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Probes for the ERC2 gene were designed for the Infinium
array, and DNA hypermethylation around the 5'-region of
the ERC2 gene was detected in only 6% of RCCs, indicating
that reduced expression of the ERC2 gene may not be attrib-
utable to DNA methylation alterations during renal carcino-
genesis. Since the probes for the ABCAI3 gene were not
designed for the Infinium array, we examined DNA methyla-
tion levels in the 5'-region of the ABCAI13 gene by pyrose-
quencing. No significant differences in the DNA methylation
levels of the ABCAI3 gene between T samples (0.528 =
0.060, #n = 67) and N samples (0.510 = 0.149, n = 67) were
observed (Supporting Information Fig. S2a). Our data for
RCCs were consistent with the data in the public database
Gene Expression Omnibus (http://www.ncbinlm.nih.gov/geo/):
no significant differences in DNA methylation levels of the
ABCA13 gene were evident between bile duct cancer and nor-
mal bile duct tissue (Accession number: GSE49656) and
between breast cancer and normal breast tissue (GSE37754),
indicating that reduced expression of the ABCAI3 gene may
not be attributable to DNA methylation alterations during
renal carcinogenesis.

Alterations of expression associated with DNA
hypermethylation or hypomethylation

All genes showing DNA methylation alterations [0.2 or more
AB (Br — Bn) or —0.2 or less A (fr — fn)] or mRNA
expression alterations [4 or more AE (Er — Ey) or —4 or less
AE (Er — Ey)] in each RCC are summarized in Supporting
Information Table S6 along with genes showing genetic aberra-
tion scores of 1 or more. The DNA methylation status of the 5'-
region can regulate the mRNA expression level of each gene.
DNA methylation status is stably preserved on DNA double
strands by covalent bonds and inherited through cell division by
maintenance-methylation mechanisms by DNMTI. Therefore,
altered mRNA expression due to DNA methylation alterations
may be more stably fixed during multistage human carcinogene-
sis in comparison to mRNA expression alterations without
DNA methylation alterations. Therefore, we have calculated
upregulation and downregulation scores based on both DNA
methylation status and expression levels described in the Mate-
rial and Methods section: 86 genes showed reduced expression
[—4 or less AE (Er — Ey)] associated with DNA hypermethyl-
ation [0.2 or more Af (ft — fn)] in 5 or more patients (down-
regulation scores of 5 or more; Table 2) and 28 genes showed
overexpression [4 or more AE (Er — Ey)] associated with DNA
hypomethylation [—0.2 or less Af (fr — fn)] in 5 or more
patients (upregulation scores of 5 or more; Table 2).

Expression alterations of genes included in Table 2 were
validated using the clear cell RCC database in the Gene
Expression Omnibus (http://www.ncbinlm.nih.gov/geo/; Sup-
porting Information Table S7): reduced or increased mRNA
expression of 97 (89%) of thel09 genes, which are included
in Table 2 and for which probes were designed in the expres-
sion microarrays described in the database, were found, indi-
cating the reliability of our expression analysis. Since genome-

wide DNA methylation data for RCCs obtained using array-
based analysis with appropriate resolution were not available
in the public database, Infinium assay data for other human
malignant tumors deposited in the Gene Expression Omnibus
database  (http://www.ncbi.nlm.nih.gov/geo/) were used
instead for validation (Supporting Information Table S8). In
addition, DNA methylation levels of the representative genes,
RAB25, GGT6, C3 and CHI3L2, included in Table 2 based on
the Infinjum assay were successfully verified using pyrose-
quencing (Supporting Information Figs. S2b-S2e), indicating
the reliability of our Infinium assay.

Pathway analysis

MetaCore pathway analysis by GeneGo was performed for 61
genes assigned genetic aberration scores of 3 or more, 86
genes assigned downregulation scores of 5 or more (frequent
reduction of expression associated with DNA hypermethyl-
ation) and 28 genes assigned upregulation scores of 5 or
more (frequent overexpression associated with DNA hypome-
thylation; total 174 genes). Twenty potentially significant
GeneGo pathways (p < 0.05) and the affected genes are listed
in Table 3. Mutations of 5 (100%) of the 5 genes included in
Table 3 were found in the clear cell RCC database of The
Cancer Genome Atlas (Supporting Information Table S5).
Reduced or increased mRNA expression of 11 (92%) of the
12 genes, which are included in Table 3 and for which probes
had been designed in expression microarrays described in the
clear cell RCC database of the Gene Expression Omnibus,
were found (Supporting Information Table S7), supporting
the participation of these genes in renal carcinogenesis.

