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Muscle wasting is the key feature of cachexia (Muscaritoli et al.,
2010; Zhou et al., 2010). Prevention of muscle catabolism has
been suggested to prolong survival independent of the disease
course (Zhou et al., 2010). Although the pathological mechanisms
of cachexia and muscle wasting have been under investigation,
insights have primarily been gained on the association of muscle
wasting and feeding-regulatory peptides such as leptin, ghrelin,
and melanocortin (Molfino et al., 2010). Herein, we demonstrate
the control of food intake and muscle wasting, focused on the inter-
action between brain and muscle.

2. Hypothalamic and peripheral regulation of muscle
metabolism and food intake

The regulation of food intake is coordinated in the hypothala-
mus. In particular, the arcuate nucleus of the hypothalamus (ARC)
is critical for appetite regulation. Many factors are implicated in
the hypothalamic regulation of food intake, melanin-concentrating
hormone (MCH), neuropeptide Y (NPY), agouti-related protein
(AgRP), proopiomelanocortin (POMC), cocaine-and-amphetamine
regulated transcript (CART). Of the peripheral peptides, ghrelin and
leptin have the orexigenic and anorexigenic effects respectively,
and make the regulatory feedback loop between the periphery and
brain. There is another crosstalk between the brain and muscle,
where melanocortin and ghrelin have the important role in the
mechanism of cachexia (Fig. 1). Among the numerous circulating
appetite regulating peptides, these two hormones, ghrelin and lep-
tin are particularly important in cachexia, and we will principally
discuss these two hormones here.

2.1. Melanocortins

The melanocortin system is a central component of the regula-
tion of feeding. It is composed of two types of neurons, the neuroris;
NYP/AgRP and POMC/CART. These neurons are located in the ARC.
NPY/AgRP neurons release the orexigenic peptides NPY and AgRP,
an antagonist melanocortin, which increase food intake (Williams
etal, 2011; Xu et al.,, 2011). By contrast, POMC neurons synthesize
and secrete an anorexigenic peptide, a-melanocyte-stimulating
hormone (a-MSH), which activates type4 melanocortin receptor
(MC4R) and decreases food intake.

The increase of cytokines stimulates the central melanocortin
system (Reyes and Sawchenko, 2002). Cytokines induce the
hypothalamic expression of the serotonin, which stimulate POMC
anorexigenic pathway. In the result MC4R is activated by serotonin
leading to induce anorexia (Tecott, 2007).

Arecent study has noted that AgRP, the endogenousinverse ago-
nist at the melanocortin-4 receptor (MC4R), ameliorates cachexia
associated with cancer (Joppa et al., 2007), uremia (Cheung et al.,
2008), and chronic kidney disease (Cheung and Mak, 2012) by
increasing food intake and reducing energy expenditure. Whereas
the release of AgRP is diminished by inflammation, AgRP treatment
decreases proinflammatory cytokines, and improves energy expen-
diture, food intake, muscle mass, body weight, fat mass (Joppa et al.,
2007; Cheung and Mak, 2012). In contrast to AgRP administration,
treatment of tumor-bearing rats with i.c.v. NPY worsens anorexia,
suggesting that cachexia does not result from a selective reduc-
tion in NPY release (Grossberg et al., 2010a). In addition to AgRP,
the administration of MC4-R antagonists increases food intake. The
MC4-R blocker decreases cyclic adenosine monophosphate accu-
mulation, indicating inverse agonist activity. Tumor-bearing mice
treated with MC4-R blocker maintain lean body mass. Furthermore,
orally available selective MC4-R antagonists also stimulate food
intake and reduce cancer-induced cachexia in mice (Weyermann
et al., 2009).

Together, AgRP and c-MSH will be the clues for the understand-
ing of the underlying mechanism and possible therapeutic target
for muscle wasting and anorexia.

2.2. Leptin

Leptin is a 16-kDa protein hormone secreted by adipocytes.
Plasma leptin concentration increases in proportion to body fat
mass and regulates food intake and energy expenditure to maintain
body fat stores. Leptin acts in the hypothalamus, where it inhibits
NPY and causes anorexia (Elmquist et al., 1999).

