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Figure 7. Effect of the repeated administration of TCV-309 on the pain-like behaviors in FBC mice. The administration of TCV-309
0.3 mg/kg i.v. was started 6 hr before the tumor implantation, given once a day and continued every 4 days up to 28 days. Allodynia (A, B), guarding
behavior (C) and limb-use abnormality (D) were evaluated at 3 hr and 1, 2, 3 days after TCV-309 injection. Data are expressed as the mean = SEM.
n=15 mice per group.

doi:10.1371/journal.pone.0091746.g007
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Figure 8. The Kaplan-Mayer survival curve of FBC mice and the change of body weight (insert). For the survival experiments, TCV-309
and saline were given once a day and continued every 4 days until the animals died (n=17 and 50, respectively). Control mice received saline for 32
days. Days for 50% of mice died after receiving TCV-309 were significantly prolonged compared to the saline-treated control, P<0.001. Statistical
analysis was performed by log-rank and Gehan-Breslow-Wilcoxon tests.

doi:10.1371/journal.pone.0091746.g008
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strategy for neuropathic pain [36]. Taking that PAF via an
increase in nitric oxide/cyclic GMP cascade reduces GlyRo3
function in the spinal cord [3], the combination of PAF receptor
antagonists and opioids, the former protects from disfunction of
PAF-induced inhibitory neurotransmission and the latter enhances
descending inhibitory pathway may represent a new strategy for
the treatment of persistent cancer pain and the quality/quantity of
life of patients.
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ABSTRACT: We synthesized compounds 4a,c—fh,i containing the o (l]"\ 5 ?L
oxazatricyclodecane structure from a novel rearrangement reaction N SN N O\ BN
product 2a. All the prepared compounds 4a,c—fh,i exhibited full oH . Me o
agonistic activities for the § opioid receptor (DOR). Among them, the OH — o1

N-methyl derivative 4c was highly selective, and the most effective

DOR agonist in functional assays. Subcutaneous administration of 4¢ vy Ve o
produced dose-dependent and NTI (selective DOR antagonist)- K, (MOR) = 47.7 n K. (MOR) = 23.3 nM
reversible antinociception lacking any convulsive behaviors in the K; (DOR) = 174.6 nM K; (DOR) = 1.94 nM
mice acetic acid writhing tests. The N-methyl derivative 4c is expected K; (KOR) =248.1 nM K; (KOR) = 200 nM
to be a promising lead compound for selective DOR agonists with a : ;
novel chemotype.
KEYWORDS: Opioid, DOR, oxazatricyclodecane structure, CellKey
he & opioid receptor (DOR) is one of the three opioid more selectively than the DOR homomer.'® It is not yet clear
receptor types (4 (MOR), DOR, and x (KOR)), and why the various DOR agonists mentioned above elicit different
activation of this receptor is associated with various pharmacological responses, but the structure of the DOR
pharmacological effects such as anﬁnociceftive, antidepressive, agonist may account, in part, for their distinct activities. For
anxiolytic, and cardioprotective effects.'™ In contrast to the example, a structural feature of DOR agonists may influence the
undesirable effects mediated by the MOR such as dependence, induction of convulsive behaviors: the DOR agonists that do
constipation, emesis, and respiratory depression or the aversive not cause convulsion had a structure distinct from diary-

effects mediated by the KOR,"* the DOR is a promising Imethylpiperazine and its related structures such as BW373U86
medical target because it seems to induce neither addictive nor and SNC80. However, diarylmethylpiperazine derivative
aversive effects. Since the first nonpeptidic DOR agonist TAN- AZD2327 (Figure 1) reportedly produced no convulsion."”
6757 (Figure 1) emergedﬁ various nonpeptidic DOR agonists
have been reported.' > Several investigations revealed that the
DOR agonists like BW373U86° and SNC80° (Figure 1)
exerted convulsive behaviors.> However, some DOR agonists
such as ADL5747'° and KNT-127""" (Figure 1) have recently
been reported to induce no convulsion. Although SNC80 has
been reported to induce the internalization of the DORs and to
develop tolerance toward the analgesic, locomotor, and
anxiolytic effects, ARM390"® (Figure 1) induced hardly any
internalization of the DORs and showed tolerance to analgesia
but not to locomotor or anxiolytic responses.ld“15 Thus, a
distinct DOR agonist interacting with the same DOR

