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PROTEIN DEGRADATION IN CANCER ANOREXIA—CACHEXIA

In adults, the muscle mass remains fairly constant in the
absence of stimuli such as exercise, such that protein synthesis
and degradation remain in balance (37). In cachexia, muscle
atrophy occurs, which results from a depression in protein syn-
thesis, an increase in protein degradation or a combination
of both (37) (Fig. 2). In recent years, it has become evident
that specific regulating molecules are upregulated (e.g.
members of the ubiquitin—proteasome system, myostatin and
apoptosis-inducing factors), whereas other factors (e.g.
insulin-like growth factor 1, IGF-1) are downregulated in
cachexia muscle wasting (31). A major barrier to the effective
management of skeletal muscle wasting is the inadequate
understanding of its underlying biological mechanisms (31).
The most evident metabolic explanation for muscle decline is
an imbalance between protein catabolism and anabolism (31).
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Figure 2. An abbreviated schematic diagram of skeletal muscle in cancer
anorexia—cachexia. Source: (31) and (69) with modification. Arrows indicate
the activation of the process, -| indicates the inhibition of the process. The
balance of skeletal muscle has been shifted towards protein breakdown,
finally leading to the weight loss, weakness and fatigue that characterize
cancer anorexia—cachexia. Muscle RING-finger protein-1 (MuRF1).
Atrogin-1/muscle atrophy F-box (MAFbx). Nuclear factor kappa B (NF-«kB).
Insulin-like growth factor 1 (IGF-1). forkhead box O (FoxO).
phosphatidylinositol-3-kinase (PI3K). mTOR = mammalian target of rapa-
mycin. p70S6K = p70 S6 kinase.

In addition to an increase in catabolism, a reduction in anabol-
ism has been shown to occur in cancer-related cachexia (31).
Skeletal muscle wasting in cancer cachexia can be mediated
by multiple factors derived from tumor and host cells (38).

At least four major proteolytic pathways (lysosomal,
Ca’"-dependent, caspase-dependent and ubiquitin—
proteasome-dependent) operate in skeletal muscle and may be
altered during muscle cachexia (31). Aside from these four
distinct pathways, the autophagic/lysosomal pathway must
also be considered (31). In this pathway, portions of the cyto-
plasm and cell organelles are sequestered into autophago-
somes, which subsequently fuse with lysosomes, where the
proteins are digested (39). When dissecting the molecular
regulation of the ubiquitin—proteasome-dependent system
(UPS) and autophagy, it became evident that forkhead box O
(FoxO) transcription factors play a central role (31). FoxO
transcription factors, which are normally phosphorylated and
inactivated by phosphatidylinositol 3-kinase (PI3K)-Akt/
PKB, translocate into the cell nucleus and induce the tran-
scription of the skeletal muscle-specific E3 ubiquitin ligases,
muscle RING-finger protein-1 (MuRF1) and atrogin-1/muscle
atrophy F-box (MAFbx) (40), as well as autophagy-related
genes such as LC3 and Bnip3 (41). Upstream of PI3K-Akt,
several factors including reactive oxygen species (ROS),
TNF-o, tumor-released proteolysis-inducing factor (PIF), per-
oxisome proliferator-activated receptor gamma coactivator 1
alpha (PGC-1a) and IGF-1 have been shown to influence this
regulatory system (40,42—44). In contrast, protein anabolic
factors such as IGF-1 counteract muscle atrophy (31). Aside
from inhibiting autophagy and the UPS, IGF-1 activates
protein synthesis via the Akt-mammalian target of rapamycin
(mTOR)—p70 S6 kinase (p70S6K) signaling pathway (45,46).

