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adenocarcinomas [52] and also in 50% of BOP-induced pancreatic tumors in hamsters [53]. In addition,
DCC expression is reduced or lost in poorly differentiated or undifferentiated pancreatic cancer cell
lines, whereas it is conserved in the more differentiated ones [52,37]. '

P53 is the most frequently altered tumor suppressor gene in various cancers, its protein being a
transcription factor which regulates cell cycle and apoptosis. p53 is located at chromosome 17p and
frequently inactivated by LOH and mutations in 40 to 75% of pancreatic adenocarcinomas in
humans [34,45,54-56]. Overexpression of p53 protein can be detected in the nuclei of p53-mutated
cells [54,55]. On the other hand, there is no evidence of p53 mutations in primary tumors in
BOP-treated hamsters [57].

FHIT gene is a putative tumor suppressor gene located at chromosome 3p14, which is expressed in
normal pancreatic ductular cells and is altered in pancreatic cancers [58]. Exogenous expression of
FHIT in human pancreatic cancer cells causes cell cycle arrest and apoptosis [59] and loss of full
length transcripts is frequent in primary pancreatic cancers of humans (62%) [58] and BOP-treated
hamsters (73%) [60].

In addition to these gene alterations, increased protein expression, such as telomerase [61,62],
midkine [63,64], cyclooxygenase-2 (COX-2) [65], metalloproteinase (MMP)-2, MMP-9 and
membrane type 1-MMP [66,67] are shown in hamsters as in humans.

These findings indicate that multiple gene alterations and changes in protein expression observed
in human pancreatic cancers are similarly involved in the BOP-induced hamster pancreatic ductal
carcinogenesis model, underlining its utility for studying methods for pancreatic cancer prevention.

3. Modifying Factors in the Experimental Pancreatic Carcinogenesis Models

In addition to cigarette smoking, a well-known cause of pancreatic cancer, epidemiological
studies have shown that chronic pancreatitis, obesity and diabetes mellitus are risk factors [68].
Using experimental animal models including mainly the BOP-induced pancreatic carcinogenesis
model in hamsters, these and other possible promotive and suppressive factors in pancreatic

carcinogenesis have been studied.

3.1. Obesity and Diabetes

Dietary fat has modifying effects on pancreatic carcinogenesis. It has been shown that a high-corn
oil diet increased pancreatic ductal adenocarcinoma development in BOP-treated hamsters as
compared with a low-corn oil diet [69]. Furthermore, a diet containing beef tallow has been shown to
increase pancreatic cancer development compared with a diet containing corn oil [70]. Type and
composition of fat are considered to be important. Fish oil rich in n-3 polyunsaturated fatty acids has
been demonstrated to reduce pancreatic tumor incidences and hepatic metastasis in the BOP-treated
hamster model [71]. Enhancing effects of high fat diet and 'suppressive influence of n-3
polyunsaturated fatty acid-rich fish oil on development of precancerous lesions, PanINs, in K-ras
mutated GEM models have also been reported [72,73]. Obesity-mediated enhancement of PanIN
lesion development is associated with increased inflammation, and abrogation of TNFR1 signaling
blocks tumor promotion [72]. On the other hand, n-3 polyunsaturated fatty acids ameliorate
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inflammation through inactivation of the NF-kB signaling pathway and inhibit cell proliferation
through induction of cell cycle arrest and apoptosis [73,74].