The synthesis and pharmacological characterization of DOR
agonists with different chemotypes will help to better
understand the different pharmacological profiles of distinct
DOR agonists. We have recently reported the synthesis and
binding affinities for the MOR, DOR, and KOR of an
oxazatricyclodecane derivative 2a, which was obtained from
endoethanotetrahydrothebaine derivative 1 by a novel rear-
rangement reaction'® (Scheme 1). This new compound
exhibited moderate affinities for the opioid receptors (K;
(MOR) = 47.7 nM, K, (DOR) = 174.6 oM, and K; (KOR)

sometimes exerted different pharmacological responses. Received: November 29, 2013
Recently, SNC80, a well-known representative selective DOR Accepted: January 27, 2014
agonist, was reported to activate the MOR/DOR heteromer Published: January 27, 2014
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Figure 1. Structures of DOR agonists, TAN-67, BW373U86, SNC80,
ADLS5747, KNT-127, ARM390, and AZD2327.
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NaB(OAc);H, 1,2-dichloroethane, rt, 74%-quant. (for R = Me, 2-
phenethyl); (d) alkyl bromide, NaHCO,, DMF, 1t, 48—92% (for R =
allyl, i-Bu); (e) CH,Br, K,CO; DMF (0.000S M), rt, 66%; (f)
CH,CIBr, K,CO,;, DMF (0.0004 M), 1t, a solution of 2c—f in DMF
was added portion-wise. 69—98%; (g) BBr;, CH,Cl,, 0 °C, 76—95%.
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Scheme 3. Synthesis of 4h and 4i”
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BuOK, +-BuOH, reflux, quant.; (c) CH,CIBr, K,CO,, DMF (0.0004
M), rt, a solution of 2g and 7g or 2h and 7h in DMF was added
portion-wise. 73—93%; (d) 60% NaH, PhCH,CH,Br, DMF, rt, 83%;
() BBr;, CH,Cl, 0 °C, 61—89%.

Table 1. Binding Affinities of 4a,c—fh,i for the Opioid
Receptors”

K; (nM)

selectivity

compd ~MOR® DOR° KORY MOR/DOR KOR/DOR
SNC80 695 1.04 >1000 668 962
22° 477 175 248 027 14
4a 3.14 0313 5.14 10,0 164
4c 233 1.94 200 12.0 103
4d 186 7.00 119 266 17.0
4e 68.4 123 56.6 558 462
4 459 2.59 588 17.7 227
4h 461 0.534 1.69 8.6 33
4 175 116 1.94 135 17

“Binding assays were carried out in duplicate using mouse whole brain
without cerebellum membranes for MOR and DOR or guinea pig
cerebellum membranes for KOR. ?[*H] DAMGO was used. “[*H]
DPDPE was used. “[*H] U-69,593 was used. ‘Ref 18.

=248.1 nM). The potential opioid ligand 2a was expected to
lead to other ligands selective for an opioid receptor type with a
unique core structure. Herein, we report the synthesis of novel
DOR agonists 4a,c—fh,i with oxazatricyclodecane structure
derived from 2a and their pharmacological properties.

The synthesis of the o]%jective compounds 4a,c—f com-
menced with compound 2a'® (Scheme 2). The treatment of 2a
with 2,2,2-trichloroethyl chloroformate (Troc-Cl) in the
presence of K,CO; and the subsequent zinc/AcOH treatment
gave norcompound 2b." Various N-substituents were intro-
duced by reductive alkylation of 2b or the alkylation of 2b with
an alkyl bromide to provide 2c—f. Compound 2a reacted with
CH,Br, in the presence of K,CO; under high dilution

dx.doi.org/10.1021/ml400491k | ACS Med. Chem. Lett. 2014, 5, 368—372
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Table 2. Functional Activities of 4a,c—fh,i for the Opioid Receptors Assessed by [**S]GTPyS Binding Assays”

MOR DOR KOR

compd ECy, (nM) E,. (%)° ECy, (nM) B (%)° ECq, (nM) Eow (%)
SNIC80 NT® NT® 19 100 NT* NT*
4a 2.8 137 11 92.8 80.5 69.1
4c 113 110 11 112 478 83.6
4d 223 84 15.6 96.4 760 656
4e 27 54 6.5 94.6 231 74.0

4 23 83.0 92 11§ ND/ ND'
4h 9.0 256 0.98 118 6.5 429

4 20 19.7 041 103 3.9 512

“[*S]GTPyS binding assays were carried out in duplicate using human MOR, DOR, or KOR expressed CHO cells PE, . was calculated as the % of
the response obtained with DAMDO. “E_,, was calculated as the % of the response obtained with SNC80. Emu was calculated as the % of the

response obtained with U-69,593. “Not tested. Not determined.