Genes for which correlation with Wnt/B-catenin signaling
was indicated by MetaCore pathway analysis, together with
their genetic aberration, DNA methylation alterations and
mRNA expression alterations, are illustrated schematically in
Figure 1. Mutations, mRNA expression alterations or DNA
methylation alterations of 32 (89%) of the 36 genes included
in Figure 1 were found in Supporting Information Tables S5,
S7 or S8, supporting the participation of the Wnt/B-catenin
signaling pathway in renal carcinogenesis. In addition, Meta-
Core pathway analysis was separately performed for RCCs
with and without genetic aberrations and/or DNA hyper-
methylation [Af (Bt — fn) >0.2] of the VHL gene (Support-
ing Information Table S9 and Fig. S3).

Discussion

High frequencies of genetic aberrations of the VHL (53%),
PBRM1I (33%), KDMS5C (12%) and SETD2 (9%) genes, which
have been highlighted in previous resequencing® and exome
analyses,™® supported the reliability of our approach. In addi-
tion to PBRMI, somatic mutation of another member of the
SWI/SNF complex, SMARCA4, was detected. In addition to
SETD2 and KDM5C, somatic mutation of another histone
modification protein, JARID2, was also detected. The signifi-
cance of aberrations of chromatin remodeling and histone
modification-related proteins in RCCs was confirmed.
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Table 2. Genes showing downregulation or upregulation Table 2. Genes showing downregulation or upregulation
scores of 5 or more in clear cell RCCs scores of 5 or more in clear cell RCCs (Continued)
Chromo- Entrez Downregulation Chromo- Entrez Downregulation

Gene some GenelD score’ Gene some GenelD score’
(a) Genes showing reduced mRNA expression associated with CHRM1 11 1,128 8
DNA hypemethylation in their 5'-regions COL4A6 X 1,288 8
CLCNKB 1 1,188 24 XPNPEP2 X Z5 12 8
SCNN1A 12 6,337 24 PROM?2 2 150,696 7
RAB25 1 57,111 22 ACPP 3 55 7
TMEM213 7 155,006 22 CKMT2 5 1,160 7
ATP6VOA4 7 50,617 22 NEFM 8 4,761 7
NROB2 1 8,431 21 KCNA4 11 3,739 7
KCNJ1 11 3,758 21 FLRT1 11 23,769 7
GGT6 17 124,975 21 OLFM4 13 10,562 7
CLDN8 21 9,073 20 SERPINA4 14 5,267 7
CLDN19 1 149,461 19 STRA6 15 64,220 7.
mucis 11 143,662 16 CRABP1 15 1,381 7
RANBP3L 5 202,151 15 SLC7A10 19 56,301 7
HRG 3} 3,273 14 csDc2 22 27,254 7
TSPAN8 12 7:103 14 VWA5B1 1 127,731 6
RGS7 1 6,000 11 LAD1 1 3,898 6
é PTHIR 3 5,745 11 SYN2 3 6,854 6
g CWH43 4 80,157 11 SLC22A13 3 9,390 6
8 F11 4 2,160 11 ABHD14A 3 25,864 6
§ IRX2 5 1531672411 UPK1B 3 7,348 6
g EHF 11 26,298 11 KcTns 4 386,617 6
(@] CBLC 19 23,624 11 SFRP1 8 6,422 6
ATP6V1B1 2 525 10 GATA3 10 2,625 6
LRRC2 3 79,442 10 DAO 12 1,610 6
CLDN16 3 10,686 10 TMPRSS3 21 64,699 6
EGF 4 1,950 10 CHD5 1 26,038 5
wisp3 6 8,838 10 PRELP 1 3,349 3
PHYHD1 9 254,295 10 PLD5 1 200,150 5
FLJ45983 10 399,717 10 WAL 5 4118 5
WIT-AS 11 51,352 190 ENTPD3 3 956 5
ACSF2 17 80,221 10 TNNC1 3 7.134 5
ALDOB 9 229 9 ANK2 4 287 5
ANKRD2 10 26,287 9 PART1 5 25,859 5
wr1 11 7,490 9 SVoPL 7 136,306 5
SOST 17 50,964 9 DMRT2 9 10,655 5
CYP4F3 19 4,051 9 AMBP 9 259 5
COL18A1-AS1 21 378,832 9 RBP4 10 5,950 5
BSND. 1 7,809 8 SLC22A12 11 116,085 5
TACSTD2 1 4,070 8 PDZRN4 12 29,951 5
SLC44A4 6 80,736 8 PROZ 13 8,858 5
KHDRBS2 6 202,559 8 RHCG 15 51,458 5
vwcz 7 375,567 8 KLK6 19 5,653 5
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Table 2. Genes showing downregulation or upregulation
scores of 5 or more in clear cell RCCs (Continued)

