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Combination of ultrasound and bubble liposome
enhance the effect of doxorubicin and inhibit
murine osteosarcoma growth
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If ultrasound (US) is applied to cells, permeability across the cell membrane temporarily increases, making it easier for
drugs to be taken into the cells from around the cell membrane. Moreover, when used in combination with Bubble
liposome (BL: liposomes which entrap an ultrasound imaging gas), even low-power ultrasound can facilitate drug
delivery into cells.

In the present study, we constructed a new drug delivery system (DDS) involving concomitant use of US and BL with
doxorubicin (DOX), a key drug in the chemotherapy of osteosarcoma, and demonstrated both in vitro and in vivo that it
markedly inhibited the proliferation of osteosarcoma cells. Furthermore, this system achieved an equivalent antitumor
effect at about 1/5 the dose of antitumor agent employed in monotherapy with DOX. These findings suggest the pos-

This manuscript has been published online, prior to printing. Once the issue is complete and page numbers have been assigned, the citation will change accordingly.

sibility of reduction of adverse events.

In this experiment, US and liposomes were tested, both of which are already in use in clinical practice. US and lipo-
somes are both very safe in the body. The DDS composed of these elements we designed can be applied in simple and
site-specific fashion and is therefore promising as a new, clinically feasible method of treatment.

Introduction

Osteosarcoma is the most frequent primary malignant bone
tumor. Because of early pulmonary spread, this tumor had a
miserable prognosis prior to the availability of chemotherapy.
Currently, among the available cytostatic drugs, the four agents
methotrexate, ifosfamide, cisplatinum and doxorubicin (DOX,
adriamycin) are considered most effective.'® Thus, the identi-
fication of effective neoadjuvant chemotherapy in combination
with surgery for osteosarcoma patients has led to a significant
improvement in outcome in recent decades.

However, there are still a certain number of patients who do
not benefit from these improvements. Despite advancements in
multimodality treatment consisting of aggressive chemotherapy,
metastasis develops in more than one-third of patients, 90% of
whom rarely respond to salvage treatment. Chemotherapeutic
regimens require high dosages of agents to successfully elimi-
nate tumor, adversely affecting healthy tissues in the host. The
side effects of many antineoplastic agents include cardiotoxicity,
immune suppression, nephrotoxicity and others.** It is therefore

believed that alternative strategies for the treatment of osteosar-
coma are necessary.

Microbubbles (MB), which are contrast agents for medical
ultrasound (US) imaging, improve the efficiency of transfection
through US-induced cavitation.®!! Microbubbles are, however,
generally unstable, and their mean diameter of about 1-6 pm
is too large for extravascular applications.'? It is difficult to add
modified products such as functional ligaments to the surface of
MB. Therefore, MB should generally be smaller than red blood
cells and stable after injection into the blood circulation, and ulti-
mately their surface should be easily modifiable with functional
molecules for targeting.

Liposomes have certain advantages as drug, antigen or gene
delivery carriers.®® Their size is easily varied, and they can be
modified to add a targeting function. Based on liposome tech-
nology, we have developed novel liposomal bubbles (Bubble lipo-
some (BL) which were liposomes containing the US imaging gas
perfluoropropane).” In our system, DOX and BL were simply
mixed rather than sealing DOX inside of liposomes. And we
reported that the combination of BL and US irradiation could be
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Figure 1. BL and US, used separately or in combination, facilitate drug
uptake by cells. The effect of combined use of BL and US was investi-
gated by assessing DOX-induced suppression of LM8 cell proliferation.
LM8 cell proliferation was determined using MTT assay. Cell viability de-
creased significantly followed application of BL + US + DOX (p < 0.001).
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Figure 2. Kaplan-Meier survival curves show the effects of BLand USon |
| the survival of mice bearing osteosarcoma. The DOX + BL + US group ‘
| (n =18) exhibited significant differences in survival compared with the
| DOX-alone group (n = 10) and control group (n = 22) (p < 0.001).