Table 3. Functional Activities of 4a,c—fh,i for the Opioid Receptors Assessed by CellKey Assays®

MOR DOR KOR

compd ECy, (nM) E,. (%)° ECq, (nM) Epae (%)° ECy, (nM) Eou (%)7
SNIC80 0.14 68 17 100 5264 59

4a 1.8 9.6 1.54 88.7 39.8 505

4c 1350 36.1 141 138 307 792
4d 400 122 140 130 333 57.9
4e s.1 113 20 77.2 ND*® ND*
4f 639 402 205 108 12530 226

4h 12 8.8 0.39 123 12 80.4

4 52 48 0.62 90.6 24 75.8

“CellKey assays were carried out in duplicate using human MOR, DOR, or KOR expressed HEK293 cells. °E,
response obtained with DAMGO. °E,,, was calculated as the % of the response obtained with SNC80. “E,,

obtained with (—)-U-50,488H. “Not determined.

Enax Was calculated as the % of the
o was calculated as the % of the response

(a) EDsg = 5.26 mg/kg, s.c.
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Figure 2. (a) Antinociceptive effect of 4c administered subcutaneously in the mice acetic acid writhing tests. The statistical significance of differences
between the groups was assessed with one-way ANOVA followed by Bonferroni’s test. *p <-0.05 and **#p < 0.001 versus saline treated mice. (b)
Effects of opioid receptor antagonists on the antinociception induced by subcutaneous treatment of 4c in the mice acetic acid writhing tests. The
statistical significance of differences between the groups was assessed with one-way ANOVA followed by Bonferroni’s test. ***p < 0.001 versus

saline treated mice. #p < 0.05 versus 4c treated mice.

conditions (0.000S M) to provide dioxymethylene compound
3a in 66% yield concomitantly with a dimer in 30% yield in
which two 2a units were tethered with a methylene group (see
the Supporting Information for details). A portion-wise
addition of a solution of 2c—f markedly improved the yields
of 3c—f and prevented formation of the dimer. Finally, the O-
methyl group in 3a,c—f was removed by a treatment with BBr,
to give 4a,c—f. Compounds 4h and 4i with respective phenyl
and 2-phenethyl groups as the lactam nitrogen substituents
were prepared as shown in Scheme 3. After a conversion of
ester § into 6, the treatment of 6 with #BuOK in #BuOH
provided an equilibrium mixture of 2g and 7g. An equilibrium
mixture of 2h and 7h was prepared from 5 by a previously

370

reported method.'® The mixture of 2g and 7g or 2h and 7h was
reacted with CH,ClBr in the same manner shown in Scheme 2
to afford dioxymethylene compounds 3gh. The 2-phenethyl
group was introduced on the lactam nitrogen in 3g by
alkylation to give 3i.

The affinities of the prepared compounds 4a,c—fh,i were
evaluated by competitive binding assays (Table 1). All the
compounds 4a,c—fh;i bound to the opioid receptors. The
phenolic hydroxy group at the 3-position appeared to play an
important role in improving the binding affinities for the opioid
receptors compared to the parent compound 2a.”® Except for
N-(2-phenethyl)lactam 4i, compounds 4a,c—fh showed
selectivities for the DOR, suggesting that the phenyl group of

