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doi:10.1371/journal.pone.0091746.g003

Treatment with TCV-309 Prolonged the Survival of FBC
Mice

The effect of treatment with TCV-309 was evaluated in FBC
mice (Figure 8). Median survival was significantly prolonged by
repeated treatment with TCV-309; about 50% of FBC mice
receiving saline died up to 26 days after tumor implantation, while
about 50% of FBC mice receiving TGV-309 at 0.3 mg/kg every 4
days died up to 50 days. Gain of body weight by tumor-bearing
mice was small during the observation period and the change in
body weight was similar between control and TCV-308 treated
mice (Figure 8 insert).

Discussion

Bone cancer pain is often very complex; bone is highly
mnervated with C fibers, which are triggered by an inflammatory
infiltrate secondary to cancer cells and others including acids,
cytokine, growth factors, etc along with primary afferent
destruction following osteoclast activation. Additionally, bone
resorption weakens the bone under torsion, thus exciting
mechanosensitive fibers within mineralized bone. The most
intractable pain is often neuropathic in origin. However, in bone
cancer pain, there is a unique neurochemical reorganization of the
spinal cord, as well peripheral sensitization of afferent fibers
innervating the cancerous bone, while spinal synaptic transmission
mediated through Ad and C fibers is enhanced in the substantia
gelationsa across a wide area of lumbar levels following sarcoma
implantation in the femur [12]. As the disease progresses,
analgesics effective to treat inflammatory or neuropathic pain,
even opioids, are frequently insufficient in this pain state [13,14]. It
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has been reported that toll-like receptor (TLR) 4, which plays an
important role in glial activation in neuropathic pain increased in
the spinal expression of a rat model of cancer-induced bone pain
and intrathecal injection of TLR4 siRNA or TLR4 signaling
pathway blockers led to a pain relieving effect at an early stage, but
not at day 16 of cancer-induced bone pain [15]. The present study
demonstrated that intravenous administration of PAF receptor
antagonists, TCV-309, BN 50739 and WEB 2086, effectively
ameliorated allodynia and pain behaviors such as guarding and
limb-use abnormalities in FBC mice. The pain relieving effects of
PAF receptor antagonists are long lasting. We have previously
suggested that the anti-allodynia effect of PAF antagonists in
sciatic nerve injured mice is at least in part mediated by spinal
relief of PAF-induced dysfunction of GlyRa3 [8]. In agreement
with this concept, the present results showed that the intrathecal
introduction of siRNA of PAF receptor mRNA effectively
improved bone cancer pain behaviors in FBC mice. DRG
contains a PAF synthesis enzyme, LPCAT2, and PAF receptor
mRNA was increased in the ipsilateral DRG after nerve injury [6].
LPCAT2 mRINA and PAF receptor mRINA were increased in the
spinal microglia after nerve injury in a rat spared nerve injury
model [7]. Several studies have showed the ability of several
cancer cell types to produce PAF and express PAF receptors on
their membranes [16-20]. In the present study, the amount of
LPCAT?2 protein increased in the spinal cord of FBC mice,
although in which cells the increase occurred remains to be
elucidated. Therefore, PAF signaling in the microenvironment of
the spinal pain transduction system may be increased by bone
cancer due to peripheral nerve injury. We have further revealed a
unique mode of action of TCV-309; TCV-309 is a specific
competitive inhibitor of PAF receptors [21], but the potency of
TCV-309 intensified as a function of time after administration,
and the mode of action changed from a competitive manner
within several hours after the injection of TCV-309 to a non-
competitive manner later [8]. The intensification of the anti-
allodynia potency of TCV-309 and change in its mode of action to
a non-competitive manner as a function of time led us to speculate
about a different mechanism of action; such as down-regulation of
PAF receptors by binding TCV-309 to PAF receptors in the later
stage of after nerve injury. This idea may explain the long lasting
pain relieving effect of TCV-309.

