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Fig. 4. Effects. of bisindolylmaleimide I (GF109203X) on
DAMGO-induced CI" current in oocytes expressing pOR-Gys re-
ceptor. a Tracings were obtained from a single oocyte showing the
DAMGO (1 pmol/)-induced currents in oocytes expressing
WOR-Ggis receptors before and after treatment with GF109203X
(GF). Oocytes were incubated with 200 nmol/l GFfor 2h and were

then stimulated by DAMGO. b Time course of effects of GF on
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ment of GE. Data represent means = SEM of 6 oocytes. ** p <0.01
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Fig. 5. Effects of bisindolylmaleimide I
(GF109203X) on the inhibitory effects of
sevoflurane (Sev.) on DAMGO (1 pmol/l)-
induced currents. Tracings were obtained
from a single oocyte showing the effect of
sevoflurane on 1 pmol/l of DAMGO-
induced currents in oocytes expressing
p.OR-Gy;5 receptor before and after treat- ,
ment with GF109203X (GF). Oocytes were [’

DAMGO 1 pmol/l

incubated with 200 nmol/l GF for 2 h,
and were then stimulated by DAMGO

(1 pmol/D) in the presence of sevoflurane
(1 mmol/1).
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Discussion

We showed that sevoflurane had inhibitory effects on
DAMGO-induced Cl~ currents in oocytes expressing
POR-Ggs. In clinical situations, the free plasma concen-
tration of sevoflurane was approximately 0.5 mmol/l [22,
23]. Sevoflurane suppressed DAMGO-induced Cl~ cur-
rents in oocytes expressing LOR-Ggy;s at concentrations
more than 0.5 mmol/l. Consistent with these reports, our
present results suggest that anesthetic concentrations of
sevoflurane would have inhibitory effects on wOR.

Our study raises the question of how sevoflurane in-
hibits wOR function. In our results, sevoflurane had little
effect on AlF;-induced currents, suggesting that sevoflu-
rane may not interfere with the signaling pathways down-
stream of activation of G proteins, such as phospholipase
C activation, intracellular Ca?* release, and Ca?*-activat-
ed CI” channels. From these results, the action site of
sevoflurane would be OR.

There is considerable evidence that PKC plays an im-
portant role in the regulation of OR function. A num-
ber of studies have reported that PKC is involved in mor-
phine-induced tolerance in vivo [24-27]. In our pres-
ent results, the PKC inhibitor GF109203X enhanced
DAMGO-induced currents. These results suggested that
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Short Communication

Possible Involvement of f-Endorphin
in a Loss of the Coordinated Balance
of p-Opioid Receptors Trafficking
Processes by Fentanyl
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BACKGROUND

It has been considered that opioid tolerance is, in
part, the end result of a coordinated balance between
processes that govern the desensitization, internaliza-
tion, and resensitization of p-opioid receptors (MOR)
(Claing et al., 2002; Gainetdinov et al., 2004). How-
ever, a several line of evidence suggests that the traf-
ficking properties of MORs driven by MOR agonists
may depend on intrinsic characters of each agonist,
and are still complicated. Previous biochemical studies
on cultured enteric neurons have indicated that fen-
tanyl induces either the functional desensitization or
internalization of MORs (Minnis et al., 2003). In con-
trast, under the same condition, morphine does not
promote the detectable internalization of MORs in cul-
tured cells after prolonged or acute treatment in
healthy animals, although it has been well-established
that morphine causes the development of tolerance to
its pharmacological actions (Minnis et al., 2003). How-
ever, recent studies have demonstrated that morphine
activates MORs with promoting internalization of
MORs via B-arrestin-2-dependent mechanisms in
striatal neurons (Haberstock-Debic et al., 2005).