The UPS is a major intracellular system that regulates skel-
etal muscle wasting in response to tumor factors and inflam-
matory cytokines (38). In cancer cachexia, the decrease in
skeletal muscle protein synthesis is partly related to the
increased serum levels of PIF (31). Intravenous administration
of PIF to normal mice produced a rapid decrease in body
weight that was accompanied by increased mRNA levels of
ubiquitin in the gastrocnemius muscle (43). There were also
increased protein levels of the 20 S proteasome core and the
19 S regulatory subunit, suggesting activation of the ATP—
ubiquitin-dependent proteolytic pathway (31). Recent evi-
dence suggests that PIF decreases protein synthesis by inhibit-
ing protein translation initiation through phosphorylation of
the eukaryotic initiation factor 2 (eIF2-alpha) (47).

Myostatin is an extracellular cytokine that is mostly
expressed in skeletal muscles and is known to play a crucial
role in the negative regulation of muscle mass (48). Upon
binding to the activin type [IB receptor, myostatin can initiate
several different signaling cascades, resulting in decreased
muscle growth and differentiation (48). Muscle size is regu-
lated via a complex interplay of myostatin signaling with the
IGF-1/PI3K/Akt pathway, which is responsible for increased
protein synthesis in muscle (48). Therefore, the regulation of
muscle weight is a process in which myostatin plays a central
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role, but the mechanism of its action and the role of the signal-
ing cascades involved are not fully understood (48). Myostatin
upregulation was observed in the pathogenesis of muscle
wasting during cancer cachexia (48).

One of the main positive regulators of muscle growth is
IGF-1 (48). Under normal conditions, IGF-1 signaling seems
to be dominant and blocks the myostatin pathway (49).
However, an inhibition of IGF-1 was observed when myosta-
tin was overexpressed (50,51). IGF-1 can prevent TGF-«
family-mediated apoptosis (52), and it was shown that in the
absence of IGF-1, the level of apoptosis in C2C12 cells
treated with myostatin increased (48). The mechanism by
which IGF-1 regulates myostatin signaling includes the inhib-
ition of transcription factors responsible for the induction of
atrogenes via phosphorylation through the PI3K/Akt pathway
(48). Akt plays a significant role in different metabolic pro-
cesses in the cell, particularly in the hypertrophic response to
insulin and IGF-1 (53,54). Akt is the crossing point between
the IGF-1/myostatin pathways (48). It is likely that under con-
ditions of muscle wasting, myostatin can reverse the Akt/
mTOR pathway, which is normally responsible for protein
synthesis, to inhibit protein synthesis via FoxO, GSK-3f or
other unknown patterns, leading to the loss of muscle mass
(48). Another factor that may contribute to decreased anabol-
ism is angiotensin II (31). In an animal model of continuously
administered angiotensin 1I, markedly reduced plasma IGF 1
levels occurred (55). Compared with a sham treatment, angio-
tensin ll-infused hypertensive rats lost 18—26% of their body
weight within 1 week, an effect that was completely reversible
by losartan, an AT1 receptor antagonist (55).

There is a wealth of evidence in the current literature that
oxidative stress is associated with chronic diseases, and it is
assumed that an increase in ROS directs muscle cells into a
catabolic state that leads to muscle wasting (31,56,57). In
cachexia, ROS are regarded as crucial players for muscle
protein catabolism via their stimulation of the UPS (31).
Reaction products are measured as indirect markers of oxida-
tive stress (31). In cachexia, malondialdehyde is regarded as
one such indirect marker (31). In addition, experimental
cancer cachexia appears to be mediated by increased nitrosa-
tive stress secondary to increased NO formation. Indeed,
protein tyrosine nitration is markedly increased in the muscles
of tumor-bearing rats with advanced cachexia (58). In cach-
exia, the increase in protein tyrosine nitration in ROS is due to
significantly lower activities of the antioxidant enzymes
superoxide dismutase and glutathione peroxidase (59).