Leptin also plays a key role in cancer anorexia-cachexia syn-
drome (Engineer and Garcia, 2012). Circulating leptin levels are
decreased in cancer cachexia animal models and in cancer cachexia
patients (Werynska et al., 2009; Smiechowska et al., 2010). Fur-
thermore, Leptin levels decreases gradually with tumor stage
and aggressiveness (Salageanu et al., 2010). In esophageal can-
cer patients, leptin levels correlate directly with body mass index,
tumor necrosis factor-alpha (TNF-«), albumin, and hemoglobin and
indirectly with IL-6, IL-8, and high-sensitivity C-reactive protein
(Diakowska et al., 2010).

Adipose-derived factors such as leptin, TNF-q, resistin, and
adiponectin have been shown to affect muscle metabolism, pro-
tein dynamics, or both directly. Leptin mediates the production
of inflammatory cytokines independent of its effects on food
intake (Burgos-Ramos et al., 2012). Despite low leptin levels, leptin
intense the inflammatory response and the levels of inflammatory
cytokines. Proinflammatory cytokines, such as TNF-e, interleukin
(IL)-1, and IL-6, have been proposed to cause cachexia by increasing
the expression of the hypothalamic leptin receptor (Salageanu
et al,, 2010).

Although it is well known that leptin is an adipokine derived
from adiposity, a recent study has suggested that cultured
myocytes alsorelease leptin (Wolsk et al., 2012). In skeletal muscle,
insulin sensitivity is improved by enhancing intracellular glucose
transporter type 4 transport (Sainz et al., 2012).

These studies imply that leptin acts to regulate muscle
metabolism and the production of cytokines in addition to the con-
trol of appetite and energy expenditure in cachexia.

2.3. Ghrelin

Ghrelin is a peptide hormone that stimulates growth hormone
release and positive energy balance via binding to growth hormone
secretagogue receptor (GHSR)-1a. Patients with cancer cachexia
exhibited increased circulating concentrations of ghrelin (Wolf
et al., 2006). In recent study, it is suggested that ghrelin has the
effect to decrease inflammatory cytokines. In fact, the inflammatory
cytokines are decreased in ghrelin-treated animals. Ghrelin inhibits
the expression of IL-1 receptor in the brainstem and decreases the
expression of pro-hormone convertase-2, an enzyme involved in
the processing of POMC to a-MSH. Ghrelin also increase the expres-
sion of AgRP and NPY in the hypothalamus (Deboer et al., 2008).
Furthermore, ghrelin reduces the elevated mRNA expression of
TNF-a and IL-6 in muscle and normalized plasma glucocorticoid
levels (Balasubramaniam et al., 2009). Injection of ghrelin causes
ghrelin resistance despite upregulation of hypothalamic GHS-R
expression in MCG 101-bearing mice, which show characteristic
anorexia, fat loss, and muscle wasting owing to increased concen-
tration of prostaglandinE2 and proinflammatory cytokines (IL-1f3,
IL-6, TNF-a) (Wang et al., 2006).

Ghrelin has also have attention for its anticatabolic effects
(Balasubramaniam et al., 2009; Sugiyama et al., 2012). Treatment
with ghrelin and ghrelin receptor agonists increases food intake
and improves lean body mass (Deboer et al., 2007, 2008).
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Fig. 1. The crosstalk between brain and muscle. Proinflammatory cytokines, such as TNF-q, IL-1(, and IL-6, induce muscle atrophy via upregulation of MuRF1 and MAFbx.
Insulin resistance is present in cancer cachexia. In insulin resistant state, PI3K activity is decreased, leading to increase MuRF1 and MAFbx, resulting in muscle atrophy. IGF-1
induces skeletal muscle hypertrophy, in contrast, inhibit muscle wasting by decreasing MuRF1 and MAFbx. Glucocorticoids induce muscle atrophy by inhibiting the action
of insulin and IGF-1. Ghrelin has the effect to decrease inflammatory cytokines. Ghrelin inhibit the expression of MuRF-1 and MAFbx, lead to improve muscle catabolism.
Ang 11 induces skeletal muscle atrophy by increasing MuRF-1. Ang Il reduce food intake by inhibiting NPY expression in hypothalamus. Leptin mediates the production
of inflammatory cytokines. Although leptin is decreased in cachexia, proinflammatory cytokines increase expression of the hypothalamic leptin receptor, leading to cause
anorexia by inhibiting NPY/AgRP and increasing POMC/CART. AgRP has the effect to decrease proinflammatory cytokines and to increase body weight, food intake, and
muscle mass. Muscle Ring Finger1 (MuRF1), Muscle Atrophy F-box (MAFbx), insulin-like growth factor 1 (IGF-1), Angiotensin Il (Ang II), neuropeptide Y (NPY), agouti-related
protein (AgRP), proopiomelanocortin (POMC), cocaine-and-amphetamine responsive transcript (CART), corticotrophin releasing factor (CRF), 5-hydroxytryptamine (5-HT),