dx.doi.org/10.1021/ml400491k | ACS Med. Chem. Lett. 2014, 5, 368—-372
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the substituent on the lactam nitrogen would function as a
DOR address such as the phenyl moiety in NT1L>"*The
binding affinities of 4a and 4h for the DOR were better than
that of SNC80. Compounds 4c and 4f with respective N-
methyl and N-(2-phenethyl) substituents were over 100-fold
more selective for the DOR as compared to the KOR. The
functional activities of 4a,c—fh,i were determined bg
[3S]GTPyS binding and CellKey assays (Tables 2 and 3)2
The CellKey system utilizes impedance biosensors for
detection of cell behaviors and is a functional cell-based assay
technolog enabling label-free analysis of cell surface receptor
ac’civi‘cy.2 5 1t is noteworthy that the [3°S]GTPyS and CellKey
assays differed in the observed output, even though giving
similar results. All the compounds 4a,c—fh,i were full agonists
for the DOR. The agonistic activities for the DOR of 4¢th
were more efficacious than that of SNC80 in both of the
functional assays. Compounds 4h and 4i were also potent KOR
agonists, whereas compounds 4c and 4f exhibited agonistic
activities for the MOR. Although N-methyl derivative 4c had
moderate to high efficacy for the MOR and KOR, the potencies
for these receptors were poor, which suggested that 4c was
highly selective and the most efficacious DOR agonist among
the tested compounds. Derivatives 4a,ef with respective
cyclopropylmethyl (CPM), allyl, and 2-phenethyl substituents
on the basic nitrogen were more potent agonists for the DOR
than N-methyl derivative 4c in both functional assays; however,
their functional selectivities for the DOR were lower than that
of 4c in [>S]GTPyS binding assays and lower or comparable to
that of 4c in CellKey assays. Therefore, the N-methyl
substituent on the basic nitrogen appeared to be the optimal
group among the tested compounds.

We next assessed the antinociceptive effects of 4c in mice by
acetic -acid writhing tests. Subcutaneously administered 4c
significantly exhibited antinociception in a dose-dependent
manner and its ECy, value was 5.26 mg/kg (Figure 2a). No
convulsive behaviors were observed. The antinociceptive effects
induced by 4c were attenuated by the selective DOR antagonist
NTI but not by the selective MOR antagonist f-FNA or the
selective KOR antagonist nor-BNT (Figure 2b). Taken together,
these results indicate that compound 4c could be a promising
lead compound for selective DOR agonists with a novel
chemotype, the oxazatricyclodecane structure

In conclusion, we synthesized novel DOR agonists 4a,c—fh,i
with oxazatricyclodecane structure. Among the synthesized
compounds, N-methyl derivative 4c was highly selective and
the most effective DOR agonist. Subcutaneous administration
of 4c produced dose-dependent and NTI-reversible antinoci-
ception without any convulsive behaviors. N-Methyl derivative
4c is expected to be a promising lead compound for selective
DOR agonists containing the novel oxazatricyclodecane
structure.
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Bn, benzyl; CHO, chinese hamster ovary; CPM, cyclo-
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phalin; DOR, § opioid receptor; DPDPE, [D-Pen?, p-Pen®]-
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kidney; KOR, k opioid receptor; MOR, u opioid receptor; nor-
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Neurosteroids Allopregnanolone Sulfate and
Pregnanolone Sulfate Have Diverse Effect on the

a Subunit of the Neuronal Voltage-gated Sodium
Channels Na 1.2, Na 1.6, Na 1.7, and Na 1.8 Expressed
in Xenopus Oocytes

Takafumi Horishita, M.D., Ph.D., Nobuyuki Yanagihara, Ph.D., Susumu Ueno, M.D., Ph.D.,

Yuka Sudo, Ph.D., Yasuhito Uezono, M.D., Ph.D., Dan Okura, M.D., Tomoko Minami, M.D.,
Takashi Kawasaki, M.D., Ph.D., Takeyoshi Sata, M.D., Ph.D.

ABSTRACT

Background: The neurosteroids allopregnanolone and pregnanolone are potent positive modulators of y-aminobutyric acid
type A receptors. Antinociceptive effects of allopregnanolone have attracted much attention because recent reports have indi-
cated the potential of allopregnanolone as a therapeutic agent for refractory pain. However, the analgesic mechanisms of allo-
pregnanolone are still unclear. Voltage-gated sodium channels (Na,) are thought to play important roles in inflammatory and
neuropathic pain, but there have been few investigations on the effects of allopregnanolone on sodium channels.

Methods: Using voltage-clamp techniques, the effects of allopregnanolone sulfate (APAS) and pregnanolone sulfate (PAS) on
sodium current were examined in Xenopus oocytes expressing Na 1.2, Na 1.6, Na 1.7, and Na 1.8 a. subunits.