In the previous study, we demonstrated that
repeated treatment with fentanyl, but not morphine,
causes a rapid desensitization to its ability to block the
hyperalgesia associated with the attenuation of MOR

©2011 WILEY-LISS, INC.

internalization/recycling pathway; opioids; receptor trafficking;

resensitization in mice with inflammatory pain (Imai
et al., 2006). Based on this study, we hypothesized that
released B-endorphin within the spinal cord under a
chronic pain-like state may be implicated in the rapid
development of tolerance to fentanyl, but not morphine
and oxycodone. Namely, these findings raise the possi-
bility that B-endorphin could attenuate the resensiti-
zation of MOR after the treatment with fentanyl,
resulting in the high degree of tolerance to fentanyl-
induced antihyperalgesic effects under long-lasting
pain state. To further address this issue, this cell cul-
ture study was performed to investigate the effects of
fentanyl on MOR internalization and resensitization
in the presence or absence of B-endorphin.

MATERIALS AND METHODS

Baby hamster kidney (BHK) cells (Riken Cell
Bank, Tsukuba, Japan) were grown in Dulbecco’s
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modified eagle medium (DMEM: Invitrogen®) supple-

mented with 10% fetal bovine serum (FBS), penicillin
(100 U/ml), and streptomycin (100 pg/ml) at 37°C in a
humidified atmosphere of 95% air and 5% COs. Tran-
sient transfection was then performed with Effectene
transfection reagent (Qiagen, Tokyo, Japan) in 0.2 pg
of each cDNA according to the protocol provided by
the manufacturer. Cells were used in confocal micros-
copy 16-24 h after transfection. cDNA for rat MOR
was kindly provided by Dr. Dascal (Tel Aviv Univer-
sity). Venus, a brighter variant of yellow fluorescent
protein (Nagai et al., 2002) was obtained from Dr. T.
Nagai (Riken, Wako, Japan). Primers (5-GGG GTA
CCC CAT GGA CAG CAG CAC-3') and (5'-GCG GCC
GCG GGG CAA TGG AGC AGT-3') were engineered
to ligate the N-terminus of MOR by using standard
molecular approaches with the polymerase chain
reaction (PCR). Venus-fused MOR was created by
ligating the MOR c¢cDNA sequences into the Notl site
of the corresponding Venus site. cDNA for transfec-
tion in BHK cells was subcloned into pcDNA3.1
(Invitrogen® Life Technologies, CA). ¢cDNA for rat
B-arrestin 2 was generously provided by Dr
Y. Nagayama (Nagasaki University, Japan). For the
analysis of the agonist-induced internalization of
MORs, BHK cells that had been transfected with
Venus-fused MORs and B-arrestin-2 were incubated
in the absence or presence of 100 nM B-endorphin for
30 min at 37°C, and then treated with 10 pM mor-
phine, 100 nM fentanyl or 10 uM oxycodone. To inves-
tigate the resensitization of MORs, the cells were
incubated with 100 nM fentanyl or 10 pM oxycodone
in the presence or absence of B-endorphin, and then
apposed for 30 min, 90 min, 3 h, or 6 h at 37°C. The
cells were subsequently fixed and examined by confo-
cal microscopy as previously reported (Corbani et al.,
2004). Venus was excited by a 488-nm laser was used
to detect Venus fluorescence with a 505- to 530-nm
band-pass filter, and images were obtained by placing
the dish on the stage of an inverted Zeiss LSM510
META confocal microscope (Carl Zeiss, Jena, Ger-
many). Data were stored on the hard disc with and
analyzed with the Zeiss LSM software Zen 2009. For
the quantitative analysis of agonist-induced internal-
ization of MORs, BHK cells were fixed with 4% paraf-
olmaldehyde in PBS and stored at 4°C. The numbers
of cells expressing Venus-fused MORs were counted.
For counting cells whether Venus fluorescence was at
the plasma membrane or in cytosol (internalization),
we basically followed by Corbani et al. (2004). Local-
ization of Venus-fused MORs in BHK cells was cate-
gorized as “mainly expressed at the plasma mem-
brane,” “not detected in plasma membrane but
detected in cytosol,” or “not detected” (whose localiza-
tion was not belong to the former category), separated
with a software Zen 2009 equipped with Zeiss
LSM510 META confocal microscope, with reference to
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Fig. 1. Confocal imaging of agonist-induced internalization of
MORs in BHK cells expressing Venus-fused MORs. The cells were
incubated in the absence (A, C, E, and G) or presence (B, D, F, and
H) of 100 nM B-endorphin (B-END) for 30 min at 37°C and then
treated with 10 pM morphine (MRP; C, D), 100 nM fentanyl (FEN;
E, F), or 10 uM oxycodone (OXY; G, H). The cells were subsequently
fixed and examined by confocal microscopy. Yellow fluorescence from
Venus indicates the localization of MORs in BHK cells. Scale bars,
10 pum.