periventricular nucleus (PVN) arcuate nucleus (ARC), lateral hypothalamic area (LHA).

Ghrelin and its analogs improve body weight by regulating the
expression of muscle ring finger 1 (MuRF-1) and muscle atrophy f-
box (MAFbx) (Palus et al,, 2011) further inhibiting the expression of
myostatin in skeletal muscle (Lenk et al., 2013). Expression of the
muscle-specific E3 ubiquitin ligases MuRF1 and MAFbx are nor-
malized by ghrelin (Balasubramaniam et al., 2009). In angiotensin
I induced muscle catabolism, ghrelin-also improves body weight
loss and skeletal muscle catabolism (Sugiyama et al., 2012).

Although only acyl ghrelin can bind GHSR, both ghrelin and
des-acyl ghrelin stimulate proliferating C2C12 skeletal myoblasts
to differentiate via activation of p38 (Filigheddu et al., 2007). The
expression of des-acyl ghrelin impairs skeletal muscle atrophy
induced by either fasting or denervation without stimulating mus-
cle hypertrophy and GHSR-1a-mediated activation of the growth
hormone/insulin-like growth factor-1 (IGF-1) axis (Porporato et al.,
2013). In GHSR-deficient mice, both acyl ghrelin and des-acyl
ghrelin induce phosphorylation of Akt in skeletal muscle and
impair fasting-induced atrophy, implicating acyl ghrelin and des-
acyl ghrelin in the blocking of skeletal muscle atrophy independent
of growth hormones (Porporato et al., 2013).

Thus it is suggested that ghrelin and ghrelin receptor agonist
has the therapeutic potential, which lead to improve skeletal
muscle wasting as well as anorexia owing to its suppressive effect
on muscle proteolysis and its anti-inflammatory action.

3. Cytokine actions within the regulatory feedback loop

In anorexia-cachexia syndrome, the balance between proin-
flammatory and anti-inflammatory cytokines is important for the