utilized as gene (plasmid DNA and siRNA) and antigen delivery
systems.?0%4

We used DOX in this study and designed a new drug delivery
system (DDS) using BL for the development of a new and alter-
native approach to the treatment of osteosarcoma. In the pres-
ent study, the anti-tumor effects of the new DDS using DOX in

murine osteosarcoma cells in vivo and in vitro were investigated.
Results

Cytotoxicity of BL and US to LM8 cells. In the group that
received no treatment (control), optical density increased to about
0.6 at 48—72 h. The value in the group receiving DOX with US
irradiation was significantly different from the control (p < 0.05).
In the groups receiving DOX with BL, receiving DOX alone, val-
ues were significantly different from the control (p < 0.01). In the
groups receiving DOX combined with BL and US irradiation,
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values were significantly different from the control (p < 0.001)
(Fig. 1). It was confirmed that the effect of DOX was markedly
enhanced by combining it with BL and US.

Tumor growth delay. We examined whether a tumor suppres-
sive effect could be observed with the combination of BL and US
in vivo as in vitro. In the control group, the tumors increased rap-
idly and liver metastasis, renal metastasis and ascites were noted
on day 21, and 50% of individuals died by day 25 (Fig. 2). In
the control group, normalized tumor volume rapidly increased
throughout the experiment (42.4 + 6.3) (Fig. 3A and B). In the
groups receiving US irradiation or BL treatment alone or US
with BL treatment, normalized tumor volume was suppressed
throughout the experiment (US: 22.7 + 6.9, BL: 29.6 + 7.5, US
+ BL: 21.7 £ 4.5), though without significant differences from
control group (p > 0.05) (Fig. 3A). In the groups receiving DOX
treatment alone at a concentration of 1.0 mg/kg with or without
US irradiation, tumor volume was suppressed compared with the
control group (DOX (1): 22.4 + 2.8, DOX (1) + US: 27.8 £ 1.9),
though not to a significant extent compared with control group
(p > 0.05). With BL combined with DOX and US treatment,
there was clear tumor suppression even at low concentrations of
1.0 mg/kg (DOX (1) + BL + US: 8.3 + 2.8) (p < 0.001) (Fig.
3B and C), with effectiveness of suppression equivalent to that
with five times the dose of DOX (DOX (5): 7.8 + 1.4) (Fig. 3B).
The survival rate of mice treated with DOX (1) + BL + US was
higher than that of mice treated with the same concentration of
DOX (1) alone (Fig. 2). Thus, as in previous studies of MB, drug
uptake was increased with use of BL combined with US irradia-
tion and a tumor suppressive effect was confirmed.

Evaluation of side effect. Table 1 shows blood counts and
liver function parameters in mice. There were no significant
differences among the groups in WBC, RBC, GOT or GPT.
The Hb value of mice receiving DOX (5 mg/kg) alone was sta-
tistically different from the control value. Mice receiving DOX
alone at concentrations of 1.0 mg/kg or 5.0 mg/kg had Plt values
significantly different from the control group. In contrast, mice
receiving DOX (1 mg/kg) combined with BL and US exhibited
no significant differences from the control group in blood counts
and liver function.

Assay for intratumoral DOX content. Previous studies sug-
gested that the effect of treatment with BL combined with US
was due to induction of permeability of the cell membrane by
US irradiation. To demonstrate this, we examined intratumoral
DOX content. Mean concentration of DOX + BL + US tumors
showed a significant differences compared with DOX alone
group and showed a 57% (1.95 pg g'/1.24 g g') increase in
DOX alone group (p < 0.05) (Fig. 4A). DOX uptake by cells was
thus increased by the combination of BL and US.