Streptozotocin is known to induce diabetes through damage to islet cells and its modifying effects
on pancreatic carcinogenesis have been studied in the BOP-treated hamster model, though the results
are somewhat controversial. It has been reported that administration of streptozotocin alone caused
islet cell tumors (44%), pseudoductules (40%), and ductular adenomas (12%), while simultaneous
treatment with streptozotocin (single i.v. injection, 30 mg/kg body weight) and BOP (single s.c.
injection, 10 mg/kg body weight) resulted in a significantly higher incidence of ductular carcinomas
than induced by BOP alone [75]. On the other hand, pretreatment with streptozotocin at a diabetogenic
dose (50 mg/kg body weight, three-times i.p. injection) prevented pancreatic cancer development when
BOP was subsequently administered [76]. These inhibitory effects of pretreatment were dependent on
the severity of the diabetes and could be blocked with nicotinamide [77]. These findings indicate that
streptozotocin has a tumorigenic activity at relatively low dose, but when administered before BOP
treatment, streptozotocin-induced diabetes/loss of insulin production could prevent BOP-induced
pancreatic cancer development through killing islet cells. However, enhancing effects of diabetes and
insulin-resistance observed in obesity on growth of transplantable pancreatic cancer cells are
nevertheless convincing [78-80].

3.2. Pancreatitis

Cerulein is an analogue peptide of cholecystokinin, and its chronic intraperitorial injection causes
pancreatic hypertrophy, characterized by increased pancreatic weight, increased amylase content and
acinar cell hyperplasia. Moreover, cerulein augments the carcinogenicity of N-nitrobis(2-
hydroxypropyl)amine (BHP) in the hamster pancreas [81]. It is also reported that chronic pancreatitis
caused by cerulein -induces development of pancreatic ductal adenocarcinomas in GEM mice
expressing K-ras®?¥ in acinar/centroacinar cells [31]. On the other hand, pancreatitis caused by
common duct ligation before BOP injection decreased carcinoma development, while repeated
induction of pancreatitis by common duct ligation after BOP administration resulted in enhanced
development of carcinomas, with reference to both number and size [82]. ‘

Heavy alcohol drinking and cigarette smoking are major causes of pancreatitis in humans [83].
. Epidemiological studies have shown that smoking and chronic pancreatitis are risk factors, whereas
alcohol consumption itself has no direct relation [83,84]. However, in a transplacental induction model
of pancreatic ductal cancer featuring NNK and EtOH treatment in the Syrian golden hamster, EtOH
alone caused pancreatitis and hyperplasia, while NNK alone did not induce either [8], indicating a
strong enhancing effect of pancreatitis on pancreatic carcinogenesis. It has also been reported that
EtOH and nicotine promote pancreatic carcinogenesis in the DMBA-implanted mouse model [85,86].

In addition, repeated induction of pancreatitis with choline-deficient diet combined with
DL-ethionine and L-methionine after initiation with BOP has been demonstrated to cause rapid

production of pancreatic carcinomas in hamsters [87].
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3.3. Others

There is limited evidence suggesting that red meat is a cause of pancreatic cancer [88,89]. In
addition to total intake, the method of meat preparation is also important. Grilled red meat is a risk
factor [90]. Effects of mutagenic heterocyclic amines (HCA) formed during cooking of meat on
pancreatic carcinogenesis were studied in the BOP-treated hamster model. Among HCAs, 3-amino-
1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline
(4,8-DiMelQx) caused increase in pancreatic carcinoma development in BOP-treated hamsters [91].
Dietary intake of DiMelQx has also been shown to be associated with pancreatic cancer risk in
man [92].

High intake of fruits, vitamin C and vitamin E are suggested to protect against pancreatic
cancer [88,93,94] and both vitamins have been found to exert protective effects on BOP-induced
pancreatic cancer development in hamsters [95].

4. Cancer Prevention Targets for Humans and Evaluation in Experimental Pancreatic

Carcinogenesis Models

From the etiology of pancreatic cancer, possible methods for prevention are: (1) avoiding
carcinogenic N-nitrosoamine exposure such as cigarette smoke; (2) body weight control by diets and
physical activity; (3) use of anti-hyperlipidemic and/or anti-diabetic agents; (4) use of anti-
inflammatory agents.