Experimental data suggest that local IGF-1 may act as a re-
generative agent, promoting the recruitment of stem cells to
sites of muscle injury (60). Because IGF-1 is reduced in ex-
perimental models of cachexia (61), it is reasonable to assume
that under conditions of cachexia, the function of satellite
cells is impaired (31). Other factors controlling the differenti-
ation of satellite cells into functional fibers include nuclear
factor kappa B (NF-kB) and myostatin (31). Data are available
that demonstrate a beneficial effect of myostatin inhibition in
cancer cachexia (62), but negative study results have also been
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reported (63). With respect to apoptosis, several reports
demonstrated an increase in apoptosis or apoptosis-related
proteins in skeletal muscle after the induction of cachexia
(31). The skeletal muscle of cachectic tumor-bearing animals
reveals the activation of DNA fragmentation, a hallmark of
apoptosis (64). In addition to DNA fragmentation, a signifi-
cant up-regulation of caspase-1, —3, —6, —8, and —9 activ-
ity was also documented in the gastrocnemius muscles of
tumor-bearing mice (65).

There is a relative deficiency or resistance to anabolic hor-
mones in cachectic states. Up to 50% of men with metastatic
cancer can present with low concentrations of testosterone
prior to chemotherapy (66). A reduction in testosterone might
lead to reduced bone mass, muscle strength and sexual func-
tion in both men and women (67,68). Low concentrations of
testosterone and other anabolic hormones are major contribu-
tors to cachexia-related wasting of skeletal muscle (69).
However, with respect to a correlation between body compo-
sition (including muscle mass) and the concentration of anab-
olic hormones, conflicting results have been reported in the
current literature (31). Some studies found a correlation
(66,70), whereas others reported no association (71).

TRANSLATIONAL ASPECTS OF HERBAL
MEDICINE PARTICULARLY FOR CANCER
ANOREXIA-CACHEXIA

Many effective chemotherapeutic agents for cancer are bur-
dened by toxicities that can reduce patient’s quality of life
or hinder their effective use. SHT3 receptor antagonists,
dexamethasone and aprepitant significantly improved
chemotherapy-induced nausea and vomiting. Empirical anti-
biotics significantly improved neutropenic fever. A multi-
national survey found that 35.9% of cancer patients were
either past or present users of CAM. Herbal medicines were
by far the most commonly used group of treatments, escalat-
ing in use from 5.3% before the diagnosis of cancer to 13.9%
after the diagnosis of cancer (72). Herbal medicines are
believed by the general public to be safe, cause less side-
effects and less likely to cause dependency (73).

Herbal medicine in palliative treatment of cancer is a
fast-emerging area. Palliative care in cancer treatment aims
not only for disease control but for addressing the patient’s
physical and psychosocial symptoms, and improving the
QOL. The mechanism involves an enhancement of signaling
by ghrelin which was discovered in 1999 as an
appetite-stimulating peptide from the stomach (74—77).
Currently, ghrelin agonists and antagonists are being devel-
oped and tested for the treatment of anorexia/cachexia and
obesity, respectively.

RIKKUNSHITO AS AN ACTIVATOR OF (GHRELIN SIGNALING

It is known that plasma ghrelin levels are elevated under cach-
ectic conditions caused by a variety of underlying disorders
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(78—82). Although this phenomenon has been called ‘ghrelin
resistance’, these elevations may be a compensatory response
that reflects the negative energy balance state (83). Several
randomized, double-blind placebo-controlled trials have
demonstrated the efficacy and safety of ghrelin or growth
hormone (GH) secretagogue (GHS) in patients with cancer-
associated cachexia (84—86). Therefore, evaluation of the role
of ghrelin in the pathogenesis and treatment of such cachectic
conditions is warranted (74).

In our study, it was demonstrated that plasma acyl ghrelin
concentrations in tumor-bearing rats were higher than those in
free-fed normal rats, but lower than those in pair-fed normal
rats, and had an inverse relationship with plasma leptin con-
centrations (87). These results indicate that changes in ghrelin
and leptin secretion in pair-fed animals represent a compensa-
tory mechanism in a persistent catabolic state and that these
responses are attenuated in tumor-bearing rats (87). Peripheral
ghrelin administration stimulates food intake in melanoma
cell-bearing mice and cancer patients (85) in the short term as
well as in lean, healthy men and women (88). There were
similar therapeutic effects of ghrelin on anorexia and gastro-
intestinal (GI) dysmotility in cachectic animal models, sug-
gesting that high plasma concentrations of ghrelin may
overcome resistance to the appetite-stimulating effects of the
endogenous peptide in the short term (87). Oral administration
of rikkunshito increases plasma acyl ghrelin levels in humans,
mice, rats (89,90) and dogs (87). Rikkunshito stimulates
ghrelin secretion through 5-hydroxytryptamine (5-HT) 2b/2¢c
receptor antagonism, and its active flavonoid ingredients such
as hesperidin that antagonize 5-HT2b/2c receptor binding
have been identified (89).