Chromo- Entrez Downregulation
Gene some GenelD score’
BEX1 X 55,859 5
ZCCHC16 X 340,595 5
Gene Chromo- Entrez Up-regulation
some GenelD score’

(b) Genes showing increased mRNA expression associated with
DNA hypomethylation in their 5’-regions.

CA9 9 768 25
€3 19 718 23
CP 3 1,356 22
NNMT 11 4,837 21
FABP7 6 2,173 11
REG1A 2 5,967 10
UBD 6 10,537 8
ENPP3 6 5,169 8
MCHR1 22 2,847 7
FCGR3A 1 2,214 6
FGG 4 2,266 6
PMCHL1 5 5,369 6
CPA6 8 57,094 6
SAA2 11 6,289 6
SAA1 11 6,288 6
DNA/B13 11 374,407 6
VWFE 12 7,450 6
FGF11 17 2,256 6
SPAG4 20 6,676 6
CHI3L2 1 1,417 5
FCRL3 1 115,352 5
TIGIT 3 201,633 5
APOLD1 12 81,575 5
CcCL18 17 6,362 5
CARD14 17 79,092 5
LILRA2 19 11,027 5
CXorf36 79,742 5
SH2D1A X 4,068 5

1If the probe of the Infinium array was designed in the 5'-region of the
gene, if AR (Br — Bn) was 0.2 or more (DNA hypermethylation) and if
AE (Er — Ey) based on the expression microarray was —4 or less
(reduced expression) in one paired sample (T and N), then a gene
downregulation score of 1 was assigned.

2|f the probe of the Infinium array was designed in the 5'-region of the
gene, if AB (fr — pn) was —0.2 or less (DNA hypomethylation) and if
AE (Er — E\) based on the expression microarray was 4 or more (over-
expression) in one paired sample (T and N), then a gene upregulation
score of 1 was assigned.

Among genes showing frequent genetic aberrations
(genetic aberration score of 4 or more in Table 1), GCNILI
has recently been reported to be associated with the CDKS8

mediator complex, which includes CDKS8, cyclin C (also
known as CCNC), MED12 and MED13.*® CDKS directly reg-
ulates B-catenin-driven transcription® and human CDKS is
known to be an oncogene that is amplified in a subset of
colon cancers.”® In addition, our quantitative RT-PCR analy-
sis revealed a tendency for down regulation of B-catenin after
knockdown of CDK8 by siRNA in RCC cell lines A-498 and
ACHN (Supporting Information Fig. S4). These results are
consistent with those of previous studies showing that knock-
down of CDK8 in the human colon cancer cell line
HCT116* and the human gastric cancer cell line SNU-638
resulted in significant reduction of. B-catenin, indicating cor-
relations between CDK8 and the Wnt/B-catenin pathway.

The fly MEDI2 and MED 13 homologs, kohtalo and
skuld, respectively activate Wnt/B-catenin target genes
through direct interaction with the Wnt pathway component
Pygopus.”® However, let-19 and doy-22, homologs of human
MEDI2 and MEDI3, respectively, in Caenorhabditis elegans,
suppress the transcription of Wnt/B-catenin target genes.>
Frequent mutation of human MEDI2 has been reported in
human uterine leiomyomas.” Deletion of the CCNC gene is
frequently detected in human lymphoid malignancies® and
sarcomas.”> Wnt/B-catenin signaling is constitutively active
in RCCs and activates their cell growth and metastasis.>
However, unlike other human carcinomas, the incidence of
mutation of exon 3 of the B-catenin gene is not so high in
RCCs.** Analogously with other members of the CDK8 medi-
ator complex, mutations of GCNILI may participate in renal
carcinogenesis via Wnt/B-catenin signaling.