development of the cachexia (Argiles et al., 2003). Inflammatory
cytokines such as IL-1f3, IL-6, TNF-a, and interferon-y (IFN-vy)
are potential causes of reduced food intake and increased energy
expenditure (Plata-Salaman, 2001). By contrast, anti-inflammatory
cytokines, including IL-4,1L-10,IL-12,and IL-15, have anti-cachectic
properties. IL-15 increases glucose uptake in skeletal muscle
(Busquets et al., 2006), and is reported as an anabolic factor for
skeletal muscle. Muscle-derived IL-15 can decrease fat deposition
and adipocyte metabolism via a muscle-to-fat endocrine pathway,
and overexpression of IL-15 induces skeletal muscle hypertrophy
in vitro (Quinn et al., 2002; Quinn, 2008). The administration of
IL-12 to mice with colon-26 carcinoma alleviates body weight loss
and other abnormalities associated with cachexia.
Proinflammatory cytokines initiate a cascade of events that
ultimately leads to a state of wasting, malnourishment, and
eventually death (Ramos et al, 2004). Those cytokines are
involved in cancer related anorexia by increasing the levels
of corticotrophin-releasing hormone, a central nervous anorexi-
genic neurotransmitter, lead to suppress food intake. They also
mediate muscle atrophy. In particular, IL-18, IL-6, TNF-o and
leukemia inhibitory factor (LIF) have been associated with the
initiating event in muscle catabolism in clinical and experimen-
tal cachexia. Acute and chronic central administration of IL-13
results in muscle atrophy (Braun et al, 2011). This effect is
dependent on hypothalamic-pituitary-adrenal axis activation, as
central nervous system IL-1B-induced atrophy is abrogated by
adrenalectomy. These data suggest that central nervous sys-
tem inflammation induces muscle atrophy via activation of the
hypothalamic-pituitary-adrenal axis (Braun et al., 2011). IL-6 plays
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an important role in regulating fat metabolism in muscle, increas-
ing rates of fatty acid oxidation and attenuating the lipogenic
effects of insulin. TNF-a levels are elevated in the circulations of
patients with cancer cachexia (Argiles et al., 2003). TNF-a binds
to its receptor and induces the activation of the NF-kB family
of transcription factors (Von Haehling et al., 2002; Glass, 2005).
NF-kB activation was shown to be required for cytokine-induced
loss of skeletal muscle proteins (Glass, 2005). IL-6 plays a cru-
cial role in the para-neoplastic syndromes, including anorexia and
cachexia (Barton, 2005). LIF expression in the pituitary is necessary
todrive increased POMC mRNA expression and adrenocorticotropic
hormone release by pituitary corticotrophs in response to inflam-
mation (Ray et al., 1998; Chesnokova and Melmed, 2000). Gp130
is the signal-transducing subunit of the LIF-receptor complex. This
process is depend on gp130-mediated activation of Janus kinase 2
(JAK2)/signal transducer and activator of transcription 3 (STAT3)
signaling, which underlies the induction of POMC mRNA expres-
sion by leptin, suggesting that LIF may activate hypothalamic POMC
neurons in a similar manner (Stefana et al., 1996; Bates et al., 2003).
Indeed, LIF induces anorexia by directly activating POMC neurons
(Grossberg et al,, 2010a, 2010b).

In an animal model of anorexia-cachexia syndrome with dereg-
ulated expression of a number of cytokines including IL-10,
pharmacologic intervention to impair protein synthesis restores
cytokine production to near normal levels, delays anorexia-
cachexia progression, and extends host survival (Robert et al.,
2012). These findings suggest a new therapeutic possibility for the
treatment of anorexia-cachexia syndrome that targets protein syn-
thesis by blocking the production of procachexic factors. Those
cytokines act via the hypothalamic central melanocortin system
to regulate skeletal muscle metabolism (Braun and Marks, 2011).

4. Pathological mechanism of muscle wasting

Progressive impairment of skeletal muscle is associated with
debility, morbidity, and mortality. In catabolic balance, proteoly-
sis and lipolysis are induced leading to the depletion of protein
mass and adipose tissue. Muscle wasting appears primarily to be
mediated by the activation of the ubiquitin proteasome system
(Attaix et al., 1999; Baracos, 2002). Three enzymatic components
are required for the muscle metabolism regulating process, an E1
ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme,
and an E3 ubiquitin ligating enzyme. Skeletal muscle atrophy
occurs via the induction of the E3 ubiquitin ligases. In the model
of skeletal muscle atrophy, two ubiquitin ligases have been identi-
fied: MuRF1 (Bodine et al., 2001) and MAFbx, also called atrogin-1
(Gomesetal., 2001). These ubiquitin ligases are significantly upreg-
ulated under atrophy conditions. The expression of MuRF1 and
MAFbx is negatively regulated by insulin/IGF-I signaling (Sacheck
et al., 2004).

Another cause of muscle wasting is the TNF-induced weak
inducer of apoptosis (TWEAK) and tumor necrosis factor receptor-
associated factor 6 (TRAF6), which has been identified as a novel
inducer of skeletal muscle wasting. Adult skeletal muscles express
minimal levels of Fn14, the bona fide TWEAK receptor. Spe-
cific conditions of atrophy such as denervation, immobilization,
and unloading rapidly induce the expression of Fn14, leading
to TWEAK-induced activation of various proteolytic pathways in
skeletal muscle (Kumar et al., 2012).