Discussion

In the present study, we constructed a new DDS by concomitant
use of US and BL with DOX, a key drug in the chemotherapy
of osteosarcoma and demonstrated both in vitro and in vivo that
this DDS markedly inhibited the proliferation of osteosarcoma
cells. Furthermore, this system achieved an equivalent antitumor
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(Figure 3. Tumor growth delay. (A) The anti-tumor effects of DOX were assessed by comparing the normalized tumor volume of (M) controls with (¢)
the group administered BL alone, (M) the group administered US alone and () the group administered BL in combination with US. There were no
significant differences among the groups. (B) The anti-tumor effects of DOX were assessed by comparing the normalized tumor volume of (H) controls
with (a) the group administered DOX (1) in combination with US, (a) the group administered DOX (1) alone, (M) the group that received DOX (1) in
combination with BLand US, and (#) the group administered DOX (5) alone. The DOX (1) + BL + US group exhibited a significant difference in tumor
volume from the control group (p < 0.001). (C) Examples of visual observation of tumor growth in the mouse model. A representative animal from
each group is shown. The upper part shows control. The lower part shows the group treated with DOX (1) in combination with BL and US. The left part
shows the mice at day 7, the middle part at day 14 and the right part at day 21. (D) H&E staining of LM8 tumor cells excised on day 21. H&E staining of |
tumor samples from (left part) the control group and (right part) the group treated with DOX, BL and US. There were no marked differences between
the two groups in cell morphology. Magnification, x400. DOX (1) = received DOX at 1 mg/kg body weight, DOX (5) = received DOX at 5 mg/kg body
weight.

effect at about 1/5 the dose of antitumor agent employed in add modified products such as functional ligands to the sur-
monotherapy with DOX. These findings suggest the possibility ~face of liposomes. However, problems with liposomes have
of reduction of adverse events in the host. included the instability of crude liposomes in the body and their

The greatest advantage of use of a liposome preparation for uptake by the reticular endothelial system (RES) including the
drug delivery application is that the liposome itself is a drug liver, spleen after intravenous administration. To solve these
whose safety has been established. Furthermore, it is easy to  problems, which have hampered the clinical use of liposomes,
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Table 1. Complete blood count and liver function enzyme assay

WBC RBC Hb plt GOT GPT
contorol 4260 + 901 73146 12.86 + 0.55 74.76 + 12.82 59.0 +15.79 27.0+4.06
DOX (1) 5020 + 766 630+ 133 11.18::2.23 50.02 + 2.92* 68.2 + 17.69 334+545
DOX (1) + BL+ US 4460 + 867 654 + 123 11.84 +1.58 63.14 + 8.40 61.8 +11.56 31.6+4.82
DOX (5) 3740 + 1504 588 + 164 9.92 + 2.48%* 33.08 +13.37** 736 + 21.51 376 +18.79

Hb level decreased in the uncombined DOX (5) treatment group (p < 0.05). PIt count decreased significantly in the uncombined DOX (1) treatment
group (p < 0.05) and the uncombined DOX (5) treatment group (p < 0.01). No significant difference was noted in any parameter between the BL + US

group and the control group.

>

[y

o
2 -
| S

Doxorubicin / Tumor mass (ug/g)

| 5 1.5 1
5 ©
i O
L 205 4
0 . v

DOX DOX + BL + US

normal tissue

EEEEE

O L]
o ® L . m()xg Qoa Oc
|
** pox

© Bubble liposome

Figure 4. (A) Assay for DOX Content. Intratumoral DOX level (left part) and liver tissue DOX level (right part) were compared between mice that re-
ceived injection of DOX alone and mice that received DOX in combination with BL and US. Intratumoral DOX level was significantly higher in the DOX
| +BL+US group than in the uncombined DOX injection group (p < 0.05). Liver tissue DOX level did not differ significantly between the two groups.
| (B) EPR effect. According to the anatomical and pathophysiological abnormalities of tumor tissues, biocompatible macromolecules and lipids will
spontaneously and preferentially leak from tumor vessels into tumor tissues due to increased microvessel permeability and be retained in the tumor

| for extended periods of time due to poor lymph drainage.

polyethylene glycol (PEG) liposomes that could evade the RES
as a result of modification of their surface with PEG were devel-
oped.”?” Because of its persistent enhanced permeability and
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retention (EPR) effect, the long-term retention-type liposome
with PEG has been demonstrated to yield higher accumu-
lation in tumors.”®** This type of targeting is called “passive
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Final concentration;
LMS cells (14 x 10* cells)
Bubble liposomes (0.5%)
Doxorubicin (0.03 pg/pl)
Total volume = 1400 pl