The central 5-HT system has been implicated in the pro-
cesses of meal satiation and satiety (87). 5-HT reuptake inhibi-
tors such as fenfluramine and 5-HT2cR agonists attenuate
food intake and weight gain in rodents and humans (91-93),
with the involvement of potentiated MC signaling and
decreased ghrelin secretion (87). 5-HT also inhibits NPY/AgRP
neurons by activating the 5S-HT1bR, leading to decreased orexi-
genic signaling and inhibitory drive onto POMC cells (87).
However, the previous study has demonstrated that the
5-HT2cR has a major role in the regulation of physiological
fasted and fed motor activities in addition to feeding through
changes in endogenous ghrelin (90). In this study, the decreases
in food intake and GI motor activities in tumor-bearing rats
were recovered after administration of either a 5-HT2cR antag-
onist or ghrelin (87). The 5-HT concentration in the hypothal-
amus is increased in humans and animals with cancer (94,95);
in addition, NPY and dopamine concentrations decrease simul-
taneously, while 5-HT concentration increases in the PVN at
the onset of anorexia in tumor-bearing rats (96). These findings
suggest that 5-HT2cR activation in tumor-bearing rats induces
anorexia in part via decreased ghrelin secretion (87).

The hypothermia in tumor-bearing rats may be due to a
state of negative energy balance or a decrease in the threshold
for the activation of thermogenesis, which is involved in
starvation-induced hypothermia (97). IL-1B and leptin (98)

decrease the expression of ghrelin mRNA in the stomach,
whereas I1.-6 produced in various cells, including adipocytes,
regulates leptin production (99). These findings suggest that
cytokines have an important role in energy balance through
the persistent activation of the leptin system and the inhibition
of the ghrelin-NPY/agouti-related peptide orexigenic network
in tumor-bearing rats (87). In addition to NPY and
agouti-related peptide, the level of POMC mRNA was also
decreased in the hypothalamus of the tumor-bearing rats (87).
Synaptic input organization and mRNA expression of POMC
neurons have been shown to be increased in adrenalectomized
animals and restored by corticosterone replacement (100).
Thus, activity of hypothalamic POMC neurons may be
affected by changes in circulating levels of corticosterone and
a state of negative energy balance (87).

Hypothalamic 5-HT and CRF activities are stimulated by
proinflammatory cytokines in the circulation and the hypothal-
amus (101,102). A CRF receptor antagonist attenuated cancer
anorexia—cachexia, and administration of the 5-HT2cR antag-
onist or rikkunshito reduced hypothalamic CRF levels and
anxiety-related behaviors in tumor-bearing rats (87). The im-
provement in anxiety by rikkunshito may lead to a higher
quality of life in cancer patients (87). Some studies suggest
that ghrelin induce anxiety, whereas others suggest that the
elevated ghrelin helps animals cope with stress by producing
anxiolytic-like response (103). Future studies are needed to
sort out the effect of ghrelin on anxiety-like behavior as in the
case of NPY (76). Importantly, a hypothalamic 5-HT-CRF re-
ceptor pathway that regulates ghrelin secretion has a major
role in cancer anorexia—cachexia (87).