Angiotensin II (Ang II) induces body weight loss and skele-
tal muscle catabolism through the ubiquitin-proteasome pathway.
Ang II is elevated in cachexia and induces skeletal muscle atro-
phy by increasing the expression of E3 ligases atrogin-1/MuRF-1.
Ang 1l reduces phosphorylation of AMP-activated protein kinase,
an enzyme that regulates NPY expression (Yoshida et al., 2012).

Intra-cerebro-ventricular Ang II infusion reduced food intake, and
Ang Il dose-dependently reduces NPY and orexin expression in
hypothalamus (Yoshida et al., 2012). In recent important study,
pharmacological blockade of ActRIIB pathway prevents muscle
wasting and furthermore dramatically prolongs survival, in the
animals in which tumor growth is not inhibited and fat loss and
production of proinflammatory cytokines are not reduced (Zhou
et al., 2010). ActRIIB pathway blockade abolished the activation
of the ubiquitin-proteasome system and the induction of atrophy-
specific ubiquitin ligases in muscles and also markedly stimulated
muscle stem cell growth (Zhou et al., 2010). This study suggested
an important link between activation of the ActRIIB pathway and
the development of cancer cachexia.

Branched-chain amino acids such as leucine and valine signif-
icantly suppress the loss of body weight through an increase in
protein synthesis and a decrease in degradation. Branched-chain
amino acids exert anticatabolic effects by promoting protein syn-
thesis and inhibiting intracellular proteolytic pathways (Berk et al.,
2008). A recent study has shown that dietary leucine supple-
mentation inhibits muscle protein breakdown in rats. In cultured
muscle cells, insulin and leucine have been found to act additively
in down regulating E2 ubiquitin-conjugating enzyme expression
(Sadiq et al., 2007), whereas branched-chain amino acids reduces
atrogin-1 and MuRF1 expression (Herningtyas et al., 2008; Op Den
Kamp et al., 2009).

The eicosanoids affect the inflammatory process and are impli-
cated in the process of cancer cachexia. They are unsaturated
C20 fatty acids which can be separated into two main groups:
lipoxygenase products including leukotrienes and lipoxins, and
prostanoids including prostaglandins, prostacyclin and thrombox-
ane. Eicosanoids play a role in generating inflammatory response,
which induces peripheral tissue loss. Additionally, eicosanoids play
arole in signaling the inflammatory mediators or catabolic factors,

for example proteolysis-inducing factor (Ross and Fearon, 2002).

5. Glucocorticoid and insulin signaling

Endogenous glucocorticoids and impaired insulin signaling are
also important for muscle catabolism (Dardevet et al, 1998;
Schakman et al.,, 2005; Hu et al., 2009). The stimulation of mus-
cle proteolysis requires 2 events; increased glucocorticoid levels
and impaired insulin signaling. Glucocorticoids inhibit protein syn-
thesis and increase the rate of protein breakdown. Glucocorticoids
induce muscle atrophy by inhibiting the action of insulin and
IGF-1. Growth hormones and IGF-1 stimulate skeletal muscle pro-
tein synthesis, whereas the expression of cytokines in skeletal
muscle may negatively regulate the autocrine synthesis of IGF-I
(Broussard et al., 2003; Frost and Lang, 2004). IGF-I increases mus-
cle mass, whereas myostatin inhibits its development. Although
IGF-1 is a potent determinant of protein degradation in vitro and
is antagonized by glucocorticoids, the glucocorticoid antagonist
is insufficient to block muscle wasting (Pickering et al., 2003).
In the presence of insulin/IGF-I, Akt-mediated phosphorylation
inhibits FoxO nuclear translocation, suppressing FoxO-dependent
transcription of atrogin-1 and MuRF1, which in turn inhibits skele-
tal muscle atrophy (Op Den Kamp et al., 2009).

FoxO activation is associated with the progression of mus-
cle atrophy in cachexia (Reed et al, 2012). The FoxO pathway
is activated in skeletal muscle during cachexia. Inhibition of
FoxO transcriptional activity prevents muscle fiber atrophy during
cachexia and induces hypertrophy (Reed et al., 2012).