Results: APAS suppressed sodium currents of Na 1.2, Na 1.6, and Na, 1.7 at a holding potential causing half~maximal current
in a concentration-dependent manner, whereas it markedly enhanced sodium current of Na, 1.8 at a holding potential causing
maximal current. Half-maximal inhibitory concentration values for Na 1.2, Na 1.6, and Na 1.7 were 12+ 4 (n = 6), 41+2 (n
=7),and 131+15 (n = 5) mol/l (mean = SEM), respectively. The effects of PAS were lower than those of APAS. From gating
analysis, two compounds increased inactivation of all o subunits, while they showed different actions on activation of each a
subunit. Moreover, two compounds showed a use-dependent block on Na 1.2, Na 1 .6,and Na 1.7.

Conclusion: APAS and PAS have diverse effects on sodium currents in oocytes expressing four o subunits. APAS inhibited
the sodium currents of Na 1.2 most strongly. (ANESTHESIOLOGY 20145 XXX XX-XX)

EUROSTEROIDS are neuroactive steroids synthe- ; :
sized from cholesterol in both central and peripheral What We Already Know about This Topic

nervous systems, and they accumulate in the nervous sys- e Sodium channels are important targets for analgesic actions
in the spinal cord, but their role in neurosteroid analgesia is

tem.! They rapidly alter neuronal excitability by mediating

unclear
actions through ion-gated neurotransmirter receptors, but e The effects of two sulfated neurosteroids with analgesic and
not through classic steroid hormone nuclear receptors.? anesthetic properties were tested on heterologously ex-
Many of theri are converted to sulfated. metibolites by pressed rat voltage-gated sodium channel function
hydroxysteroid sulfotransferases, and neurosteroid sulfates What This Article Tells Us That Is New
are also known to regulate physiological processes. They are e The neurosteroids tested produced voltage and use-depen-
thought to be potentially therapeutic because of their many dent block of all the subtypes tested, with more potent effects

3.4 on Na,1.2

pharmacological properties. K ; . ‘
Lod ; _ e Inhibition of Na, 1.2 in the spinal cord by allopregnanolone is
Two 3a hydloxylated metabolites of progesterone, allo a plausible mechanism for its analgesic effects if confirmed in

pregnanolone (30-hydroxy-50-pregnane-20-one) and preg- neuronal preparations and pain models
nanolone (3a-hydroxy-53-pregnane-20-one), are known
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to be positive modulators at y-aminobutyric acid type A
(GABA,) receptors with high potency.® These neurosteroids
have been shown to have greater anesthetic potencies than
those of other intravenous anesthetics that are clinically used,
and not to cause acute tolerance that are observed in other
anesthetics, suggesting usefulness of these neurosteroids as
general anesthetics.%” On the contrary, allopregnanolone was
shown to have the most potent analgesic effects among all
neurosteroids in pain models.® Recent studies demonstrated
its analgesic effects in neuropathic pain models. Allopreg-
nanolone alleviates thermal and mechanical hyperalgesia by
ligation of the sciatic nerve in rats,” produces analgesic effects
on formalin-induced pain in rats,'% and prevents anticancer
drug oxaliplatin-induced cold and mechanical allodynia and
hyperalgesia.!! In addition, it was suggested that stimulation
of allopregnanolone synthesis might be involved in the anti-
nociceptive effects of several analgesic drugs in neuropathic
pain models.'>* Its effect on GABA, receptors may be
important for its antinociceptive properties because GABA
is involved in pain pathways in the nervous systems, and
drugs targeting subtypes of GABA receptors have analgesic
effects in chronic pain.!” However, these two neurosteroids,
allopregnanolone and pregnanolone, also act on other ion
channels in pain signaling pathways, including T-type cal-
cium channels'® and N-methyl-p-aspartate receptors.'’