the control, not stimulated BHK cells. A total of 100
cells (counted mean 200-250 cells in sum of “the
plasma membrane,” “in the cytosol,” plus “not
detected”) in six independent each dish. % Internal-
ization was described as cytosol X 100/[plasma mem-
brane + cytosol (total 100 cells)]. The drugs used in
this study were fentanyl citrate (Hisamitsu Pharma-
ceutical, Tokyo, Japan), morphine hydrochloride
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(A) Control

Fig. 2. Confocal imaging of agonist-induced internalization of
MORs in BHK cells expressing Venus-fused MORs. Typical cells
where most of MOR-Venus intensity was at the plasma membranes,

(Daiichi-Sankyo, Tokyo, dJapan), oxycodone hydro-
chloride (a kind gift from Shionogi Pharmaceutical,
Osaka, dJapan), and B-endorphin (Sigma-Aldrich,
St Louis, MO), which were dissolved in assay buffer.

RESULTS AND DISCUSSION

In this study, we assessed whether B-endorphin
could affect the trafficking properties of MORs using
immunocytochemical methods in BHK cells with con-
focal microscope. Confocal imaging of the BHK cells
expressing Venus-fused MOR with B-arrestin-2
revealed that the yellow fluorescence was largely con-
fined to the plasma membrane (Figs. 1A and 2A). In
both the presence and absence of 100 nM B-endor-
phin, at which concentration there did not cause any
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BHK cells. Scale bars, 10 pm.

internalization of MORs (Figs. 1B and 1C), cells
expressing MORs treated with 10 wM morphine
(Figs. 1C and 1D) showed little internalization of
MORs, while the cells treated with 100 nM fentanyl
(Figs. 1E, 1F, and 2B) and 10 pM oxycodone (Figs. 1G
and 1H) showed robust internalization of the receptor.
These findings were consistent with previous reports
that fentanyl and etorphine caused partial internal-
ization, while morphine failed to induce detectable
MOR endocytosis (Koch et al., 2005). We next investi-
gated the resensitization properties of MORs after the
washing-out of agonists. In the absence of B-endor-
phin, internalized MOR returned to the plasma mem-
brane from 90 min after the washing-out of fentanyl
(Figs. 3B-3D). However, in the presence of B-endor-
phin, the internalized MOR induced by fentanyl
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Fig. 3. Confocal imaging of resensitization of MORs in BHK
cells expressing Venus-fused MORs. Cells were incubated with 100
nM fentanyl (A-H) or 10 pM oxycodone (I-P) in the absence (A-D
and I-L) or presence (E-H and M-P) of B-endorphin, and then
apposed for 30 min, 90 min, 3 h, or 6 h at 37°C. The cells were then
fixed and counted by confocal microscopy. Yellow fluorescence from
Venus indicates the cellular localization of MOR in BHXK cells. Scale

remained in the cytosolic fraction at 3-6 h after the
washing-out of B-endorphin and fentanyl (Figs. 3F-
3H). However, in both the presence and absence of
B-endorphin, the internalized MOR induced by oxyco-
done returned to the plasma membrane after the
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bars, 10 pm. Quantitative analysis of the % of the internalized cells
expressing Venus-fused MORs treated with the drugs for 30 min (@)
or 180 min (R), respectively. The agonist concentrations represent
the dose required to induce the maximal effect on receptor endocyto-
sis for each drug. Each value represents the mean * SEM of six
separate experiments.