It has been previously shown that a central 5-HT2cR
pathway regulates ghrelin secretion without downstream acti-
vation of melanocortin 3/4 receptors (90). The 5-HT2cR is
expressed in many brain regions and its expression is restricted
to the central nervous system (87). Dual-neurohistochemical
labeling has revealed that approximately one-half of PVN
CRF-containing neurons co-express 5S-HT2cR mRNA (104).
In this study, 5-HT activated single CRF neurons isolated
from the PVN, and the activities of the CRF neurons were
blocked by simultaneous administration of rikkunshito (87).
Moreover, intracerebroventricular administration of CRF
decreased plasma acyl ghrelin in fasted rats (87). These find-
ings suggest that CRF neurons are involved in 5-HT-regulated
ghrelin secretion (87).

The GH secretagogue receptor (GHS-R) is reportedly
expressed in vagal afferent neurons, and the gastric vagus
nerve system is involved in the effect of ghrelin on food intake
and GI motor activities (105,106). It was demonstrated that
ghrelin decreased the afferent activity of the gastric vagus
nerve (87). Gastric ghrelin signaling via vagal afferents stimu-
lated the efferent activities of both the gastric and the celiac
branches of the vagus nerve and suppressed the activity of the
sympathetic nerve (87). Peripheral administration of a higher
dose of ghrelin increased the discharge rate of the vagal effer-
ent nerve, probably in part through the GHS-R in the ARC of
the hypothalamus (87). It has also been shown that rikkunshito
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activated the efferent vagus nerve, which may be mediated by
both the vagal afferent nerve and the direct central action (87).
In addition, ghrelin-induced cellular signaling in GHS-R-
expressing cells was enhanced by pretreatment with rikkun-
shito and its active components, such as atractylodin, which
stimulate ghrelin/GHS-R binding activity (87). Similar po-
tentiating effects of rikkunshito were observed in rat ARC
NPY neurons (87). These findings suggest that the physio-
logical functions of endogenous ghrelin are enhanced by the
dual actions of rikkunshito, which involve the stimulation of
ghrelin secretion and the activation of GHS-R activity, pos-
sibly due to allosteric changes in the receptor (87). This po-
tentiation of the ghrelin effect by rikkunshito on NPY neurons
could be orexigenic because the activity of ghrelin-responsive
NPY neurons is coupled to feeding (107,108). As mentioned
in the past section, ghrelin strongly stimulates GH secre-
tion in humans (109—112), which regulates IGF-1 levels,
and increases muscle strength (113,114). Moreover,
ghrelin induces the anti-inflammatory cytokine (115,116),
while suppresses the production of proinflammatory cyto-
kines (115,117—119), and inhibits the activation of NF-kB
which may regulate skeletal muscle proteasome expression
and protein degradation (83,116,118). Consequently, po-
tentiation of ghrelin receptor signaling with rikkunshito
can be valuable in the treatment of anorexia and muscle

Rikkunshito
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wasting which characterize cancer anorexia—cachexia
syndrome (87).