1 MHz frequency

50% duty cycle
10 s duration

0.5 W/em? power density

96-well plates
at a concentration of 1 x 107 cells/well

Figure 5. Method of in vitro experiment for evaluation of the effectiveness of BL and US in LM8 cells. (1) LM8 cells, BL and DOX are combined, followed
by filling to a total volume of 1,400 pl (final concentration: LM8 cells (14 x 10* cells), BLs (0.5%), DOX (0.03 pg/wl)). (2) US is immediately applied to the

mixture. (3) A 96-well plate is inoculated and cell viability is measured by MTT assay 24, 48 and 72 h later.

targeting” and serves as the basis of treatment strategies using
liposomes. With the progress in research on targeting, such as
passive targeting as described above, research on active targeting
has also proceeded. The latter aims at targeting by liposomes to
which functional ligands such as antibodies are bound and at
the enhancement of drug uptake using additive application.***?
Concerning active targeting using DOX, there are reports on
tumor inhibitory effects obtained through the concurrent use
of thermosensitive liposomal DOX and hyperthermia,** and
tumor inhibition through the use of small magnetic liposomes
containing DOX and externally applied electromagnetic force.”!
At present, active targeting is considered necessary for the effi-
cient uptake of drug in the tumor cells in addition to the EPR
effect by passive targeting.

The combination of MB and US is one of the methods
recently attracting attention in the field of gene introduction and
drug delivery.*?¢ Through ultrasonic irradiation, MB tentatively
change cell membrane transmission by sonoporation, enabling
the uptake of extracellular high-molecular-weight substances
without causing cell injury”""*¢ The cavitation effect caused
by the collapse of bubbles is considered the key mechanism of
drug delivery into cells. This technique has been experimented
upon both in vitro and in vivo as a site-specific method of drug
delivery.”'? However, MB have had the problem of difficulty in
functional ligand attachment to the surface for targeting. We
prepared BL from liposomes by a new method to solve this prob-
lem and succeeded in sealing perfluoropropane gas, which serves
as a nucleus to cause cavitation in BL?*¥ and employed this new

type of BL in this study.

www.landesbioscience.com

Our in vitro results suggest that it is possible to significantly
inhibit osteosarcoma cell growth by adding BL and US to DOX.
In vitro setting, the EPR effect that observed in the tumor tis-
sue of the living body is unlikely expected. Thus, this action
mechanism is assumed to be realized purely with the drug uptake
increase induced by sonoporation effect and cavitation. Tumor
targeting by EPR effect can be expected in vivo in addition to
the sonoporation and cavitation effects observed in vitro. In fact,
the new DDS we have constructed achieved growth inhibition
almost equivalent to that observed with monotherapy with DOX,
though at about 1/5 the dose used in monotherapy. In the intra-
tumoral concentration assay, DOX concentration increased to
1.5 times that in the control. This finding indicated that our new
DDS could induce high concentrations of DOX and BL specifi-
cally in tumor by EPR effect, enabling the uptake of high-concen-
tration DOX in tumor tissue via the cavitation and sonoporation
induced by US irradiation to the tumor site (Fig. 4B). Though
there is a report on another experiment using liposomal DOX of
a significant increase in hepatic tissue concentration,” no signifi-
cant difference was observed in hepatic tissue concentration in
our new DDS in comparison with the DOX monotherapy group.
In our system, DOX and BL were simply mixed rather than seal-
ing DOX inside of liposomes. This is probably a reason for the
decreased uptake of DOX by the RES. In our system, DOX was
not sealed in liposomes. Therefore, compared with sealed DOX,
the amount of delivery into RES with BL of the remaining DOX
not delivered into the tumor may be small.