Epidemiological studies have suggested that several agents having anti-hyperlipidemic, anti-
diabetic or anti-inflammatory activities may have chemopreventive potential against pancreatic
cancer [96]. Statins are cholesterol-lowering agents and also inhibit membrane-binding of the Ras
protein, and are reported to reduce pancreatic cancer cell invasion and metastasis [97]. A case-
control study of half a million veterans demonstrated a significant reduction of pancreatic cancer risk
in statin users (adjusted OR = 0.37) [98], while meta-analysis of 12 studies showed no evidence of
association between statin use and pancreatic cancer risk (RR = 0.88) [99]. Aspirin is a most
frequently used nonsteroidal anti-inflammatory drug (NSAID) and has been reported to reduce
cancer risk in several organs such as in the colon [100]. In the pancreas, epidemiological data on
aspirin use are controversial [101,102]. A cohort study of post-menopausal women has shown that
current use of aspirin is associated with a reduced risk of pancreatic cancer (adjusted RR = 0.57) [103],
whereas another cohort study of nurses demonstrated that more than 20 years of regular aspirin use
is associated with increased risk (RR = 1.58) [104]. Metformin, an anti-diabetic drug, activates
AMP-activated protein kinase (AMPK) and inhibits pancreatic cancer growth [105,106]. A hospital-
based case-control study has shown that metformin use is associated with reduced risk (OR = 0.38),
while insulin or insulin secretagogue use is associated with increased risk (OR = 1.78) of pancreatic
cancer in diabetic patients [107]. However, there is still no report of cohort study or randomized-
control trial on metformin use. Since incidence of pancreatic cancer is relatively low compared with
colon, breast and prostate cancers, prospective studies need quite a large population. In addition,
randomized control studies are difficult, because the diseases such as hyperlipidemia and diabetes
should be properly cared for. Therefore, evidences provided by preclinical studies including in vivo
carcinogenesis studies using animal models are considered to be very important to evaluate the



Cancers 2011, 3 588

chemopreventive efficacy and mechanisms of these agents. Factors related to insulin resistance and
inflammation are candidate targets for pancreatic cancer prevention. Table 2 shows chemopreventive
agents evaluated in BOP-induced pancreatic carcinogenesis.

Table 2. Chemopreventive agents of N-nitrosobis(2-oxopropyl)amine (BOP)-induced
pancreatic carcinogenesis in hamsters.

Compounds Mechanistic categories Ref.

Anti-hyperlipidemic/diabetic agents
Pioglitazone PPARY ligand [113]
Metformin AMPK activator [114]
Anti-inflammatory agents
Indomethacin NSAID [119]
Phenylbutazone NSAID [119]
NO-ASA NO-NSAID [121]
Nimesulide COX-2 inhibitor [118]
Celecoxib/Zileuton ~ COX-2/5-LOX inhibitors [127]
ONO-1714 iNOS inhibitor [131]

Others
OPB-3206 MMP-2 inhibitor [66]
Protochatechuic acid Antioxidant [135]
GTE Antioxidant [136]
BHA Antioxidant [137]
Sarcophytol A Anti-tumor promoter [138]
Methionine Essential amino acid [139]
PEITC Cytochrome P450 suppressor [140]
PPITC Cytochrome P450 suppressor [143]
PBITC Cytochrome P450 suppressor [144]
BITC Cytochrome P450 suppressor [145]
Sulforaphane Anti-oxidative enzyme inducer [145]
Aloe arborescens Detoxyfiying enzyme inducer [146]
Oltipraz Nrf2 activator [147]