The adverse effect of (D-Lys3)-GHRP-6 on survival in
tumor-bearing rats has been indicated in this study, suggesting
that the potentiation of ghrelin signaling is critical to the at-
tenuation of anorexia—cachexia and the prolongation of sur-
vival in subjects with cancer (87). Rikkunshito and its active
component, atractylodin, prolonged survival in these animals,
and this effect was enhanced by the concomitant administra-
tion of cisplatin (87). Cancer patients receiving chemotherapy
or radiation therapy may experience nausea, vomiting, taste
changes, stomatitis and diarrhea, which could contribute to
weight loss and decreased survival (87). Therefore, cancer
anorexia—cachexia syndrome is a major obstacle in cancer
chemotherapy (8). The use of rikkunshito in tumor-bearing
rats was effective not only against anorexia—cachexia, but
also for promoting survival, particularly in combination with
chemotherapy (87). However, daily administration of a
5-HT2c receptor antagonist failed to prolong survival, sug-
gesting that a sensitizing effect on the GHS-R may be essen-
tial for ameliorating ghrelin resistance in anorexia—cachexia
in the long term (87). Pancreatic cancer patients generally
respond poorly to chemotherapy, resulting in a higher fre-
quency of anorexia—cachexia (87). These results suggest that
rikkunshito may be useful in clinical practice for cachectic
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Figure 3. The dual actions of rikkunshito on ghrelin signaling and their therapeutic benefits on cancer anorexia—cachexia. Source: (87) with modification.
Hypothalamic CRF neurons are activated by cytokines through serotonin (5-HT) and the 5-HT 2c receptor (5-HT2cR), which show a functional divergence, The
existence of a novel 5-HT-CRF neuronal pathway inhibits ghrelin secretion and has a pathogenetic role in cancer anorexia—cachexia. Rikkunshito and its active
component, hesperidin, a principal component of Aurantii Nobilis Pericarpium, stimulate ghrelin secretion from the stomach by interrupting this 5-HT-CRF
pathway via 5S-HT2cR antagonism. Another active component, atractylodin, a principal component of Atractylodis Lanceae Rhizoma, potentiates the action of
ghrelin, presumably by allosterically sensitizing the GHS-R on the vagal afferent terminals of the stomach or the NPY neurons of the hypothalamic arcuate
nucleus (ARC). Thus, both the release of ghrelin and the potentiation of ghrelin/GHS-R signaling are important for mitigating ghrelin insufficiency and resistance,
which are characteristics of cancer anorexia—cachexia. Consequently, potentiation of ghrelin receptor signaling with rikkunshito may be an attractive treatment for
anorexia and muscle wasting and may prolong survival in patients with cancer anorexia—cachexia.
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cancer patients via its dual action on ghrelin secretion and re-
ceptor sensitization (Fig. 3) (87). Prospective randomized
trials are warranted.

A recent study regarding the underlying mechanisms of rik-
kunshito has shown that rikkunshito and its component
10-gingerol may inhibit the degradation of acyl-ghrelin by
inhibiting the circulating ghrelin degrading enzyme (120).
Another study has shown that administration of rikkunshito
reversed the decrease in hypothalamic ghrelin secretion and
food intake 24 h after cisplatin treatment (121). Cisplatin-
induced anorexia is mediated through reduced hypothalamic
ghrelin secretion (121). Cerebral serotonin 2C receptor activa-
tion partially induces decrease in hypothalamic ghrelin secre-
tion, and rikkunshito suppresses cisplatin-induced anorexia by
enhancing this secretion (121).

Altogether, the synergism of activity of the herbs demon-
strated in these studies highlights the importance of adopting
traditional approaches in the utilization of traditional
medicines.

CONCLUSIONS

The best way of treating cancer cachexia is to cure cancer, but
unfortunately this remains an infrequent achievement among
adults with advanced solid tumors (8,122). Appetite, body
weight and survival are endpoints for cancer anorexia—cach-
exia management. Therefore, the treatment goal for cachexia
should be the reversal of the loss of body weight and muscle
mass with a variety of pharmacological agents (Fig. 4) (8).
The European Palliative Care Research Collaboration has
developed evidence-based recommendations on classification
and treatment of cachexia in advanced cancer patients as part
of its clinical guideline work (1). These treatment guidelines
focus on patients with advanced cancer likely to suffer from
refractory cachexia. Many of these patients are receiving pal-
liative care, and life expectancy often is short. Only little cach-
exia research has been done on this patient group, and the
treatment guidelines had to consider whether research results
from other disease stages are applicable for these patients with
advanced and incurable disease and for refractory cachexia (1).
Herbal medicine could substantially influence cancer
therapy as adjuvant treatment. Although herbal medicines
have not been fully accepted by mainstream medicine because
of the complex nature of the formulae, the stringent quality
control of Japanese herbal (Kampo) medicine and reproduci-
bility of preclinical findings, together with few adverse events,
have made herbal medicines more and more attractive for the
management of intractable diseases such as cancer. In recent
years, studies on the evaluation of the therapeutic and toxic
activities of herbal medicinal products became available and
popular (123). The advances in modern biotechnology have
led to the discovery of many new active constituents (123).
Although the working mechanisms of some of the herbs are
unclear and remain to be elucidated, they are worth further
studying as newly potential therapy agents for cancer
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Figure 4. The potential modalities of pharmacological intervention of cancer
anorexia—cachexia syndrome. Source: (8) with modification. Agents were
classified as those established (first-line) or those unproven/investigational
(second-line), depending on their site or mechanism of actions. @), inhibitors
of production/release of cytokines and other factors; @, gastroprokinetic
agents with or without antinausea effect; ®), blockers of the Cori cycle; @ ®),
blockers of fat and muscle tissue wasting; ®, appetite stimulants with or
without antinausea effect; and @, antianxiety/depressant drugs. These agents
should be selected on an individual basis according to the cause of cachexia or
the state of the patient. *The precise actions of statins on skeletal muscle still
remain controversial. First-line treatments, glucocorticoids @ ®), progesterones
@ ®; second-line treatments, cannabinoids ®, cyproheptadine ®), branched-
chain amino acids ® ®, metoclopramide @ ®, eicosapentanoic acid T @ &),
5'-deoxy-5-fluorouridine @, melatonin @, thalidomide @), B2-adrenoceptor ago-
nists @), non-steroidal anti-inflammatory drugs @ ®, others, anabolic steroids
®, pentoxifylline @, hydrazine sulfate @), statin @ ®*, angiotensin-
converting-enzyme inhibitor inhibitor &), selective androgen receptor modulator
®), ghrelin agonists D @ @ @ ® ®.