The dose of morphine to block bone cancer pain was ten times
that required to block inflammatory pain behaviors [12].
Morphine became less effective than oxycodone in FBC mice
[22,23]. Differential attenuation of p-opioid receptor activation
between morphine and oxycodone in FBC mice was reported, the
former was- significant whereas the latter was limited [24].
According with the evidence, morphine at 10 mg/kg s.c. had a
tiny anti-allodynia effect in the present study, and the analgesic
effect of a higher dose of 30 mg/kg of morphine was underesti-
mated due to increased locomotion.

The essential finding in the present study is the enhanced pain
reliving effect by combined administration of PAF receptor
antagonists and morphine. For example, the combination of
TCV-309 as low as 1 pg/kg iv. and morphine 0.3 mg/kg s.c.
(each drug had no pain relieving effect by itself) produced a
significant anti-allodynia effect in FBC mice. Guarding behavior
and limb-use abnormality were also reversed by the combined
administration (data not shown). It is interesting that the enhanced
pain relieving effect of PAF receptor antagonists, TCV-309, BN
50739 and WEB 2086 on morphine still remained at 8 days after
the administration of these PAF receptor antagonists.

Clonstipation resulting from treatment with opioids is the most
common component of a more general condition — opioid-induced
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bowel dysfunction [25]. Tolerance commonly develops to opioids
during long-term use, requiring increased doses to achieve the
same analgesia. Although some tolerance develops against the
effects of opioids on gastrointestinal motility, constipation often
persists unless remedial measures are taken [26]. Using lower
doses of opioids will not prevent constipation because the dose that
produces constipation is approximately 4-fold less than the
analgesic dose [25,27]. Therefore, some patients may discontinue
opioids to avoid constipation. The present study showed that while
a dose of morphine 10 mg/kg s.c. exhibited only a tiny pain
relieving effect, 0.1 and 0.3 mg/kg of morphine in combination
with PAF receptor antagonists produced a significant pain
relieving effect. This result suggests that the combination use of
morphine with PAF receptor antagonists may reduce the effective
dose of morphine needed to below constipating dose. Activation of
p-receptors by morphine can have any of several effects depending
on receptor location. Mu-opioid receptors in the central nervous
system modulate pain perception and can depress respiratory
function, while those in the gastrointestinal tract reduce bowel
motility [26]. If p-receptor-mediated signaling in the gastrointes-
tinal tract was enhanced by PAF receptor antagonists, it would
make defecation more difficult. The dose-response curve of
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morphine-induced defecation was not affected at all by 0.3 mg/
kg of TCV-309, which is the dose producing the maximal
analgesic effect and thus the possibility to avoid the appearance of
morphine-induced constipation is suggested. On the other hand,
PAF antagonists may cause side effects by interfering with the
physiological roles of PAF, such as regulation of blood pressure,
immunological or inflammatory responses, Ca” mobilization in
polymorphonuclear leucocyte, or implantation of embryos, as
shown by the creation of PAF receptor-transgenic and PAF
receptor-deficient mice [28]. The possible side effects of PAF
receptor antagonists could be reduced by combination with
morphine. Therefore, good quality management of bone cancer
pain could be achieved with a combination of morphine and PAF
receptor antagonists. The long lasting effects of PAF receptor
antagonists make it possible to relieve pain by repeated treatment
at 4 day intervals and the results showed that these antagonists
were effective from an early stage to a late stage, 30 days after
tumor implantation at which point more than 50% of control mice
died. The results further showed no formation of tolerance to
repeated treatment with PAF receptor antagonists.

A role for PAF in tumor development has been suggested by the
spontaneous development of skin tumors in transgenic mice

March 2014 | Volume 9 | Issue 3 | e91746



>

204 — mm =
- kgt T T 2 14
: T
g 154 i ol
2 ]
8 £ 014
S 3
= e @
<C 0.5 ::::,::‘ * . = 0.01
o P 2 T
Vehicle TCV-309 WEB 2086 BN 50739
C 0.1 mg/kg i.v. D
50+ g‘ 4.0
E i 2 3.0
o s =
g 30 | |k £ 257
° e S 20-
£ 20 2 151
° hid4 2
= yvvy -
S qof | |f&d \ 3 ;:
B * > .5
© E | B E
- _I e
Vehicle TCV-309 WEB 2086 BN 50739

0.1 mg/kg i.v.