4.1. Anti-Hyperlipidemic/Diabetic Agents

It has been reported that high cholesterol intake is associated with an increased risk of pancreatic
cancer [108]. Smoking is associated with metabolic syndrome, and nicotine elevates serum triglyceride
levels [109,110]. Obesity and diabetes are also closely associated with hyperlipidemia and
hyperinsulinemia [111,112]. Interestingly, Syrian golden hamsters are in a hyperlipidemic state even
under normal diet conditions, and pioglitazone, a ligand of peroxizome proliferator-activated receptor
(PPAR) vy, has demonstrated to improve hyperlipidemia and suppress development of ductal
adenocarcinomas in BOP-treated hamsters; the ductal adenocarcinoma incidences in the BOP + 800 ppm
pioglitazone group and the BOP alone group were 38% vs. 80% (P < 0.01) and the multiplicities were
0.55 = 0.15 vs. 1.37 = 0.22 (P < 0.01), respectively [113]. In addition, the incidences of bile duct
tumors in BOP-treated hamsters were clearly suppressed by pioglitazone [113]. Metformin, an
activator of AMPK, has also been shown to decrease serum insulin levels and suppress development of
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hyperplastic, dysplastic and malignant ductal lesions in the pancreas of BOP-treated hamsters on a
high fat diet condition [114]. Pioglitazone and metformin are both anti-diabetic drugs which improve

insulin resistance [115].
4.2. Anti-inflammatory Agents

Expression of COX-2 is up-regulated in PanIN and adenocarcinomas in humans and BOP-treated
hamsters [64,116-118] and inhibition of prostanoid synthesis by NSAIDs, such as indomethacin and
phenylbutazone, has been shown to reduce the development of precancerous lesions (atypical
hyperplasia) and adenocarcinoma in the hamster model [119,120]. Whereas suppressive effects of
aspirin were not significant, nitric oxide (NO)-donating aspirin, NO-ASA, has potent activity to
prevent pancreatic cancer, especially arresting the transition from PanIN2 to PanIN3 and carcinoma, in
BOP-treated hamsters [121]. It has also been reported that another COX-inhibitor, ibuprofen, reduces
pancreatic cancer development in the hamster transplacental model with NNK + EtOH [122]. In GEM
models, aspirin treatment has been shown to delay progression of PanINs in LsL- Kras®??; Pdx1-Cre
mice and to partially inhibit development of invasive cancers in ILsL- Kras®'’;
LsL—Trp53RJ 72H. Pdx]-Cre mice [123]. Furthermore, a selective COX-2 inhibitor, nimesulide, has been
demonstrated to suppress development of precancerous lesions (atypical hyperplasia) and
adenocarcinoma in BOP-treated hamsters [118]. In addition, inhibition of COX-2 by nimesulide
delayed the appearance of PanIN-2 and PanIN-3 lesions in a conditional Kras®'*® mouse model,
indicating the importance of prostaglandin synthesis by COX-2 in the early stage of pancreatic
carcinogenesis [124]. In addition to COX-2, 5-LOX is also up-regulated in the ductal cells of PanIN
and adenocarcinomas in humans, BOP-treated hamsters and Elastase-Kras mice [125,126]. Receptors
of the downstream 5-LOX metabolite, leukotriene B4, have been reported to be expressed in human
pancreatic cancer tissues [125] and combination of COX-2-inhibition by Celebrex and 5-LOX-
inhibition by Zyflo has shown to significantly decrease liver metastasis by pancreatic cancers in BOP-
treated hamsters [127]. MK886, an inhibitor of 5-LOX activating protein FLAP, also reduced
pancreatic cancer development in the hamster transplacental model with NNK + EtOH [122].

Increased expression of iNOS is also observed in pancreatic adenocarcinomas in humans and
hamsters [128-131], perhaps involving K-ras activation [132]. Inhibition of INOS by a selective iNOS
inhibitor ONO-1714 suppressed development of precancerous lesions (atypical hyperplasia) and
invasive adenocarcinomas in BOP-treated hamsters [131].

4.3. Others

Expression of MMP-2 is increased in precancerous lesions and adenocarcinomas, and proMMP-2 is
highly activated in pancreatic carcinomas in humans and hamsters [133,66]. Inhibition of proMMP-2
activation by the MMP inhibitor OPB-3206 has been demonstrated to suppress pancreatic cancer
development in BOP-treated hamsters under a rapid production protocol [66]. Another MMP inhibitor,
RO 28-2653, has been reported to inhibit liver metastasis in the BOP-induced pancreatic
carcinogenesis model, directly indicating roles for MMP-2 in cancer progression [134].