treatment (123). The multicomponent herbal medicines
capable of targeting multiple sites could be useful for future
drug discovery. Mechanistic studies and identification of
active compounds could lead to new discoveries in biological
and biomedical sciences.
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Abstract About half of all cancer patients show a syn-
drome of cachexia, characterized by anorexia and loss of
adipose tissue and skeletal muscle mass. Cachexia can have
a profound impact on quality of life, symptom burden, and
a patient’s sense of dignity. It is a very serious complica-
tion, as weight loss during cancer treatment is associated
with more chemotherapy-related side effects, fewer com-
pleted cycles of chemotherapy, and decreased survival
rates. Numerous cytokines have been postulated to play a
role in the etiology of cancer cachexia. Cytokines can elicit
effects that mimic leptin signaling and suppress orexigenic
ghrelin and neuropeptide Y (NPY) signaling, inducing
sustained anorexia and cachexia not accompanied by the
usual compensatory response. Furthermore, cytokines have
been implicated in the induction of cancer-related muscle
wasting. Cytokine-induced skeletal muscle wasting is
probably a multifactorial process, which involves a protein
synthesis inhibition, an increase in protein degradation, or a
combination of both. The best treatment of the cachectic
syndrome is a multifactorial approach. Many drugs
including appetite stimulants, thalidomide, cytokine
inhibitors, steroids, nonsteroidal anti-inflammatory drugs,
branched-chain amino acids, eicosapentaenoic acid, and
antiserotoninergic drugs have been proposed and used in
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clinical trials, while others are still under investigation
using experimental animals. There is a growing awareness
of the positive impact of supportive care measures and
development of promising novel pharmaceutical agents for
cachexia. While there has been great progress in under-
standing the underlying biological mechanisms of
cachexia, health care providers must also recognize the
psychosocial and biomedical impact cachexia can have.