All 5 amino acid substitutions of the GCNILI occurred
within or near to Huntingtin protein, eEF3, protein phospha-
tase 2A and TOR (HEAT) repeats, which are crucial for
protein-protein interaction®® (Supporting Information Fig. S5).
In addition, SIFT and PolyPhen-2 software predicted that
amino acid substitutions due to mutations of the GCNILI
gene result in dysfunction of GCNILI1 protein (Table 1). The
present study demonstrated not only a genetic aberration score
of 5 for GCNILI, but also a genetic aberration score of 3 for
MEDI2 and CCNC (Table 1). SIFT and PolyPhen-2 analyses
have predicted that amino acid substitutions due to mutations
of the MEDI2 and CCNC genes also result in dysfunction of
the proteins (Table 1). Taken together, the present data indi-
cate that the function of the CDK8 mediator complex may
have been disturbed in 16% of the examined 67 RCCs. Genetic
aberrations in members of the CDK8 mediator complex may
thus participate in the Wnt/B-catenin-related carcinogenetic
pathway in clear cell RCCs.

MACEF 1, a member of the plakin family of cytoskeletal linker
proteins, regulates dynamic interactions between actin and
microtubules to sustain directional cell movement.*® MACFI is
known to function in the Wnt signaling pathway through asso-
ciation with a complex containing axin, B-catenin, GSK3f and
APC during mouse embryogenesis.*® Somatic mutation of
MACFI (Table 1) may also participate in the Wnt/B-catenin-
related carcinogenetic pathway in clear cell RCCs. With respect
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Table 3. Statistically significant GeneGo pathway maps revealed by MetaCore pathway analysis

Involved genes

Multilayer-omics scoring

Pathway P-value Genes Entrez Gene ID (exome, methylome and transcriptome)
Cell adhesion_tight junctions 9.98 X 107 CLDN8 9073 Downregulation score 20
CLDN16 10686 Downregulation score 10
CLDN19 149461 Downregulation score 19
Blood coagulation 1.26 X 102 VWF 7450 Upregulation score 6
F11 2160 Downregulation score 11
FGG 2266 Upregulation score 6
Translation_non-genomic (rapid) 1.36 X 1073 MTOR 2475 Genetic score 4
action of androgen receptor
PTEN 5728 Genetic score 3
EGF 1950 Downregulation score 10
Signal transduction PTEN 2.04 X 102 MTOR 2475 Genetic score 4
pathway
PTEN 5728 Genetic score 3
EGF 1950 Downregulation score 10
Development_EGFR signaling via 7.04 X 1073 PTEN 5728 Genetic score 3
PIP3
EGF 1950 Downregulation score 10
& Protein folding and maturation_- 1.34 X 1072 KLK6 5653 Downregulation score 5
ard Bradykinin/ Kallidin maturation
[}
5 XPNPEP2 7512 Downregulation score 8
O Transcription_receptor-mediated 1.95 X 1072 MTOR 2475 Genetic score 4
5 HIF regulation
5}
g PTEN 5728 Genetic score 3
©) Serotonin modulation of dopa- 2.24 X 1072 PTEN 5728 Genetic score 3
mine release in nicotine
addiction
CHRM1 1128 Downregulation score 8
Signal transduction_AKT 2.34 X 1072 MTOR 2475 Genetic score 4
signaling
PTEN 5728 Genetic score 3
cAMP/ Ca(2-+)-dependent Insulin 2.34 X 1072 PLCE1 51196 Genetic score 3
secretion
RYR2 6262 Genetic score 3
Immune response_interleukin-4 2.45 X 1072 MTOR 2475 Genetic score 4
signaling pathway
GATA3 2625 Downregulation score 6
Role of alpha-6/beta-4 integrins 2.55 X 1072 MTOR 2475 Genetic score 4
in carcinoma progression
EGF 1950 ! Downregulation score 10
G-protein signaling_regulation of 2.55 X 1072 PLCE1 51196 Genetic score 3
cAMP levels by muscarinic ace-
tylcholine receptor
CHRM1 1128 Downregulation score 8
Development_PIP3 signaling in 2.77 X 1072 MTOR 2475 Genetic score 4
cardiac myocytes
PTEN 5728 Genetic score 3
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Table 3. Statistically significant GeneGo pathway maps revealed by MetaCore pathway analysis (Continued)