Anti-Cancer Pain Action and PAF Antagonists

0.1 mg/kg i.v.
Vehicle TCV-309 WEB 2086 BN 50739

[] saline
B Morphine 0.3 mg/kg s.c.

11

.,.1.4...4
143434

434333 33
b

<3

33

)
3<

3
<2

34
3«

>}
<3

<
<.
<
3

<
<
<

STFTFTRTH]
SEEREEERE]
SEERRREl
13333433
343

434

e

<24
3338
33

TCV-309 WEB 2086 BN 50739
0.1 mg/kg i.v.

Vehiclé

Figure 5. Enhanced pain reliving effect of TCV-309, WEB 2086, BN 50739 and morphine in FBC mice. TCV-309, WEB 2086 and BN 50739
were administered at 11 days post tumor implantation. Morphine 0.3 mg/kg s.c. was injected at 8 days after the injection of PAF receptor antagonists.
Allodynia (A, B), guarding behavior (C) and limb-use abnormality (D) were evaluated at 20 min after the injection of morphine. Values represent the
mean = SEM. n=11 mice per group. *P<<0.01 compared with the corresponding control values, as determined by analysis of variance followed by an

unpaired Student’s t-test.
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overexpressing PAF receptors [29]. PAF also induced an autocrine
proliferative loop in an endometrial cancer cell line HEC-1A [30],
induced migration of Kaposi’s cells [31], promoted migration and
proliferation of tumor cells and neo-angiogenesis [17], acted as a
promoter of melanoma metastasis [32], while PAF receptor-
dependent pathways control tumor growth [33]. In addition, PAF
receptor antagonists suppress cancer growth, proliferation and
metastasis [20,32-34]. The improvement in the survival of femoral
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g% 0.2+ 10 uglkg i.v.
35
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3
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Figure 6. Morphine-induced constipation with or without TCV-
309. Normal mice received with various doses of morphine and the
accumulated feces on the floor over 60 min were weighed. TCV-309
was injected 1 day before morphine administration. Data are expressed
as the mean. n=10 mice per group.
doi:10.1371/journal.pone.0091746.9g006
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bone tumor-bearing mice with TCV-309 may be due to its tumor
suppressive action. As an another possibility, pain is an exquisite
stressor and a cause for potential immune dysfunction, as shown in
immunosuppression during the perioperative period, and thus
poor pain control is assumed to promote tumor growth. Lilleme et
al. [35] reported that patients with preexisting pain who received
chemical splanchnicectomy with alcohol showed a significant
improvement in survival. The authors reported that the achieve-
ment of better pain control with chemical splanchnicectomy may
prolong life. Whether the improvement in survival by PAF
receptor antagonist may include its indirect effect via suppression
of pain is remained to be clarified.

Although the possibility could not be entirely ruled out that the
tumor suppressive action of PAF antagonists may partly partici-
pate in the pain relieving effect of the repeated treatment of PAF
antagonists in the FBC model, the acute pain relieving effect of
PAF antagonists may be independent from anti-tumor action
because the effect developed shortly after the intravenous injection
and even by intrathecal injection.