Reduction of adverse events is a large advantage of our new
DDS. As regards side effects, no significant difference was

Cancer Biology & Therapy 5



observed between the group treated with DOX at 1 mg/kg in
combination with BL and US and the control group, while Hb
and Plt values decreased in the DOX monotherapy group (at 5
mg/kg). Thus, concomitant treatment with DOX at 1 mg in
combination with BL and US could achieve a tumor inhibitory
effect equivalent to that observed with monotherapy with DOX
at 5 mg and could also reduce side effects. By employing this
method, which enables treatment at lower doses, the number of
drop-outs from chemotherapy may be reduced, with improve-
ment of prognosis.

Since this study was performed in an osteosarcoma model
prepared in the back of mice, it was possible to directly irradiate
tumors with US. However, the problem with clinical application of
this method is how US irradiation is to be performed when osteo-
sarcoma cells are present in the bone. According to the reports
made up to present, when the US is applied for intracranial moni-
toring of cerebral blood flow after -PA (tissue plasminogen acti-
vator) administration in acute ischemic stroke case, a thrombus
dissolution effect reached 50% due to the ultrasonic action.>®*
This finding suggests that US penetrated through cranial bone.
Compared with transcranial Doppler (TED),* which is already
in clinical use, the US used in the present study differs in fre-
quency, strength and other factors. However, it should be possible
to cause cavitation in the tissues of bones in the extremities with
further research on US conditions. In the treatment of malignant
tumor in the soft part of bone, externally infiltrating tumors are a
serious problem. Since the tumors are soft part tumors, which are
resistant to chemotherapy, our system seems to be a very effective
option in the current treatment option of such tumor.

The 5-year survival rate of osteosarcoma has been stagnant in
the past 10 years or more. A breakthrough is thus needed to dras-
tically improve the results of treatment. The efficacy of antican-
cer drugs still holds the key to survival in current medical care.
In this regard, the problems of lack of drug response and drug
resistance need to be solved. Since powerful regimens prepared
with combinations of existing anticancer drugs are still unable
to markedly improve the results of treatment, it is necessary to
develop a molecular targeting treatment whose mechanism is
completely different from that of conventional anticancer drugs,
and to create a method to increase the potency of existing anti-
cancer drugs and at the same time reduce side effects by targeting
of cancer cells as we have reported here. It is important that mate-
rials used in this method have been used safely in clinical treat-
ment. The balance of risk and benefit is always the key issue when
applying any treatment. BL and US are safe for the body, and it is
possible with our method to perform location-specific treatment
using a simple device. Although BL and US were used for treat-
ment of osteorsarcoma in the present study, they are potentially
applicable to treatment of some other malignant tumors as well.
Accordingly, the method we have devised can be expected to be
clinically useful.

Materials and Methods

Cell lines. The murine osteosarcoma cell line LM8 was obtained
from RIKEN BioResource Center (Ibaraki, Japan). LMS,
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established from Dunn osteosarcoma, has high metastatic poten-
tial in the lung.** LM8 cells were cultured in the same fashion as
reported previously in reference 41.

Preparation of liposomes and bubble liposomes. BL were
prepared by the reverse-phase evaporation method in the same
fashion as reported previously in reference 19. We prepared BL
from liposomes by a new method to solve MB problem of diffi-
culty in functional ligand attachment to the surface for targeting
and succeeded in sealing perfluoropropane gas, which serves as a
nucleus to cause cavitation in BL and employed this new type of
BL in this study.

Regents. Doxorubicin (Doxorubicin hydrochloride) was pur-
chased Sigma (St. Louis, MO).

Animal. C3H female mice (age, 4 weeks; weight, 16-20 g)
were purchased from CLEA Co., Inc., (Tokyo, Japan). All mice
were housed under specific pathogen-free conditions with a 12 h
light/dark cycle. The housing care rules and experimental pro-
tocol were approved by the Guide for Animal Experimentation,
Faculty of Medicine, Kagoshima University.