Keywords Cachexia - Anorexia - Cytokine -
Skeletal muscle - Palliative care

Pathophysiology
Hormones and mediators

Leptin is a protein hormone that sends afferent signals from
the periphery to the brain that regulates adipose tissue mass
[1-3]. The level of leptin is positively correlated with body
fat mass, and dynamic changes in plasma leptin concen-
trations in either direction can activate the efferent energy
regulation pathways [1, 4]. Leptin reduces appetite and
increases energy expenditure and evidently elicits these
effects via the central nervous system [1, 4]. This is
achieved by hypothalamic neuropeptides downstream of
leptin that regulate food intake and energy expenditure.
Starvation or a loss of body fat can lead to a decrease in
leptin, which in turn leads to a state of positive energy
balance; conversely, food intake exceeds energy expendi-
ture. This compensatory response is mediated by the
increased production of ghrelin, neuropeptide Y (NPY), and
other appetite-stimulating neuropeptides, and decreased
activity of anorexigenic neuropeptides such as corticotro-
pin-releasing factor (CRF) and melanocortin (Fig. 1a).
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Thus, if a disease process such as cancer was to produce
factors that induce or mimic the hypothalamic effect of
excess negative feedback signaling from leptin, the expec-
ted outcome would be sustained anorexia (lack of appetite)
and cachexia (muscle wasting and uncontrolled weight
loss), without the usual compensatory response [5]. In fact,
in tumor-bearing states, cachectic factors such as cytokines
can elicit effects on energy homeostasis that mimic leptin
and suppress orexigenic ghrelin and NPY signaling. Con-
sequently, the increases and decreases in hypothalamic
actions caused by these mediators induce anorexia and
unopposed weight loss (Fig. 1b).

Starvation

A - Food Intake 1
+ Energy Expenditure |

Orexigenic

Anorexigenic

Fig. 1 A simplified model of the hypothalamic neuropeptide cir-
cuitry in response to starvation (a) and cancer cachexia (b). Full line
arrows indicate the activation of the process, and broken line arrows
indicate the inhibition of the process. Under normal conditions,
energy intake is determined by the hypothalamic integration of
peripheral signals conveying inputs on adiposity status, digestive
processes, and metabolic profile. Some of these signals such as
adipocyte-derived leptin inhibit energy intake, while other signals
such as stomach-derived ghrelin stimulate energy intake. In the
hypothalamus, the arcuate nucleus (ARC) receives information from
the periphery and integrates these inputs to modulate food intake via
second-order neurons. According to the information conveyed to the
brain, peripheral signals may differentially activate or inhibit POMC/
CART and NPY/AgRP neurons. When an energy deficit (e.g.,
starvation) is signaled, orexigenic NPY/AgRP neurons are activated
and anorexigenic POMC/CART neurons are inhibited, resulting in
increased energy intake. When an energy excess is signaled, NPY/

Serotonin (5-HT) may also play a role in the develop-
ment of cancer-induced anorexia. This is because increased
levels of plasma and brain tryptophan, the precursor of
5-HT, and interleukin (IL)-1 may underlie the increased
serotonergic activity seen in the cancer cachexia. In addi-
tion, cisplatin-induced anorexia has become problematic in
clinical settings. Cisplatin is a widely used and effective
anti-cancer chemotherapy drug, however, the undesirable
gastrointestinal side effects associated with it, such
as nausea, vomiting, and anorexia, markedly decrease
patients’ quality of life, rendering continuation of chemo-
therapy difficult [6]. Cisplatin-induced gastrointestinal tract

Cancer Cachexia

+ Food Intake !
+ Energy Expenditure T

AgRP neurons are inhibited and POMC/CART neurons are activated.
During cancer, cachectic factors such as cytokines elicit effects on
energy homeostasis that mimic leptin in some respects and suppress
orexigenic Ghrelin-NPY/AgRP signaling. Increased brain cytokine
expression disrupts hypothalamic neurochemistry, particularly in the
ARC where cytokines activate POMC/CART neurons, while inacti-
vate NPY/AgRP neurons. The anorexia and unopposed weight loss in
cachexia could be accomplished through persistent inhibition of the
NPY orexigenic network and stimulation of anorexigenic neuropep-
tides, although the hypothalamic pathways participating in this
response remain to be determined. AgRP Agouti-related peptide,
MCH melanin-concentrating hormone, CART cocaine- and
amphetamine-related transcript, NPY neuropeptide Y, POMC pro-
opiomelanocortin, CRH corticotropin-releasing hormone, MC4R
melanocortin-4 receptor, PVN paraventricular nucleus. LHA lateral
hypothalamic area. Source: (5) with modification
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