Opiates in which their mechanisms of analgesia include the
enhancement of the descending inhibitory pathway connected to
the inhibitory inter-neurons such as glycinergic and GABAergic
neurons. Recent findings emphasize that a reduction in the
GABA, receptor— and glycine receptor-mediated synaptic inhibi-
tion; ie., disinihibition of inhibitory neurotransmission within the
dorsal horn, is implicated in the generation of neuropathic pain
and may be a cause for insufficiency of morphine analgesia. Thus,
reinforcement of the glycinergic neurotransmission by glycine
transporter inhibitors are proposed as a novel drug discovery
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strategy for neuropathic pain [36]. Taking that PAF via an
increase in nitric oxide/cyclic GMP cascade reduces GlyRo3
function in the spinal cord [5], the combination of PAF receptor
antagonists and opioids, the former protects from disfunction of
PAF-induced inhibitory neurotransmission and the latter enhances
descending inhibitory pathway may represent a new strategy for
the treatment of persistent cancer pain and the quality/quantity of
life of patients.
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ABSTRACT: We synthesized compounds 4a,c—fh,i containing the o &

: ; o L _en o J _en
oxazatricyclodecane structure from a novel rearrangement reaction P N~ =% N
product 2a. All the prepared compounds 4a,c—fh,i exhibited full o . Ve o
agonistic activities for the & opioid receptor (DOR). Among them, the OH — o—l
N-methyl derivative 4c was highly selective, and the most effective
DOR agonist in functional assays. Subcutaneous administration of 4¢ b e -
produced dose-dependent and NTI (selective DOR antagonist)- K; (MOR) = 47.7 nid K (MOR) = 23.3 M
reversible antinociception lacking any convulsive behaviors in the K; (DOR) = 174.6 nM K; (DOR) = 1.94 nM
mice acetic acid writhing tests. The N-methyl derivative 4c is expected Ki (KOR) = 248.1 nM Ki (KOR) = 200 nM
to be a promising lead compound for selective DOR agonists with a g :
novel chemotype.

KEYWORDS: Opioid, DOR, oxazamcyclodecane structure, CellKey

he & opioid receptor (DOR) is one of the three opioid more selectively than the DOR homomer."” It is not yet clear

receptor types (u (MOR), DOR, and x (KOR)), and why the various DOR agonists mentioned above elicit different
activation of this receptor is associated with various pharmacological responses, but the structure of the DOR
pharmacological effects such as anﬂnoaceytwe, antidepressive, agonist may account, in part, for their distinct activities. For
anxiolytic, and cardioprotective effects.'™ In contrast to the example, a structural feature of DOR agonists may influence the
undesirable effects mediated by the MOR such as dependence, induction of convulsive behaviors: the DOR agonists that do
constipation, emesis, and respiratory depression or the aversive not cause convulsion had a structure distinct from diary-
effects mediated by the KOR,"* the DOR is a promising Imethylpiperazine and its related structures such as BW373U86
medical target because it seems to induce neither addictive nor and SNC80.° However, diarylmethylpiperazine derivative

aver751ve effects. Since the ﬁrst nonpeptidic DOR agonist TAN- AZD2327 (Figure 1) reportedly produced no convulsion.'”
67° (Figure 1) emerged various nonpeptidic DOR agonists The synthesis and pharmacological characterization of DOR
have been reported.' ™ Several m;restlgatlons revealed that the agonists with different chemotypes will help to better
BOR. agotims ke BW373U86 and SNC80” (Figure 1) understand the different pharmacological profiles of distinct
exerted Convulsive behaviors> However, some DOR agonists DOR agonists. We have recently reported the synthesis and

such as ADL5747'° and KNT-127""'* (Figure 1) have recently s o
been reported to induce no convulsion. Although SNC80 has sl wouiies for the MOk, DOK, mel KHOR of

been reported to induce the internalization of the DORs and to
develop tolerance toward the analgesic, locomotor, and
anxiolytic effects, ARM390* (Figure 1) induced hardly any
internalization of the DORs and showed tolerance to analgesia
but not to locomotor or anxiolytic responses.’*"® Thus, a

distinct DOR agonist interacting with the same DOR

oxazatricyclodecane derivative 2a, which was obtained from

endoethanotetrahydrothebaine derivative 1 by a novel rear-
Lo 18 .

rangement reaction = (Scheme 1). This new compound

exhibited moderate affinities for the opioid receptors (K|

(MOR) = 47.7 nM, K; (DOR) = 174.6 nM, and K; (KOR)

sometimes exerted different pharmacological responses. Received: November 29, 2013
Recently, SNC80, a well-known representative selective DOR Accepted: January 27, 2014
agonist, was reported to activate the MOR/DOR heteromer Published: January 27, 2014
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Figure 1. Structures of DOR agonists, TAN-67, BW373U86, SNC80,
ADLS747, KNT-127, ARM390, and AZD2327.

