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doi: 10.1371/journal.pone.0069466.9003

treatment (Figure 6C). These findings suggest that ATO
promotes the accumulation of DNA damage by inhibiting
Hedgehog signaling.

ATO prevents osteosarcoma growth in vivo

143B osteosarcoma cells were intradermally inoculated into
nude mice, and palpable tumors were formed within 7 days.
Then, ATO or an equivalent volume of vehicle was injected
intraperitoneally. The injections were administered every day.
Compared with vehicle treatment, treatment with ATO
significantly prevented tumor growth (Figure. 7). Kaplan-Meier
analysis showed that ATO treatment provided a significant
survival benefit (Figure 7A). TUNEL staining showed that ATO
treatment induced apoptotic cell death. The number of
apoptotic cells was significantly increased in ATO-treated
tumors (Figure 7B).

Discussion

We and other researchers have previously reported that
inhibition of the Hedgehog pathway prevented the growth of

PLOS ONE | www.plosone.org

osteosarcoma cells [9,10,29]. In particular, we showed that
knockdown of GLI2 prevented osteosarcoma cell growth in
vitro and in vivo [9]. ATO prevents Ewing sarcoma,
medulloblastoma, and basal cell carcinoma growth by inhibition
of GLI transcription [23-25]. To apply our previous findings in
clinical settings, we examined the effects of ATO in human
osteosarcoma. We showed that ATO prevents the transcription
of GLI target genes and promotes apoptotic cell death in
osteosarcoma cells as a result of accumulation of DNA
damage. In addition, ATO re-induces the accumulation of DNA
damage attenuated by recombinant Sonic Hedgehog
treatment. These findings suggest that ATO inhibits the
activation of Hedgehog signaling and promotes apoptotic cell
death in osteosarcoma cells as a result of accumulation of DNA
damage. In addition, our findings showed that ATO decreased
the expression of Bcl-2 and Bcl-xL. GLI1 and GLI2 upregulate
the transcription of Bcl-2 and Bcl-xL [30-33]. Inhibition of the
Hedgehog pathway by ATO treatment may downregulate Bcl-2
and Bcl-xL to promote apoptotic cell death in osteosarcoma
cells. Singh et al. reported that ABCG2, a drug transporter
protein, is a direct transcriptional target of Hedgehog signaling
[33]. These findings suggest that activation of Hedgehog
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signaling promoted the export of CDDP by the ABCG2
transporter and reduced the accumulation of DNA damage in
osteosarcoma cells. Inhibition of the Hedgehog pathway by
ATO treatment may be useful as an adjunct treatment to
conventional chemotherapy for osteosarcoma. In addition,

PLOS ONE | www.plosone.org

several molecular mechanisms have been reported for
inhibition of the Hedgehog pathway by ATO. Kim et al. reported
that ATO prevented growth of medulloblastoma by reducing
stability of GLI2 protein and ciliary accumulation of GLI2 [25].
Elspeth et al. reported that ATO prevents growth of cancer cell
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lines and Ewing sarcoma by inhibiting GLI transcription through
direct binding to GLI [23]. Although there were some
discrepancies related to the mechanism of Hedgehog pathway
inhibition by ATO, these studies independently suggest that
ATO inhibits malignant tumor growth by inhibition of the
Hedgehog pathway at the level of GLI transcription factors.
These mechanisms may prevent osteosarcoma growth after
ATO treatment. Because aberrant activation of the Hedgehog
pathway has been implicated in several malignant tumors, the
pharmaceutical industry has invested in the development of
Hedgehog pathway inhibitors. SMO inhibitors have been
evaluated in recent clinical trials [34,35]. However, treatment
with SMO inhibitors showed a lack of efficacy in a portion of
patients. Investigation of the underlying mechanism revealed
that the patient tumors showed a mutation in SMO that
prevented binding of the SMO inhibitors to SMO [15]. Several
genes with potential mutations within SMO and downstream of
SMO have been found [16-21,36]. In addition, non-Hedgehog
pathway-mediated activation of GLI transcription has been

PLOS ONE | www.plosone.org

reported [37—41]. In this regard, direct GLI inhibition by ATO is
likely to be useful for treating tumors with mutations within or
downstream of SMO. For example, inhibition of GLI, but not
SMO, inhibited tumor growth in myeloid leukemia, colon
carcinoma, hepatocellular carcinoma, and osteosarcoma
[9,42—44]. Originally, arsenic was used in the 17" century to
treat leukemia. ATO has been approved for the treatment of
intractable acute promyelocytic leukemia in Japan. Our findings
suggest that ATO is one of the most suitable molecular target
reagents for inhibiting the Hedgehog pathway in human
osteosarcoma. We have now obtained approval from the ethics
committee for clinical research, Kagoshima University, to use
ATO for treating patients with intractable osteosarcoma.