Protochatechuic acid, green tea extracts (GTE) and butylated hydroxyanisole (BHA) are anti-
oxidative agents which have demonstrated inhibitory effects on pancreatic cancer development during
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the post-initiation stage of the BOP-initiated hamster model [135-137]. Sarcophytol A, which is known
to be an anti-tumor promoter, and methionine, which is an essential amino acid and associated with
anti-oxidation, have also been shown to suppress pancreatic carcinogenesis in the BOP-treated hamster
model [138,139]. |

Phenethyl isothiocyanate (PEITC), a natural constituent of cruciferous vegetables, has been
demonstrated to be a potent chemopreventive agent in the initiation phase of pancreatic carcinogenesis
in hamsters initiated with BOP [140,141], while not affecting the post-initiation phase [142]. Synthetic
analogues of PEITC, such as 3-phenylpropyl isothiocyanate (PPITC), 4-phenylbutyl isothicyanate
(PBITC) and benzyl isothicianate (BITC), and sulforaphane, Aloe arborescens and oltipraz have also
been shown to suppress the initiation phase of BOP-induced pancreatic carcinogenesis through
inhibition of activating (phase I) enzymes or activation of detoxifying (phase II) enzymes related to
metabolism of BOP [143-147]. , ‘ :

Nicotine-derived nitrosamine NNK stimulates release of noradrenaline/adrenaline by binding to
alpha7 nicotinic acetylcholine receptors and activates beta-adrenergic receptors, resulting in proliferation
of human pancreatic epithelial cells through cAMP-dependent signaling [148,149]. A beta-blocker
propranolol has been shown to suppress the development of pancreatic cancer induced in the hamster
transplacental model with NNK + EtOH [150]. :

Angiotensin-I-converting enzyme (ACE) and angiotensin II type 1 receptor are upregulated in
human pancreatic cancer tissues and co-localized with vascular endothelial growth factor (VEGF) in
malignant ducts and in stromal cells [151]. The ACE inhibitor enalapril has been demonstrated to
delay progression of PanINs in LsL- Kras®**?; Pdx1-Cre mice and to partially inhibit development of
invasive cancer in LsL- Kras®??; LsL-Trp53*7? Pdx1-Cre mice [123].

An epidermal growth factor receptor inhibitor, gefitinib, has been demonstrated to suppress
development of PanINs and cancer in LsL- Kras®'*?; p48-Cre mice [ 152]. Furthermore, a src kinase
inhibitor, dasatinib, has been shown to suppress metastasis in LsL- Kras®P; LsL-T yp53072H. pax]-Cre;
Z/EGFP mice, although there are no effects on proliferation and no survival advantage [153]. In
addition, synthetic oleanane triterpenoids CDDO-methyl ester or CDDO-ethyl amide, the rexinoid
LG100268, or the combination have been shown to increase survival in LsL- Kras®?P o LsL-
Trp53%172H. px]-Cre mice [154].

5. Conclusions

As shown above, the BOP-induced pancreatic carcinogenesis model in Syrian golden hamsters has
genotypic and phenotypic similarities to the human case, and is a useful animal model for investigation
of cancer prevention, even though the mechanistic analyses are a little difficult due to its limited
genetic information. In this model, both precancerous lesions and advanced ductal carcimomas are
assessable, and most of the BOP-treated hamsters develop pancreatic ductal carcinomas within
six months. On the other hand, DMBA-induced pancreatic carcinogenesis models in rats and mice are
considered to be not suitable for prevention studies, from the viewpoints of pathological origin of
cancers and technical difficulty with neoplastic lesions developing only where carcinogen is
implanted. GEM models are powerful for verifying the oncogenic mechanisms, but the process of
carcinogenesis is pathologically different from the vast majority of human cases. Recently, several
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chemoprevention studies using GEM models have been reported [73,123,124,126, 152-154], mainly of
two types. One focuses on suppression of PanIN development in LsL- Kras®?°: PdxI-Cre mice or
LsL- Kras®?"; p48-Cre mice. In this system, incidences of pancreatic cancer are low (~20% at one
year) [155], and therefore, it is difficult to obtain statistically significant results for cancer development.
The PanIN lesions in GEM mice have similar phenotypes to humans, such as COX-2 [124] and
LOX-5 [126] expression, but the pathological process of development of early lesions is quite different
from human cases. Thus, the usefulness of this model may be limited regarding early detection and
prevention of human pancreatic cancer. In suppression studies on cancer development or prolonged
survival with LsL- Kras®*P; LsL-Trp53R1 72H. pdx1-Cre mice, the GEM animals mimic the genetics of
human pancreatic cancer and quickly develop pancreatic ductal carcinomas. This model may be more
suitable for therapeutic studies than for prevention.