Scheme 1. Potential Opioid Ligand 2a
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Scheme 2. Synthesis of 4a,c—f
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_ (o W c: R=Me
d: R=i-Bu
e: R=allyl
OH . R=
4a, o f: R=2-phenethyl

“Reagents and conditions: (a) Troc-Cl, K,COs, 1,1,2,2-tetrachloro-
ethane, 150 °C; (b) Zn, AcOH, 1t, 80% from 2a; (c) aldehyde, AcOH,
NaB(OAc),H, 1,2-dichloroethane, rt, 74%-quant. (for R = Me, 2-
phenethyl); (d) alkyl bromide, NaHCO,, DMF, rt, 48—92% (for R =
allyl, i-Bu); (e) CH,Br, K,CO, DMF (0.0005 M), rt, 66%; (f)
CH, CIBr, K,CO;, DMF (0.0004 M), rt, a solution of 2c—f in DMF
was added portion-wise. 69—98%; (g) BBrs, CH,Cl,, 0 °C, 76—95%.
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Scheme 3. Synthesis of 4h and 4i*

OH OH
AN 1 D f
'“\J\OE a) _.‘\J\
t —— NH,
00 00
OMe OMe
5 6

iy 1y
(O LB oW _R'
. DN N DN N
—)> OH -~ o]
OH OH
OMe OMe
2g (R'=H) 7g (R'=H)
2h (R'=Ph) 7h (R'=Ph)
o o}
O‘-\‘”\ R O, .JL R'
D n N DN SN
&) o) e) o
o—1 o—J
OMe e OH
i

3g (R'=H)
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- “Reagents and conditions: (a) 12 M NHjaq, EtOH, rt, 73%; (b)

BuOK, t-BuOH, reflux, quant,; (c) CH,CIBr, K,CO;, DMF (0.0004
M), rt, a solution of 2g and 7g or 2h and 7h in DMF was added
portion-wise. 73—93%; (d) 60% NaH, PhCH,CH,Br, DMF, rt, 83%;
(e) BBry, CH,CL, 0 °C, 61—89%.

Table 1. Binding Affinities of 4a,c—fh,i for the Opioid

Receptors”

K (aM)

selectivity

compd MOR®  DOR‘ KOR? MOR/DOR KOR/DOR
SNC80 695 1.04 >1000 668 962
2a° 477 178 248 0.27 14
4a 3.14 0313 5.14 10.0 164
4c 233 1.94 200 12.0 103
4d 186 7.00 119 26.6 17.0
4e 68.4 123 56.6 55.8 46.2
4f 45.9 2.59 588 17.7 227
4h 4.61 0.534 1.69 8.6 32
4 L78 116 1.94 LS 1.7

“Binding assays were carried out in duplicate using mouse whole brain
without cerebellum membranes for MOR and DOR or guinea pig
cerebellum membranes for KOR. Y[*H] DAMGO was used. °[*H]
DPDPE was used. “[?H] U-69,593 was used. “Ref 18.

=248.1 nM). The potential opioid ligand 2a was expected to
lead to other ligands selective for an opioid receptor type with a
unique core structure. Herein, we report the synthesis of novel
DOR agonists 4a,c—fh,i with oxazatricyclodecane structure
derived from 2a and their pharmacological properties.