We examined whether the inhibitory effect of ATO on
osteosarcoma growth is mediated, at least in part, by JNK or
NF-kB [45-47]. As previously reported, treatment with ATO
increased JNK phosphorylation. However, treatment with a
JNK inhibitor did not prevent osteosarcoma growth. In contrast,
treatment with ATO did not affect NF-kB activation. These
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findings indicate that JNK or NF-kB activation does not affect
the cytotoxicity of ATO in human osteosarcoma.

For in vivo examinations, we administered ATO
intraperitoneally at 10 mg/kg body weight, as previously
reported [25]. Kim et al. examined the ATO levels in mouse
sera collected after ATO administration by injection at 10 mg/kg
body weight. The peak concentration following intraperitoneal
injection at 10 mg/kg was 2.6-fold higher than the peak plasma
levels in human patients following intravenous ATO injection at
a dose of 0.15 mg/kg body weight [48]. Area under the curve
calculations revealed that the total exposure to ATO in mice at
the 10 mg/kg dose was 2-fold higher than that in patients. To
decrease the ATO concentration, combinations of drugs that

PLOS ONE | www.plosone.org

10

inhibit other Hedgehog signaling components, including SMO
inhibitors, were used to achieve greater pathway inhibition at
lower ATO concentrations [25]. In addition, Kim et al. reported
that combined use of ATO and itraconazole, a commonly used
antifungal that inhibits SMO by a mechanism distinct from that
of cyclopamine and other known SMO antagonists, decreases
the dose of ATO and itraconazol required to prevent
medulloblastoma and basal cell carcinoma growth associated
with acquired resistance to SMO antagonists [24].

In summary, our findings showed that ATO inhibits the
Hedgehog pathway and human osteosarcoma cell growth in
vitro and in vivo. The combined administration of conventional
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anticancer agents or other Hedgehog pathway inhibitors with
ATO may be valuable for treating osteosarcoma patients.

Supporting Information

Figure S1.

Western blot analysis showed that ATO

treatment decreased the expression of phosphorylated
JNK. Western blot analysis showed that ATO treatment did
not affect the expression levels of NFKB and phosphorylated
NFkB proteins. WST assay showed that JNK inhibitor did not
affect the proliferation of osteosarcoma cells.
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Background: The mechanisms by which Hivep3 regulates the osteochondrogenesis remain elusive.
Results: Knockdown of Hivep3 down-regulated Alg2 expression. Alg2 suppressed osteoblast differentiation by inhibiting the
activity of Runx2. Alg2 silencing suppressed the expression of Creb3[2 and chondrogenesis.

Conclusion: Alg2 may be a modulator of osteochondrogenesis.

Significance: This is the first report to describe the association of an Alg gene with osteochondrogenesis.

Human immunodeficiency virus type 1 enhancer-binding pro-
tein 3 (Hivep3) suppresses osteoblast differentiation by inducing
proteasomal degradation of the osteogenesis master regulator
Runx2. In this study, we tested the possibility of cooperation of
Hivepl, Hivep2, and Hivep3 in osteoblast and/or chondrocyte dif-
ferentiation. Microarray analyses with ST-2 bone stroma cells
demonstrated that expression of any known osteochondrogenesis-
related genes was not commonly affected by the three Hivep
siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation
in ST-2 cells, whereas all three siRNAs cooperatively suppressed
differentiation in ATDC5 chondrocytes. We further used microar-
ray analysis to identify genes commonly down-regulated in both
MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3
and identified asparagine-linked glycosylation 2 (Alg2), which
encodes a mannosyltransferase residing on the endoplasmic retic-
ulum. The Hivep3 siRNA-mediated promotion of osteoblast differ-
entiation was negated by forced Alg2 expression. Alg2 suppressed
osteoblast differentiation and bone formation in cultured calvarial
bone. Alg2 was immunoprecipitated with Runx2, whereas the
combined transfection of Runx2 and Alg2 interfered with Runx2
nuclear localization, which resulted in suppression of Runx2 activ-
ity. Chondrocyte differentiation was promoted by Hivep3 overex-
pression, in concert with increased expression of Creb3[2, whose
gene product is the endoplasmic reticulum stress transducer cru-
cial for chondrogenesis. Alg2 silencing suppressed Creb3I2 expres-
sion and chondrogenesis of ATDC5 cells, whereas infection of
Alg2-expressing virus promoted chondrocyte maturation in cul-
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tured cartilage rudiments. Thus, Alg2, as a downstream mediator
of Hivep3, suppresses osteogenesis, whereas it promotes chondro-
genesis. To our knowledge, this study is the first to link a manno-
syltransferase gene to osteochondrogenesis.

