVN), arcuate nucleus (ARC) and lateral hypothalamic area (LHA),
were determined according to coordinates of the rat brain atlas.
355 3'-end-labeled deoxyoligonucleotide complementary to trans-
cripts encoding oxytocin, corticotrophin releasing hormone (CRH),
pro-opiomelanocortin (POMC), cocaine and amphetamine-regulated
transcript (CART), neuropeptide Y (NPY), agouti-related protein
(AgRP), melanin-concentrating hormone (MCH) and orexin were used
(oxytocin probe sequence, 5'-CTC GGA GAA GGC AGA CTC AGG GTC

GCA GGC-3'; CRH probe sequence, 5’-CAG TTT CCT GIT GCT GTG
AGC TTG CTG AGC TAA CTG CTC TGC CCT GGC-3’; POMC probe
sequence, 5-TGG CTG CTCTCC AGG CACCAG CTC CACACATCT ATG
GAG G-3'; CART probe sequence, 5'-TCC TTC TCG TGG GAC GCATCA
TCC ACG GCA GAG TAG ATG TCC AGG-3'; NPY probe sequence, 5'-
CAA ATG GAT GAT TGG TCA TTT CAA CAT AGA GTT GGG GGC TTG
CT-3'; AgRP probe sequence, 5-CGA CGC GGA GAA CGA GAC TCG
CGG TTC TGT GGA TCT AGC ACC TCT GCC-3"; MCH probe sequence,
5'-CCA ACA GGG TCG GTA GAC TCG TCC CAG CAT-3’; and orexin
probe sequence, 5'-TCC TCA TAG TCT GGA GGC AGG TGG AAG GGT
TCC CCA CTG CTA GTG-3').

The probe was 3’-end-labeled using terminal deoxynucleotidyl
transferase and [33S] dATP. The in situ hybridization protocol has
been previously described in detail [24]. Briefly, sections were fixed
in 4% (w/v) formaldehyde for 5min and incubated in saline con-
taining 0.25% (v/v) acetic anhydride and 0.1 M triethanolamine for
10min and then dehydrated, delipidated in chloroform, and par-
tially rehydrated. Hybridization was carried out overnight at 37°C
in 45 L of hybridization buffer under a Nescofilm (Bando Kagaku,
Osalka, Japan) cover slip. A total count of 1 x 10° c.p.m. for oxy-
tocin transcripts and 1x 108 c.p.m. for CRH, POMC, CART, NPY,
AgRP, MCH and orexin transcripts and per slide were used. After
hybridization, sections were washed 4 times with SSC (150 mM
NaCl and 15 mM sodiumcitrate)for 1 hat 55 °Cand for an additional
hour with two changes of SSC at room temperature, Hybridized
sections containing hypothalamus were exposed for autoradiogra-
phy (Hyperfilm, Amersham, Bucks, UK) for 6 h for oxytocin probe, 5
days for MCH and orexin probe, and 1 week for CRH, POMC, CART,
NPY and AgRP probe. The resulting images were analyzed by com-
puterized densitometry using a MCID imaging analyzer (Imaging
Research Inc,, Ontario, Canada). The mean optical densities (OD) of
the autoradiographs were measured by comparison with simul-
taneously exposed ‘*C-labeled microscale samples (Amersham,
Bucks, UK) and represented in arbitrary units setting the mean OD
obtained from control rats.

2.5. Statistical analysis

The mean+ SEM was calculated from the results of the body
weight change, cumulative water and food intake, cumulative urine
volume, and in situ hybridization histochemistry studies. In the
results of in situ hybridization, the expression levels of the genes
were expressed as a percentage of WS, All data were analyzed
by one-way ANOVA followed by a Bonferroni-type adjustment for
multiple comparisons (Origin Pro version 8.5}, Lightstone, Tokyo,
Japan). Statistical significance was set at P<0.05.

3. Results
3.1. Changes in body weight

The body weight of each group was measured from day 0 to
day 3 (Fig. 1A). The body weight gradually increased during the
experiments, except for WC (Fig. 1A). The body weight in WC at
day 3 was significantly difference in comparison with all the other
groups. Data are also presented as percentage from day 0 (Fig. 1B).
The results of body weight in WC presented as percentage was also
significantly different in comparison with all the other groups.

3.2. Water intake, urine volume, food intake

Cumulative water intake and cumulative urine volume were
measured from day —1 to day 3 (Fig. 2A and B). There were no signif-
icant differences in cumulative water intake (Fig. 2A) or cumulative
urine volume (Fig. 2B) among all the experimental groups.