Muscle hyperexpressing IGF-1 in both young and aged animals
display definitively increased fiber cross-sectional area. By contrast,
loss of muscle mass or reduction of fiber size in tumor-bearing
mice is not modified by IGF-1 expression (Penna et al., 2010). These
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Table 1
Clinical studies on the treatment of cachexia and sarcopenia.
Drug Company Type Pathological condition Phase of trials References
Megace ES Par Pharmaceutical Carnitine + celecoxib +/ Cancer Phase III Madeddu et al. (2012)
— megestrol acetate
Anamorelin Helsinn Therapeutics Ghrelin receptor Cancer Phase Il Garcia et al. (2013)
agonist
EPA Nestle, Danone, Abbott, SOD agonist and UPP Cancer Phase I1/III Barber (2001),
Fresenius activator Hardman (2004) and
Fearon et al. (2006)
H-4864-GMP Bachem Human ghrelin Cancer Phase II Neary et al. (2004)
GTx-024 (enobosarm) GTx Selective androgen Cancer Phase II Dalton et al. (2011) and
receptor modular Dobs et al. (2013)
(SARM)
U-1250 Bachem Synthetic human Cancer Phase II Strasser et al. (2008)
ghrelin
P-0861 Polypeptide Synthetic human Cancer Phase II Lundholm et al. (2010)
Laboratories ghrelin
SUN11031 Asubio Synthetic human COPD Phase 11 Levinson and Gertner
Pharmaceuticals ghrelin (2012)
INCB018424 Incyte Jak1/2 inhibitor Leukemia Phase 11 Eghtedar et al. (2012)
OHR118 OHR Pharmaceutical Peptide nucleic acid AIDS Phase I Chasen et al. (2011)
immunomodulator
Celecoxib (Celebrex) Pfizer COX-2 inhibitor Cancer Phase I Mantovani et al. (2010)
MT-102 PsiOxus Therapeutics B-blocker Cancer Phase II Stewart Coats et al.
(2011)
ALD518 (BMS-945429) Alder Humanized IL-6 Cancer Phase II Bayliss et al. (2011)
Biopharmaceuticals monoclonal antibody
CK-2017357 Cytokinetics Skeletal muscle ALS Phase Il Shefner et al. (2012)

troponin activator

5-HT2b/2c=5-hydroxytryptamine 2b/2c; EPA=eicosapentaenoic acid; SOD=superoxide dismutase; UPP=ubiquitin proteasome pathway; COPD=chronic obstruc-
tive pulmonary disease; AIDS=acquired immune deficiency syndrome; COX-2=cyclooxygenase-2; ALS=amyotrophic lateral sclerosis; MC4=melanocortin-4;

CRF2R = corticotropin-releasing factor 2 receptor.

results demonstrate that muscle wasting is not associated with the
downregulation of molecules involved in anabolic response and
appears inconsistent with reduced activity of the IGF-1 signaling
pathway (Penna et al., 2010).

On the other hand, IL-6 and TNF-a cause insulin resistance,
IGF-1 resistance, and reduce the levels of testosterone and luteiniz-
ing hormone. IL-6 family ligands activate the JAK/STAT3 pathway.
Skeletal muscle STAT3 phosphorylation, nuclear localization, and
target gene expression are activated in cancer cachexia. STAT3 acti-
vation is a common feature of muscle wasting, activated in muscle
by IL-6 in vivo and in vitro and by different types of cancer (Bonetto
etal, 2012). STAT3 is a primary mediator of muscle wasting in can-
cer cachexia and other conditions of IL-6 family signaling (Bonetto
etal, 2012).

6. Possible treatments for cancer-cachexia and muscle
wasting

Weight loss, fatigue, and markers of systemic inflammation
are most strongly and consistently associated with adverse qual-
ity of life, reduced functional capabilities, increased symptoms
and shorter survival (Wallengren et al,, 2013). Recently, several
different therapeutic entities has emerged and under investiga-
tion in pre-clinical and in clinical models. The therapeutic target
for cachexia is including ghrelin and ghrelin analogs, selective
androgen receptor modulators (SARMs), testosterone, insulin-like
growth factor, myostatin antibodies, and also melanocortin-4
receptor antagonist. Recently, several interventional trials have
been performed in humans, and some promising treatments are
in phase III (Table 1).