In skeletal development and bone remodeling, osteoblasts
play major roles not only in bone formation but also in inducing
the differentiation of bone-resorbing osteoclasts (1, 2). Runx2 is
a critical transcription factor in osteoblast differentiation, as
evidenced by Runx2 knock-out mice, which exhibit a complete
lack of both intramembranous and endochondral ossification
due to the absence of osteoblasts (3). Cleidocranial dysplasia, a
human autosomal dominant inherited disorder of bone devel-
opment, is characterized by hypoplasia of clavicles and abnor-
malities in cranial and facial bones and is caused by mutations
in the Runx2 gene (4, 5). Some genes, e.g. LDL receptor-related
protein 5 (Lrp5), sclerostin (Sost), and human immunodefi-
ciency virus type 1 enhancer-binding protein 3 (Hivep3), have
been found to control osteoblast function in the adult human
and/or mouse during postnatal skeletal remodeling (6 -10).

Hivep3, also known as Schnurri-3, Zas3, and Krc, is a member of
three mammalian homologs of the Hivep/Schnurri family of large
zinc finger proteins. Hivep proteins have been studied for their
roles in the regulation of an assortment of genes, including those
encoding collagen type IIA, aA-crystallin, B-interferon, and HIV
genes (11). Hivep2 can indirectly interact with the peroxisome
proliferator-activated receptor y2 (Pparg2) promoter to promote
adipogenesis, through binding to Smad1, an intracellular mediator
of bone morphogenetic protein (BMP)? signaling. Hivep2 can also
dock to CCAAT /enhancer-binding protein « (C/ebpe) to interact

2 The abbreviations used are: BMP, bone morphogenetic protein; ER, endo-
plasmic reticulum; ALP, alkaline phosphatase; ECM, extracellular matrix;
CDG, congenital disorders of glycosylation; qRT, quantitative RT; ALG,
asparagine-linked glycosylation.
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Hivep3-dependent Alg2 Expression Inhibits Osteogenesis

with a CCAAT site on the distal part of the Pparg gene (12). Mice
lacking Hivep3 demonstrate adult-onset osteosclerosis with
increased bone volume due to enhanced osteoblast activity (10).
Hivep3 promotes proteasomal degradation of the Runx2 protein
through recruitment of the E3 ubiquitin ligase Wwp1 to Runx2
(10). A D-domain motif within Hivep3 mediates the interaction
with and inhibition of ERK mitogen-activated protein kinase
(MAPK), thereby inhibiting Wnt/Lrp5 signaling through regula-
tion of the activity of a downstream mediator glycogen synthase
kinase 3-f3 (Gsk3p). This interaction results in the suppression of
subsequent osteoblast differentiation (13). In addition, Hivep3
indirectly promotes osteoclastogenesis by promoting osteoblastic
expression of receptor activator of nuclear factor-«B ligand
(Rankl), a crucial factor for osteoclast differentiation (14). Hivep3
also cell-autonomously promotes osteoclastogenesis by inducing
the expression of Nfatc1, a master transcription factor in osteoclast
differentiation, by interacting with Traf6 to enhance its activity
while forming a complex with c-Jun to activate the Nfatcl pro-
moter (15). Thus, Hivep3 controls both bone formation and
resorption at multiple steps to maintain normal bone mass. How-
ever, whether Hivep3 controls gene expression in osteoblasts to
regulate osteoblast activity is unclear.

In contrast to Hivep3 knock-out mice, mice lacking Hivep2
exhibited decreased cortical bone volume and increased cancel-
lous bone mass (16), suggesting different roles for Hivep2 and
Hivep3 in the skeleton. Combined ablation of Hivep2 and Hivep3
in mice resulted in synergistically increased trabecular bone vol-
ume, demonstrating a redundancy between the two proteins in the
regulation of postnatal bone mass (17). Interestingly, in the double
knock-out mice, the growth plate cartilage of the long bones was
uncoupled with bone phenotype, with significantly delayed matu-
ration of chondrocytes resulting in chondrodysplasia (17), sug-
gesting a role for Hivep proteins in the promotion of chondrocyte
differentiation. However, the mechanism by which Hivep proteins
affect chondrogenesis remains unknown. In addition, to date, no
information has been reported on the possible role of Hivepl in
osteogenesis and/or chondrogenesis.