washing-out of agonist in a time-dependent manner
(Figs. 3I-3P). We performed quantitative analysis of
the agonist-induced internalization of MORs after the
washing-out of each agonist shown in Materials and
Methods. At 30 min after the washing-out of agonists,
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cells treated with fentanyl or oxycodone showed ro-
bust internalization of MORs (fentanyl: 79.0 £ 5.14%,
B-endorphin fentanyl: 80.2 * 3.7%, oxycodone: 70.5
+ 7.09%, B-endorphin oxycodone: 70.7 * 5.35%),
which was not seen in morphine-treated cells (mor-
phine: 19.67 * 3.93%, B-endorphin morphine: 21.5 *
4.76%; Fig. 3Q). However, while there was no differ-
ence in the degree of oxycodone-induced MOR inter-
nalization between the presence and absence of
B-endorphin 3 h after washing-out (oxycodone: 23.17
* 5.12%, B-endorphin oxycodone: 30.5 £ 4.72%), in
fentanyl-treated cells, B-endorphin caused the pro-
longed internalization of MORs and fluorescence was
stayed in the cytosolic fraction (fentanyl: 27.67 =
5.47%, B-endorphin fentanyl: 76.5 = 6.02%; Fig. 3R).

It has been widely accepted that receptor desensiti-
zation, internalization and trafficking appear to play
a key role in the development of opioid tolerance
(Claing et al., 2002; Gainetdinov et al., 2004). The ini-
tial process in these events is the phosphorylation of
intracellular domains of MOR. Phosphorylated MORs
are mostly internalized via clathrin-coated pits into
early endosomes and subsequently dephosphorylated
by intracellular protein phosphatases. The dephos-
phorylated MORs might either be recycled to the
plasma membrane or transported to lysosomes for
degradation. A growing body (Smalheiser and Lugli)
of evidence suggests that among diverse serine/threo-
nine (Thr) residues of the intracellular domain of
MOR, the phosphorylation of Ser 375 in the mouse
MOR 1is essential for the internalization of MORSs
(Schulz et al., 2004). In a previous study, we found
that repeated treatment with fentanyl, but not mor-
phine, resulted in an increase in the levels of phos-
phorylated-MOR (Ser 375) associated with the
enhanced inactivation of protein phosphatase 2A and
a reduction in Rab4-dependent MOR resensitization
in the spinal cord of mice that showed inflammatory
pain (Imai et al., 2006). However, several lines of evi-
dence indicate that, in response to pain stimulus, en-
dogenous B-endorphin is released within some brain
regions (Zubieta et al., 2001). We previously reported
that B-endorphin released in the ventral tegmental
area is a key factor in regulating the dysfunction of
MOR to negatively modulate opioid reward under a
neuropathic pain-like state (Niikura et al.,, 2008,
2010). Taken together, although further studies are
still needed, these findings support the idea that inhi-
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bition of the resensitization system of MOR following
chronic treatment with fentanyl in the presence of
B-endorphin may be associated with antihyperalgesic
tolerance to fentanyl under a chronic pain-like state.

In conclusion, we demonstrated here that unlikely
morphine, either fentanyl or oxycodone induced a
robust MOR internalization and, in turn, its resensiti-
zation. In the presence of B-endorphin, the internal-
ized MOR induced by fentanyl, but not oxycodone,
remained within the cytosolic fraction even after
washing out. These findings strongly support that
idea that fentanyl has different pharmacological pro-
file form that of morphine or oxycodone.
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