In humans, a number of epidemiological studies have suggested reduced pancreatic cancer risk with
use of anti-hyperlipidemic/diabetic or anti-inflammatory agents. However, this is difficult to prove in
randomized-control studies, because of the relatively low incidence of pancreatic cancer in humans
and the absence of early biomarkers to predict pancreatic cancer. Thus, in vivo carcinogenesis studies
using animal models are important to support the epidemiological findings and provide direct
evidence. Some anti-hyperlipidemic and anti-inflammatory agents have indeed been shown to exert
suppressive effects on pancreatic carcinogenesis in animal models including that with BOP-initiation
in the hamster, indicating that factors related to hyperlipidemia, insulin resistance and inflammation
are candidate targets for pancreatic cancer prevention.
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BASIC—ALIMENTARY TRACT

Loss of Adiponectin Promotes Intestinal Carcinogenesis in Min and

Wild-type Mice

MICHIHIRO MUTOH,* NAOYA TERAOKA,* SHINJI TAKASU,* MAMI TAKAHASHI,* KUNISHIGE ONUMA *
MASAFUMI YAMAMOTO,* NAOTO KUBOTA,* TAKAMOTO ISEKI,* TAKASHI KADOWAKI,* TAKASHI SUGIMURA,* and

KEII WAKABAYASH|*®

*Cancer Prevention Basic Research Project, National Cancer Center Research Institute, Tokyo, Japan; *Department of Diabetes and Metabolic Diseases, Graduate
School of Medicine, The University of Tokyo, Tokyo, Japan; and $Graduate School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan

BACKGROUND & AIMS: Metabolic syndrome- and
obesity-associated cancers, including colon cancer, are
commeon in Western countries. Visceral fat accurmnulation
and decreased levels of plasma adiponectin (APN) have
been associated with development of human colorectal
adenoma. We investigated the function of APN in intes-
tinal carcinogenesis. METHODS: APN*/*, APN*/~, or
APN~/~ mice (CS7BL/6]) were given injections of azoxy-
methane (AOM), which led to development of intestinal
tumors; these strains of mice were also crossed with Min
mice to assess polyp formation. Adipocytokine levels and
phosphorylation/activation of AMP-activated protein ki-
nase (AMPK) were evaluated to investigate the mecha-
nisms of APN in tumor growth. RESULTS: The total
number of polyps in the intestines of male APN*/~ Min
and APN~/~Min mice increased 2.4- and 3.2-fold, respec-
tively, by the age of 9 weeks and 3.2- and 3.4-fold, respec-
tively, by 12 weeks, compared with those of APN*/*Min
mice. Similar results were obtained from female mice.
AOM induced colon rumor formation in 40% of APN*/*,
50% of APN*/~, and 71% of APN~/~ (P < .05) mice,
respectively; mean values for tumor multiplicity of each
genotype were 0.5, 0.6, and 1.1 (P < .05), respectively.
Phosphorylation of AMPK decreased in intestinal epithe-
lial cells of APN™/~ mice compared with APN*/* mice.
Among serum adipocytokines, plasminogen activator in-
hibitor—1 levels increased in APN~/~Min mice and
APN~/~ mice that received injections of AOM. Activation
of AMPK suppressed expression of plasminogen activator
inhibitor—1 in Min mice. CONCLUSIONS: Mice with
disruptions in APN develop more intestinal tumors
and have decreased activation (phosphorylation) of
AMPK and increased levels of plasminogen activator
inhibitor— 1, compared with wild-type mice. APN and
its receptor might be developed as targets for cancer
chemopreventive agents.