Voltage-gated sodium channels (Na ) have an important
role in action porential initiation and propagation in excitable
nerve and muscle cells. Nine o subunits (Na 1.1 to Na 1.9)
and four auxiliary  subunits have been identified in mam-
mals.'81 Each pore-forming o subunit has a different pattern
of development and localization and has distinct physiologi-
cal and pathophysiological roles. Sodium channel a subunits
expressed in the dorsal root ganglion are considered possi-
ble targets for analgesics for inflammatory and neuropathic
pain.?®?2 However, there has been little investigation on the
effects of allopregnanolone on sodium channel function. It is
important to examine these effects because they may be useful
in clarifying the mechanisms of the analgesic effects of allo-
pregnanolone and developing natural and safe neurosteroid-
based analgesics for refractory pain. In addition, our recent
report demonstrated the importance of neurosteroid sulfona-
tion for regulation of ion channels because of more potent
effects of sulfated steroid than those of nonsulfated steroids.??
Here, we investigate the effects of two sulfated neurosteroids,
allopregnanolone sulfate (APAS) and pregnanolone sulfate
(PAS) (fig. 1), on several sodium channel o subunits, includ-
ing Na 1.2, which is expressed in the central nervous system;
Na, 1.6, which is expressed in the central nervous system and
dorsal root ganglion neurons; and Na 1.7 and Na, 1.8, which
are expressed in dorsal root ganglion neurons.

Materials and M.ethods

This study was approved by the Animal Research Commit-
tee of the University of Occupational and Environmental

Health, Kitakyushu, Japan.
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Fig. 1. Structures of allopregnanolone sulfate (APAS) and
pregnanolone sulfate (PAS).

Drugs
Allopregnanolone sulfate and PAS were purchased from
Steraloids, Inc. (Newport, RI).

Plasmids

Rar Na 1.2 o subunit complementary DNA (¢cDNA) was
a gift from Dr. William A. Catterall, Ph.D. (Professor,
Department of Pharmacology, University of Washington,
Seattle, Washington). Rat Na 1.6 o. subunit cDNA was
a gift from Dr. Alan L. Goldin, M.D., Ph.D. (Professor,
Department of Anatomy and Neurobiology, University of
California, Irvine, California). Rat Na 1.7 o subunit cDNA
was a gift from Gail Mandel, Ph.D. (Professor, Department
of Biochemistry and Molecular Biology, Oregon Health
and Science University, Portland, Oregon). Rat Na 1.8 a
subunit cDNA was a gift from Dr. Armen N. Akopian,
Ph.D. (Assistant Professor, University of Texas Health Sci-
ence Center, San Antonio, Texas), and human B, subunit
cDNA was a gift from Dr. Alfred L. George, Jr., M.D.
(Professor, Department of Pharmacology, Vanderbilt Uni-
versity, Nashville, Tennessee). The percentages of homol-
ogy between rat and human protein of Na 1.2, Na 1.6,
Na 1.7, and Na 1.8 are 98, 99, 93, and 83%, respectively,
suggesting the possible limitations imposed by using rat a
subunit for only Na 1.8 to make conclusions in humans.

CRNA Preparation and Oocyte Injection

After linearization of cDNA with Clzl (Na 1.2 o subunit),
Norl (Na 1.6, 1.7 o subunits), Xbal (Na 1.8 o subunit),
and EcoRI ([31 subunit), cRNAs were transcribed using SP6
(Na, 1.8 a, {3, subunits) or T7 (Na 1.2, 1.6, and 1.7 a
subunits) RNA polymerase from the mMESSAGE mMA-
CHINE kit (Ambion, Austin, TX). Adult female Xenopus
laevis frogs were obtained from Kyudo Co., Ltd. (Saga,
Japan). X. laevis oocytes and cRNA microinjection were
prepared as described previously.** Na o subunit cRNAs
were coinjected with 3, subunit cRNA at a ratio of 1:10
(total volume was 20 to 40ng/50 nl) into Xenopus oocytes
(all @ subunits were coinjected with the 3, subunit) that
were randomly assigned to four o subunit groups for injec-
tion. Injected oocytes were incubated at 19°C in incubation
medium, and 2 to 6 days after injection, the cells were used
for electrophysiological recordings.
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Electrophysiological Recordings
All electrical recordings were performed at room temperature
(23°C). Oocytes were placed in a 100-pl recording cham-
ber and perfused at 2ml/min with Frog Ringer’s solution
containing 115 mmol/l NaCl, 2.5 mmol/] KCI, 10 mmol/l
HEPES, 1.8 mmol/l CaCl,, pH 7.2, using a peristaltic pump
(World Precision Instruments Inc., Sarasota, FL). Recording
electrodes were prepared, and the whole-cell voltage clamp
and recordings were achieved as described previously.?* Tran-
sients and leak currents were subtracted using the P/N pro-
cedure, in which N subsweeps each 1/Nth of the amplitude
of the main stimulus waveform (P) are applied. APAS and
PAS stocks were prepared in dimethylsulfoxide and diluted in
Frog Ringer’s solution to a final dimethylsulfoxide concentra-
tion not exceeding 0.05%. APAS and PAS were perfused for
3 min to reach equilibrium. All recordings were performed by
the experimenters who were blind to the type of compound.
The voltage dependence of activation was determined
using 50-ms depolarizing pulses from a holding potential
causing maximal current (V) (-90 mV for Na 1.2 and
Na 1.6, -100 mV for Na 1.7 and Na 1.8) and from a hold-
o /2) (from
approximately -40 mV to -70 mV) to 60 mV in 10-mV
increments. V__and V,,
ing and inactivated states of sodium channels. Because the