In this study, in vitro analysis showed that, among the three
Hivep proteins, only Hivep3 was inhibitory and that the others
promoted osteoblast differentiation. In contrast, all three Hivep
genes seemed to support chondrocyte differentiation in BMP-
2-induced ATDCS5 cells, suggesting their redundancy in chon-
drogenesis. We found that asparagine-linked glycosylation 2
(Alg2) is commonly down-regulated in BMP-2-induced osteo-
blast differentiation in both MC3T3-E1 and ST-2 cells. Alg2
inhibited Runx2 activity without altering its protein level,
resulting in suppression of osteoblast differentiation. Interest-
ingly, in chondrogenesis of ATDC5 cells, Hivep3 induced the
expression of CAMP-responsive element binding-protein 3-like
2 (Creb3l12), an endoplasmic reticulum (ER) stress transducer
crucial for chondrogenesis (18), suggesting a possible role for
Hivep3 in physiological mild ER stress. Alg2 was also decreased
by Hivep3 knockdown in ATDC5 chondrocytes, whereas
silencing of Alg2 suppressed the expression of Creb3I2 and
chondrogenesis. To our knowledge, this study is the first to
show a linkage between an asparagine-linked glycosylation
mannosyltransferase gene and osteochondrogenesis.
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EXPERIMENTAL PROCEDURES

Cell Culture and Differentiation—The mouse calvarial bone-
derived osteoblast cell line, MC3T3-E1 (clone 4), and the
mouse chondrogenic fibroblast cell line, C3H10T1/2, were
obtained from the ATCC. The mouse bone marrow stromal cell
line ST-2 and the mouse chondrogenic cell line ATDC5 were
obtained from the RIKEN BioResource Center. MC3T3-E1
cells were cultured in minimum essential medium « (Invitro-
gen) containing 10% fetal bovine serum (FBS). ST-2 cells were
cultured in RPMI 1640 medium (Sigma) containing 10% FBS.
ATDC5 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM)/Ham’s F-12 (1:1) (Invitrogen) containing 5%
FBS. C3H10T1/2 cells were cultured in basal medium Eagle’s
(Sigma) with 2 mm L-glutamine and 10% FBS. COS-7 cells were
purchased from RIKEN BioResource Center and maintained in
DMEM supplemented with 10% FBS. All cell culture medium
contained 100 units/ml penicillin G and 100 ug/ml streptomy-
cin. Cell differentiation was induced by the addition of recom-
binant human BMP-2 (PeproTech) at a concentration of 300
ng/ml. Micromass culture of ATDC5 cells was performed as
described previously (19) to accelerate the maturation of chon-
drocyte differentiation.

Alkaline Phosphatase (ALP) and Alcian Blue Staining—The
activity of ALP secreted into the extracellular matrix (ECM) of
cultured cells was visualized with an ALP staining kit (85L-
3R, Sigma). Cartilaginous glycosaminoglycans produced in
the ECM by cultured cells were stained with Alcian blue 8GX
(Sigma).

RNA Interference—Dharmacon siRNA ON-TARGETplus
SMARTpool, a mixture of four independent siRNAs against
mouse Hivepl, Hivep2, Hivep3, and Alg2, and the control rea-
gent were purchased from Thermo Scientific. siRNAs were
transfected into cells using Lipofectamine RNAiMax
(Invitrogen).

Real Time Quantitative PCR—Cells were lysed with TRIzol
reagent (Invitrogen) to purify RNA, and 1 ug of total RNA was
subjected to reverse transcription with the Verso ¢cDNA kit
(Thermo Scientific). The relative amounts of the gene tran-
scripts were determined by real time quantitative PCR using
SYBR premix Ex TaqlI (Takara) and the Thermal Cycler Dice
TP850 system (Takara). PCRs were performed in duplicate per
sample, and the measured expression level of each gene was
normalized to that of Hprtl. The sequence information for the
primers used is listed in supplemental Table 1. All primer sets
are for mouse genes, except for the m/hHivep3 primer set,
which can be used to amplify both the mouse and human
Hivep3 genes. For evaluation of the tissue distribution of the
Hivep genes and Alg2 in vivo, tissues were harvested from
3-month-old mice, and mRNA was purified with TRIzol rea-
gent before subjecting samples to qRT-PCR.

Microarray Analysis—Cells transfected with siRNA over-
night were further incubated with BMP-2 for 2 days before
being lysed with TRIzol reagent for mRNA purification. nRNA
samples were cleaned up using the RNeasy MinElute Cleanup
kit (Qiagen) and analyzed on a Mouse Gene 2.0 ST Array
(Affymetrix) by BioMatrix Research.
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