Involved genes

Multilayer-omics scoring

Pathway P-value Genes Entrez Gene ID (exome, methylome and transcriptome)
Some pathways of EMT in cancer 3,22 X 1072 MTOR 2475 Genetic score 4
cells
EGF 1950 Downregulation score 10
Development_beta-adrenergic 3.34 X 1072 RYR2 6262 Genetic score 3
receptors signaling via cAMP
TNNC1 7134 Downregulation score 5
Development_IGF-1 receptor 3.34 X 102 MTOR 2475 Genetic score 4
signaling
PTEN 5728 Genetic score 3
Translation _regulation of EIF4F 3.45 X 1072 MTOR 2475 Genetic score 4 ;
activity
EGF 1950 Downregulation score 10
G-protein signaling. RAP2B regu- 3.81 X 1072 PLCE1 51196 Genetic score 3
lation pathway
DNA damage_DNA-damage- 4.87 X 1072 ATM 472 Genetic score 3
induced responses
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Figure 1. Genes for which a correlation with Wnt/B-catenin signaling was indicated by MetaCore pathway analysis. The numbers of genetic
aberrations, DNA hyper- or hypo-methylation and/or increased or reduced mRNA expression (shown in Supporting Information Table S6)
detected among the 67 examined RCCs are indicated schematically: legends are shown at the left of the panel. The 36 marked genes that
showed genetic aberration, DNA methylation alterations and/or mRNA expression alterations in one or more RCCs were correlated with
Wnt/B-catenin signaling.

to 29 RCCs for which transcriptome analysis was performed, the 8 RCCs with mutations of any of the GCNILI, MEDI2,
mRNA expression levels of the targets genes of the Wnt/B-cate- CCNC and MACF]I genes than in 21 RCCs without them (Sup-
nin signaling, such as MYC?” MYCN,” IGF2** POUS5F1,” porting Information Table $10), indicating that such mutations
S0X9,*° CYR61,*" ENPP2*? and MITF,” tended to be higher in  may result in activation of Wnt/B-catenin signaling.
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The downregulation score for the SFRPI gene was 6:
reduced expression associated with DNA hypermethylation of
SFRPI was frequent in clear cell RCCs. Members of the
secreted frizzled-related protein (SFRP) family contain an
N-terminal domain homologous to the cysteine-rich domain
of the Wnt receptor Frizzled and lack a transmembrane
region and the cytoplasmic domain required for transduction
of signals into the cells.** This enables SFRPs to downregu-
late Wnt/B-catenin signaling by competing with Frizzled for
Wat binding via their cysteine-rich domain. Silencing of
SFRPI due to DNA hypermethylation is known to result in
activation of Wnt/B-catenin signaling.**

Since this study indicated possible alternative activation
mechanisms (mutations of the GCNIL1, MEDI12, CCNC and
MACFI genes and reduced expression of SFRPI due to DNA
hypermethylation), we extensively examined Wnt/B-catenin
signaling. MetaCore pathway analysis revealed that the 36
genes (marked in Fig. 1 and included in Supporting Informa-
tion Table $6), which showed genetic aberration, DNA
hypermethylation or hypomethylation and/or increased or
reduced mRNA expression in one or more RCCs, are
included in the Wnt/B-catenin signaling pathway. The pres-
ent multilayer-omics analysis revealed that the Wnt/B-catenin
signaling pathway may be of greater significance in renal car-
cinogenesis than was realized previously.

ERC2, which had a genetic aberration score of 4, is local-
ized in presynaptic active zones and plays a critical role in
neurotransmitter release.*® Interaction between ERC2 and the
tandem PDZ protein syntenin-1, which is known to associate
with many synaptic proteins, together with multimerization of
ERC2 both promote the localization of syntenin-1 at presynap-
tic ERC2 clusters and contribute to the molecular organization
of active zones.*® Although the significance of ERC2 in human
cancers has remained unclear, frequent intragenic breaks in
the ERC2 gene indicated disruption of ERC2 function in
RCCs. In addition to recurrent genetic aberration, the present
quantitative RT-PCR revealed frequent reduction of ERC2
expression in clear cell RCCs relative to the corresponding N
samples. Although frequent genetic and transcriptional inacti-
vation of ERC2 may be involved in renal carcinogenesis, fur-
ther functional analysis of ERC2 in RCCs is needed.

ABCAI3 is a member of ATP-binding cassette sub-family
A (ABCI) and a transmembrane transportmr.46 Xenobiotics,
including anticancer drugs, are extensively metabolized by acti-
vation enzymes such as cytochromes P450 and conjugation
enzymes such as glutathione S-transferases or glucuronide
transferases. Biotransformation represented by ABC transport-
ers represents another important component of xenobiotic
metabolism. In addition, ABC transporters play a crucial role
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