The synthesis of the ol;jective compounds 4a,c—f com-
menced with compound 2a'® (Scheme 2). The treatment of 2a
with 2,2,2-trichloroethyl chloroformate (Troc-Cl) in the
presence of K,CO; and the subsequent zinc/AcOH treatment
gave norcompound 2b.* Various N-substituents were intro-
duced by reductive alkylation of 2b or the alkylation of 2b with
an alkyl bromide to provide 2c—f. Compound 2a reacted with
CH,Br, in the presence of K,CO; under high dilution

dx.doi.org/10.1021/ml400491k | ACS Med. Chem. Lett. 2014, 5, 368—372



ACS Medicinal Chemistry Letters

Table 2. Functional Activities of 4a,c—fh,i for the Opioid Receptors Assessed by [**S]GTPyS Binding Assays”

MOR DOR KOR
compd EC,, (nM) E,. (%)° ECy, (nM) E,.. (%)° ECy, (nM) E.. (%)
SNC80 NT® NT® 19 100 NT® NT*
4a 2.8 137 11 92.8 80.5 69.1
4c 113 110 11 112 478 83.6
4d 223 8.4 15.6 96.4 760 65.6
e 27 54 6.5 94.6 231 74.0
af 23 83.0 92 115 ND ND'
4h 9.0 25.6 098 118 6.5 4.9
4i 2 19.7 041 103 39 512

“[*S]GTPyS binding assays were carried out in duplicate using human MOR, DOR, or KOR expressed CHO ceHs bE__ was calculated as the % of
g assay. p g exp max

the response obtained with DAMDO. “E_, was calculated as the % of the response obtained with SNC80. “E,,

response obtained with U-69,593. “Not tested. Not determined.

 was calculated as the % of the

Table 3. Functional Activities of 4a,c—fh,i for the Opioid Receptors Assessed by CellKey Assays®

MOR DOR KOR
compd ECs, (aM) Epwe (%)° ECy, (nM) Epe (%)° EC,, (nM) E,. (%)?
SNC80 0.14 6.8 17 100 5264 59
4a 1.8 9.6 1.54 88.7 39.8 50.5
4c 1350 36.1 141 138 307 79.2
4d 400 122 140 130 333 57.9
4e 51 11.3 2.0 T2 ND* ND*
4f 639 40.2 20.5 108 12530 22.6
4h 12, 8.8 0.39 123 12 80.4
4i 52 4.8 0.62 90.6 24 75.8

“CellKey assays were carried out in duplicate using human MOR, DOR, or KOR expressed H.EK293 cells. ®

E o was calculated as the % of the

response obtained with DAMGO. “E_, was calculated as the % of the response obtained with SNC80. me was calculated as the % of the response

obtained with (—)-U-50,488H. “Not determined.

(a) EDso = 5.26 mg/kg, s.c.
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Figure 2. (a) Antinociceptive effect of 4c administered subcutaneously in the mice acetic acid writhing tests. The statistical significance of differences
between the groups was assessed with one-way ANOVA followed by Bonferroni’s test. *p < 0.0S and ***p < 0.001 versus saline treated mice. (b)
Effects of opioid receptor antagonists on the antinociception induced by subcutaneous treatment of 4c in the mice acetic acid writhing tests. The
statistical significance of differences between the groups was assessed with one-way ANOVA followed by Bonferroni’s test. *¥*p < 0.001 versus

saline treated mice. #p < 0.0S versus 4c treated mice.

conditions (0.000S M) to provide dioxymethylene compound
3a in 66% yield concomitantly with a dimer in 30% yield in
which two 2a units were tethered with a methylene group (see
the Supporting Information for details). A portion-wise
addition of a solution of 2c—f markedly improved the yields
of 3c—f and prevented formation of the dimer. Finally, the O-
methyl group in 3a,c—f was removed by a treatment with BBr;
to give 4a,c—f. Compounds 4h and 4i with respective phenyl
and 2-phenethyl groups as the lactam nitrogen substituents
were prepared as shown in Scheme 3. After a conversion of
ester § into 6, the treatment of 6 with +BuOK in +BuOH
provided an equilibrium mixture of 2g and 7g. An equilibrium
mixture of 2h and 7h was prepared from § by a previously
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reported method."® The mixture of 2g and 7g or 2h and 7h was
reacted with CH,CIBr in the same manner shown in Scheme 2
to afford dioxymethylene compounds 3gh. The 2-phenethyl
group was introduced on the lactam nitrogen in 3g by
alkylation to give 3i.