In vitro assay. Cyrotoxicity of BL and US to LMS cells. LM8
cells were collected with trypsin (Sigma-Aldrich) and washed
twice with PBS. LM8 cells (14 x 10* cells), DOX (0.03 pg/p.l)
and BL (0.5%) mixed with 1,400 pl of culture medium in 2 ml
polypropylene tubes (SUMITOMO BAKELITE, Tokyo, Japan)
were exposed to US. A 6-mm diameter Sonopore KTAC-4000
probe (NEPA GENE CO., LTD., Chiba, Japan) was used for
ultrasonic irradiation. The probe was inserted directly into the
tubes and secured 3 mm above the bottom. US irradiation was
performed at 1 MHz frequency using the following conditions:
0.5 w/em? power density, 50% duty cycle, 10 sec duration. Cell
suspensions (100 wl) were subsequently seeded onto flat-bot-
tomed 96-well plates at a concentration of 1 x 10* cells/well and
incubated for 24 h, 48 h and 72 h (Fig. 5). Cell viability was
assayed using MTT [3-(4,5 sec-dimethylthiazol-2-yl)-2,5-diphe-
nyl tetrazolium bromide] as described by Mosmann with minor
modifications.*

In vivo assay. Animal model. Before starting all experiments,
osteosarcoma-bearing mice were divided into eight groups and
subjected to different modalities of administration. Before
implantation of tumor cells, mice were anesthetized with diethyl
ether (Nacalai Tesque, Kyoto, Japan) and shaved unilaterally on
the back. Cell suspensions (200 1) in PBS were injected subcu-
taneously in the back of mice with a 27-gauge needle, with 1 x
10° LMS8 cells delivered. The inoculated mice were monitored
every other day and experiments were initiated approximately
7-10 days after inoculation when tumors reached 5-7 mm in
size. This day was considered day 0 and C3H mice were anes-
thetized with a combination of ketamine HCI (Ketalal, 50 mg/
kg, i.p.) and medetomidine HCl (Domitor, 0.3 mg/kg, ip.).
Mice were then divided into eight groups and subjected to dif-
ferent modalities of administration as follows: Group 1, control
(no treatment); Group 2, DOX (1 mg/kg); Group 3, DOX (1
mg/kg) + BL + US; Group 4, DOX (5 mg/kg); Group 5, DOX
(1 mg/kg) + US; Group 6, BL; Group 7, US; Group 8, BL +
US. DOX and BL preparations were administered i.v. via the tail
vein and the total volume of DOX and BL was fixed at 10 ml/kg
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body weight. Immediately after injection, in the sonically treated
groups (Group 3, 5, 7 and 8), a 6-mm US probe was placed
directly on the tumor surface and US was generated (power, 2
W/ecm?; frequency, 2 MHz; duty cycle, 50%; burst rate, 2 Hz;
duration, 60 sec). This treatment was repeated three times, on
days 0, 2 and 4. After treatment, mice were monitored every day.
These animal models were used to examine tumor growth delay,
for assay of pulmonary metastasis, evaluation of side effects and
determination of survival rates.

Tumor growth delay. Mice of groups 1-8 were used in this
study. Tumor growth was monitored every 2 days by measuring
tumor volume with a digital caliper (repeated three times). It was
estimated by measuring longitudinal cross-section diameter (L)
and diameter in a transverse section (W) and using the following
formula:® TV = L x W?/2.

The mice were humanely euthanized on day 21. Tumor tissues
were collected for histopathologic examination. Tumor growth
was normalized by dividing tumor volume on day X by the tumor
volume measured on day 0. These mice were used for examina-
tion of antitumor effects (primary tumor growth).

Evaluation of side effect. In clinical use of DOX, almost all
patients suffer myelosuppression or liver dysfunction. We there-
fore collected blood to evaluate side effects. Group 1-4 mice were
used in this study. On day 9, for measurements of red blood cells
(RBC), white blood cells (WBC), hemoglobin (Hb), platelets
(Plt), glutamic-oxaloacetic transaminase (GOT) and glutamic-
pyruvic transaminase (GPT), mice were anesthetized and 800 .l
samples of blood were obtained from the inferior vena cava. At
the time of blood collection, the liver was collected to confirm
nonexistence of liver metastasis.

Assay for intratumoral DOX content. For further investiga-
tion, we estimated intratumoral DOX content. Mice with LM8
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