Ghrelin is a leading candidate for muscle wasting treatment
because ghrelin levels are elevated in cancer cachexia and ghrelin
controls mediators involved in the cachectic process (Argiles and
Stemmler, 2013). In the clinical study, ghrelin treatment markedly
increased energy intake and increased appetite (Neary et al,
2004). In other study, daily and long-term provision of ghrelin to

weight-losing cancer patients with solid tumorsimproved appetite,
and attenuated catabolism in a randomized, double-blind, phase 2
study (Lundholm et al., 2010).

Anamorelin, an orally activated ghrelin receptor agonist, has
been shown to increase body weight and anabolic hormone levels
in healthy volunteers and is being investigated for the treatment of
cancer cachexia. Anamorelin increases appetite and body weight
in cancer patients (Garcia et al., 2013). A phase III, randomized,
placebo-controlled clinical trial assessing anamorelin hydrochlo-
ride in patients with cachexia is recruiting patients (Fearon et al.,
2013).

The traditional Japanese medicine rikkunshito helps stimulate
endogenous ghrelin secretion by blocking the serotonin 2b/2c
receptor pathway and enhancing GHSR activity. Rikkunshito has
been shown to increase food intake in rats that have cancer
or have been administered chemotherapeutics (Fujitsuka et al.,
2011). Although ghrelin attenuates anorexia-cachexia in the short
term, it does not prolong survival (Fujitsuka et al., 2011), whereas
rikkunshito improves anorexia, gastrointestinal dysmotility, mus-
cle wasting, and anxiety-related behavior and prolongeds survival
in animals and patients with cancer (Fujitsuka et al., 2011). The
appetite-stimulating effect of rikkunshito is blocked by (D-Lys3)-
GHRP-6. The active components of rikkunshito, hesperidin and
atractylodin, potentiate ghrelin secretion and receptor signaling,
respectively, and atractylodin prolonged survival in tumor-bearing
rats (Fujitsuka et al,, 2011). A potentiator of ghrelin signaling such
as rikkunshito may represent a novel approach for the treatment
of cancer cachexia (Hattori, 2010; Fujitsuka et al., 2012). Larger
clinical trials are required to develop ghrelin into an available and
reimbursable pharmaceutical intervention (Strasser, 2012).

Enobosarm, nonsteroidal SARMs has tissue-selective anabolic
effects in muscle and bone. Selective androgen receptor modula-
tors have been developed for the treatment of muscle wasting.
In a double-blind, placebo-controlled phase II trial, enobosarm
improved lean body mass and physical function in healthy elderly
men (Dalton et al., 2011).
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A weight-loss study conducted on cancer patients using a ran-
domized controlled trial of weekly nandrolone decanoate for 4
weeks in combination with standard chemotherapy (Bossola et al.,
2007) demonstrated significantly longer survival time in the group
receiving androgen therapy with a trend for less severe weight loss
with nandrolone decanoate. Testosterone is capable of reducing
systemic inflammatory cytokines such as TNF-c, IL1-3, and IL-6
and stimulating the anti-inflammatory cytokine IL-10 (Malkinet al.,
2004).

Recent studies also propose the combination therapies like
megestrol acetate plus L-carnitine, celecoxib (Madeddu et al.,
2012). We hope the progress of clinical trials and the establishment
of new therapeutic guidelines in the future.

7. Conclusion

Anorexia-cachexia and muscle wasting affect morbidity, mor-
tality, and quality of life. A considerable amount of recent progress
has been made in the understanding of the brain-muscle crosstalk,
which mediate the food intake and muscle atrophy. Although the
pathological mechanism of anorexia-cachexia and muscle wasting
has been revealed, available and satisfactory treatment has not yet
emerged. These findings help to give hope for the future novel drug
target. Further clinical randomized studies are needed to enhance
beneficial nutritional and improve clinical outcomes of patients
with cachexia.
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