Keywords: Ape-Deficient Mice; Adipokine; Colorectal Can-
cer; Chemoprevention

he ctiteria for metabolic syndrome include obesity,

hyperlipidemia, type 2 diabetes, and hypertension.
Several cancers, including colon cancer, are demonstrated
to be associated with metabolic syndrome.!S Obesity-
associated cancers are common in Western countries, and
they are currently increasing in Eastern countries as well.
However, the mechanisms underlying how metabolic syn-
drome is associated with carcinogenesis remain to be
fully understood. Insulin resistance, with hyperinsulin-
emia, hyperlipidemia, and hyperglycemia, are suggested
to be involved in the promotion of colon cancer growth.
In addition, dysregulation of adipocytokines, such as
adiponectin (APN), leptin, plasminogen activator inhibi-
tor-1 (PAI-1), and tumor necrosis factor—a (TNFea) has
been shown to play a crucial role in the pathogenesis of
the metabolic syndrome and postulated to promote car-
cinogenesis.® In human clinical studies, it has been re-
ported that the amount of visceral fat positively corre-
lates with colon adenoma risk, and serum APN levels
show a negative correlation.”

APN is present at high levels in plasma (range, 3-30
pmg/mL) as multimers. Both plasma APN and APN mes-
senger RNA (mRNA) in adipose tissue are inversely cor-
related with body mass index and whole-body adipose
mass. Furthermore, a decrease in plasma APN levels is
associated with insulin resistance, type 2 diabetes, and
coronary artery disease. Physiological functions of APN
are elicited through 2 isoforms of its receptor, Adipo-R1
and Adipo-R2, stimulating AMP-activated protein kinase

Abbreviations used in this paper: ACF, aberrant crypt foci; AMPK,
AMP-activated protein kinase; AOM, azoxymethane; APN, adiponectin;
CK2p, casein kinase 28; IL-18, interleukin-18; MCP-1, monocyte che-
motactic protein-1; mRNA, messenger RNA; Pai-1, plasminogen acti-
vator inhibitor—1; PCR, polymerase chain reaction; RACK1, receptor
for activated protein C kinase 1; TG, triglyceride; TNFa, tumor nectosis
factor—a.
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(AMPK) and peroxisome proliferator—activated recep-
tor-a, respectively.?

Recently, we reported an age-dependent hypertriglyc-
eridemic state with low expression levels of hepatic and
intestinal lipoprotein lipase mRNA in Apc-deficient Min
and Apc1309 mice, animal models of familial adenoma-
tous polyposis.®1® Lipoprotein lipase catalyzes the hydro-
lysis of triglyceride (TG). Moreover, adipocytokines in-
cluding plasminogen activator inhibitor—1 (Pai-1) were
found to be remarkably overexpressed in the livers of Min
mice as compared to wild-type mice.!! In addition, he-
patic APN mRNA levels were down-regulated in Min
mice. Administration of Pai-1 blockers, SK-216 or SK-
116, demonstrated the involvement of Pai-1 in the pro-
duction of number of intestinal polyps.

It is assumed that adipocytokines have an impact on
carcinogenesis. However, little is known about how their
altered regulation is related to the development and pro-
gression of colon cancers. Thus, in the present study, we
mated APN-deficient CS7BL/6] mice with Min mice to
investigate the effect of genetic inactivation of APN on
intestinal carcinogenesis. APN deficiency resulted in in-
creased intestinal polyp development. Moreover, a similar
contribution was evident when APN-deficient C57BL/6]
mice were treated with azoxymethane (AOM) to induce
colon cancer. Reduced phosphorylated(p)-AMPK levels
and increased p-Akt levels were suggested to be involved
in the accelerated development of intestinal tumors.
Moreover, the mechanistic consequences derived from
the altered adipicytokines, APN and Pai-1, were demon-
strated.