The affinities of the prepared compounds 4a,c—fh,i were
evaluated by competitive binding assays (Table 1). All the
compounds 4a,c—fhi bound to the opioid receptors. The
phenolic hydroxy group at the 3-position appeared to play an
important role in improving the binding affinities for the opioid
receptors compared to the parent compound 227 Except for
N-(2-phenethyl)lactam 4i, compounds 4a,c~fh showed
selectivities for the DOR, suggesting that the phenyl group of

dx.doi.org/10.1021/ml400491k | ACS Med. Chem. Lett. 2014, 5, 368—372
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the substituent on the lactam nitrogen would function as a
DOR address such as the phenyl moiety in NTL>"**The
binding affinities of 4a and 4h for the DOR were better than
that of SNC80. Compounds 4c and 4f with respective N-
methyl and N-(2-phenethyl) substituents were over 100-fold
more selective for the DOR as compared to the KOR. The
functional activities of 4a,c—fh,i were determined by
[33S]GTPyS binding and CellKey assays (Tables 2. and 3).>
The CellKey system utilizes impedance biosensors for
detection of cell behaviors and is a functional cell-based assay
technology enabling label-free analysis of cell surface receptor
activity.2 5 1t is noteworthy that the [3*S]GTPyS and CellKey
assays differed in the observed output, even though giving
similar results. All the compounds 4a,c—fh,i were full agonists
for the DOR. The agonistic activities for the DOR of 4c,fh
were more efficacious than that of SNCB80 in both of the
functional assays. Compounds 4h and 4i were also potent KOR
agonists, whereas compounds 4c and 4f exhibited agonistic
activities for the MOR. Although N-methyl derivative 4c had
moderate to high efficacy for the MOR and KOR, the potencies
for these receptors were poor, which suggested that 4c was
highly selective and the most efficacious DOR agonist among
the tested compounds. Derivatives 4a,ef with respective
cyclopropylmethyl (CPM), allyl, and 2-phenethyl substituents
on the basic nitrogen were more potent agonists for the DOR
than N-methyl derivative 4¢ in both functional assays; however,
their functional selectivities for the DOR were lower than that
of 4c in [**S]GTPYS binding assays and lower or comparable to
that of 4c in CellKey assays. Therefore, the N-methyl
substituent on the basic nitrogen appeared to be the optimal
group among the tested compounds.

We next assessed the antinociceptive effects of 4c in mice by
acetic - acid writhing tests. Subcutaneously administered 4c
significantly exhibited antinociception in a dose-dependent
manner and its ECy value was 5.26 mg/kg (Figure 2a). No
convulsive behaviors were observed. The antinociceptive effects
induced by 4c were attenuated by the selective DOR antagonist
NTI but not by the selective MOR antagonist f-FNA or the
selective KOR antagonist nor-BNI (Figure 2b). Taken together,
these results indicate that compound 4c could be a promising
lead compound for selective DOR agonists with a novel
chemotype, the oxazatricyclodecane structure

In conclusion, we synthesized novel DOR agonists 4a,c—fh,i
with oxazatricyclodecane structure. Among the synthesized
compounds, N-methyl derivative 4c was highly selective and
the most effective DOR agonist. Subcutaneous administration
of 4c produced dose-dependent and NTLreversible antinoci-
ception without any convulsive behaviors. N-Methyl derivative
4c is expected to be a promising lead compound for selective
DOR agonists containing the novel oxazatricyclodecane
structure.
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Experimental procedures for the synthesis and characterization
of the compounds, the in vitro activity assay, the in vivo mice
acetic acid writhing assay, and the spectral data of the reported
compounds. This material is available free of charge via the
Internet at http://pubs.acs.org.
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