effects of many analgesics in the inactivated state are known
25

ing potential causing half-maximal current (V

holding potentials induce rest-

to be important for analgesic action,” we used these two
different holding potentials to compare the effects of com-
* pounds in the resting and inactivated states. Normalized
activation curves were fitted to the Boltzmann equation as
described previously®®: briefly, G/G =11 + exp(V,, -
V)/k), where G is the voltage-dependent sodium conduc-
tance, G__ is the maximal sodium conductance, G/G__ is

the normalized fractional conductance, V/,, is the potential
at which activation is half maximal, and % is the slope factor.
To measure steady-state inactivation, currents were elicited
by a 50-ms test pulse to -20 mV for Na 1.2 and Na 1.6,
-10 mV for Na 1.7, and +10 mV for Na 1.8 after 200 ms
(500 ms for only Na 1.8) prepulses ranging from -140 to 0
mV in 10-mV increments from a holding potential of V__ .
Steady-state inactivation curves were fitted to the Boltzmann
equation: /I = 1/(1 + exp(V,, - V)/k), where [___is the
maximal sodium current, Il is the normalized current,
V,, is the voltage of half~maximal inactivation, and £ is the
slope factor. To investigate a use-dependent sodium channel
block, currents were elicited at 10 Hz by a 20-ms depolar-
izing pulse of ~20 mV for Na 1.2 and Na 1.6, -10 mV for
Na 1.7, and +10 mV for Na 1.8 from a 'V, holding poten-
tial in both the absence and presence of 100 pmol/l APAS
and PAS. Peak currents were measured and normalized to the
first pulse and plotted against the pulse number. Data were
fitted to the monoexponential equation Z, = exp(-T ) +
C, where 7 is pulse number, C is the plateau Ly,and T is
the time constant of use-dependent decay.

Statistical Analysis

The GraphPad Prism software (GraphPad Software, Inc.,
San Diego, CA) was used to perform the statistical analy-
sis, and a statistical power analysis was performed using
G*Power software. All values are presented as means = SEM.
The 7 values refer to the number of oocytes examined. Each
experiment was performed with oocytes taken from at least
two frogs. Data were statistically evaluated by paired # test
(two-tailed). We assessed the inhibitory effects at different
APAS concentrations in the concentration—response curve,
using one-way ANOVA followed by Dunnet post hoc test for

A Na,1.2 Na,1.6 Na,1.7 Na,1.8
Vimax holding  V,, holding Ve holding  Vy, holding Vimax holding V4, holding V.ax holding  V,;, holding
=== Control '\/f‘ ""‘\_/.f—-— "‘\,.r--""‘“ e g —\lf_;:__
2 2ms 0
APAS ‘| ms \s - 2ms 2ms (2 ms $ <2 ms 10ms
100 pmol/L y S = < i 3 3 -
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Fig. 2. Effects of allopregnanolone sulfate (APAS) (A) and pregnanolone sulfate (PAS) (B) on peak sodium inward currents in
Xenopus oocytes expressing Na, 1.2, Na 1.6, Na 1.7, or Na 1.8 a subunits with f, subunits at two holding potentials. Represen-
tative traces are shown. Sodium currents were evoked by 50-ms depolarizing pulses to ~20 mV for Na 1.2 and Na,1.6, -10 mV
for Na,1.7, and +10 mV for Na 1.8 from V__ or V, , in both the absence and presence of 100 pmol/I of the compounds. Na, =
voltage-gated sodium channel; V| holding = holding potential causing maximal current; V, , holding = holding potential caus-

ing half-maximal current.
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