Materials and Methods
Animals

APN-deficient mice (C57BL/6J mice background)
were generated as described previously and their geno-
types were confirmed by polymerase chain reaction
(PCR).12 Both sexes were used at 6 weeks of age. Female
CS7BL/6-ApcM»/* mice (Min mice), 5 weeks of age, were
purchased from The Jackson Laboratory (Bar Harbor,
ME) and genotyped by the method reported previously.
Heterozygotes of the female Min mice were mated with
APN~/~ C57BL/6] males to generate APN*/~Min mice.
Such males were crossed again with APN*/~ C57BL/6]
females to give APN™/~Min mice. Offspring were geno-
typed by PCR? In all the animal experiments in the
present study, a maximum of 5 animals were housed per
plastic cage, with sterilized softwood chips as bedding, in
a barrier-sustained animal room, air-conditioned at 24 =
2°C and 55% humidity, on a 12-hour light-to-dark cycle.
AIN-76A powdered basal diet (CLEA Japan, Tokyo, Ja-
pan) and water were available ad libitum. The animals
were observed daily for clinical signs and morbidity, and
body weights and food consumption were measured
weekly. At the sacrifice time point, mice were anesthe-
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tized with ether, and blood samples were collected from
the abdominal vein. The experiments were conducted
according to the Guidelines for Animal Experiments in
the National Cancer Center and were approved by the
Institutional Ethics Review Committee for Animal Expet-
imentation in the National Cancer Center.

Experimental Protocol for APN-Deficient
Min and C57BL/6]JMice

Both sexes of Min mice (n = 7) with APN™/¥,
APN*/~, and APN™/~ genotypes or C57BL/6] mice (n =
4) with APN*/*, APN*/~, and APN~/~ genotypes were
used for examination at the ages of 9 and 12 weeks. The
levels of serum TG and total cholesterol were measured
as reported previously.!® The liver, kidneys, heart, and
spleen were weighed and tissue samples from the liver
and intestine were rapidly deep-frozen in liquid nitrogen
and stored at —80°C.

The stomach and intestinal tract were removed,
filled with 10% buffered formalin, and separated into
the stomach, small intestine, cecum, and colon. The
small intestine was divided into the proximal segment
(4 cm in length), and proximal (middle) and distal
halves of the remainder. All segments were opened
longitudinally and fixed flat between filter paper in
10% buffered formalin. The numbers and sizes of pol-
yps, and their distributions in the intestine were as-
sessed with a stereoscopic microscope. Slices of the
liver, kidneys, heart, and spleen were embedded in
paraffin, sectioned, and stained with H&E.

Experimental Protocol for APN*/~Min Mice

With APN Treatment

Recombinant full-length murine APN was pro-
duced and purified as described previously!*!4 and dis-
solved in saline at a concentration of 300 pug/mL for use.
APN*/~Min mice of both sexes were divided into an
APN-injected group (n = 10 each) and saline-injected
control group (n = 10 each). Their body weight was
measured and 1.5 mg/kg APN or the same volume of
saline was intraperitoneally injected once a week from the
age of 6 weeks to 12 weeks (6 times) following the
method used in the previous report.’> The numbers and
sizes of polyps, and their distributions in the intestine
were examined.

AOM-Induced Colon Tumor Development in

APN-Deficient C57BL/6] Mice

Six-week-old male APN*/*, APN¥/~, and APN~/~
C57BL/6] mice (n = 30 each) received AOM at a dose of
10 mg/kg body weight intraperitoneally once a week for
6 weeks. Male APN*#/* and APN~/~ C57BL/6] mice (n =
10 each) without AOM treatment were used for evaluat-
ing sporadic colorectal cancer development. After lapa-
rotomy at 55 weeks of age, the entire intestines were
resected and opened longitudinally and the contents
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