書籍

研究成果の刊行に関する一覧表

著者氏名	論文タイトル名	書籍全体の 編集者名	書籍名	出版社名	出版地	出版年	ページ
<u>Ushijima T</u> and Takeshima H.	Epigenetic epidemiology of infectious diseases.	Michels KB	Epigenetic Epidemiology	Springer	Germany	2012	269- 288
<u>Kanai Y</u> and Arai E.	DNA methylation alterations in human cancers.	Tollefsbol T	Epigenetics in Human Disease	Elsevier	Amsterdam	2012	29- 52
<u>Ushijima T</u> and Yoshida T.	Field cancerization in gastric cancer.	Dakubo GD	Field cancerization: basic science and clinical applications	Nova	USA	2011	187- 199
<u>Ushijima T,</u> et al.	Epigenomic analysis in toxicology.	Casciano DA and Sahu SC.	Handbook of Systems Toxicology	John Wiley & Sons	West Sussex	2010	489- 507
Hattori N and <u>Ushijima</u> <u>T</u> .	Analysis of gene-specific DNA methylation.	Tollefsbol T	Handbook of Epigenetics: The New Molecular and Medical Genetics	Academic Press	England	2010	125- 134
<u>Kanai Y</u> and Arai E.	DNA methylation status in chronic liver disease and hepatocellular carcinoma.	Grisham JW and Thorgeirsson S.	Molecular Genetics of Liver Neoplasia	Springer	New York	2010	147- 159

雑誌(本研究費に謝辞があるもの)

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版 年
Yoda Y, <u>Ushijima T</u> , et al.	Integrated analysis of cancer-related pathways affected by genetic and epigenetic alterations in gastric cancer.	Gastric Cancer			online
Okochi-Takada E, <u>Ushijima T</u> , et al.	ANGPTL4 is a secreted tumor suppressor that inhibits angiogenesis.	Oncogene	33	2273- 2278	2014
Takahashi T, <u>Ushijima</u> <u>T</u> , et al.	Estimation of the fraction of cancer cells in a tumor DNA sample using DNA methylation.	PLoS One	8	e82302	2013
Shigematsu Y, <u>Ushijima</u> <u>T</u> , et al.	Interleukin-1b induced by <i>Helicobacter pylori</i> infection enhances mouse gastric carcinogenesis.	Cancer Lett	340	141- 147	2013
Zhu Y, <u>Ushijima T</u> , et al.	Dependence receptor UNC5D mediates nerve growth factor depletion-induced neuroblastoma regression.	J Clin Invest	123	2935- 2947	2013
Asada K, <u>Ushijima T</u> , et al.	Clinical application of the CpG island methylator phenotype to prognostic diagnosis in neuroblastomas.	J Hum Genet	58	428- 433	2013

Hattori N, <u>Ushijima T</u> , et al.	Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells.	Nucleic Acids Res	41	7231- 7239	2013
Asada K, <u>Ushijima T</u> , et al.	Stronger prognostic power of the CpG island methylator phenotype than methylation of individual genes in neuroblastomas.	Jpn J Clin Oncol	43	641- 645	2013
Asada K, <u>Ushijima T</u> , et al.	<i>FHL1</i> on chromosome X is a single-hit gastrointestinal tumor-suppressor gene and contributes to the formation of an epigenetic field defect.	Oncogene	32	2140- 2149	2013
Kim JG, <u>Ushijima T</u> , et al.	Comprehensive DNA methylation and extensive mutation analyses reveal an association between the CpG island methylator phenotype and oncogenic mutations in gastric cancers.	Cancer Lett	330	33- 40	2013
Niwa T, <u>Ushijima T</u> , et al.	Prevention of <i>Helicobacter pylori</i> –induced gastric cancers in gerbils by a DNA demethylating agent.	Cancer Prev Res	6	263- 270	2013
Takeshima H, <u>Ushijima</u> <u>T</u> , et al.	Induction of aberrant trimethylation of histone H3 lysine 27 by inflammation in mouse colonic epithelial cells.	Carcinogenesis	33	2384- 2390	2012
Frau M, <u>Ushijima T</u> , et al.	Role of transcriptional and posttranscriptional regulation of methionine adenosyltransferases in liver cancer progression.	Hepatology	56	165- 175	2012
Kikuyama M, <u>Ushijima</u> <u>T</u> , et al.	Development of a novel approach, the epigenome-based outlier approach, to identify tumor-suppressor genes silenced by aberrant DNA methylation.	Cancer Lett	322	204- 212	2012
Nanjo S, <u>Ushijima T</u> , et al.	Identification of gastric cancer risk markers that are informative in individuals with past <i>H. pylori</i> infection.	Gastric Cancer	15	382- 388	2012
Shigematsu Y, <u>Ushijima</u> <u>T</u> , et al.	Identification of a DNA methylation marker that detects the presence of lymph node metastases of gastric cancers.	Oncol Lett	4	268- 274	2012
<u>Ushijima T</u> and Hattori N.	Molecular pathways: involvement of <i>helicobacter pylori</i> -triggered inflammation in the formation of an epigenetic field defect, and its usefulness as cancer risk and exposure markers.	Clin Cancer Res	18	923- 929	2012
Katsurano M, <u>Ushijima</u> <u>T</u> , et al.	Early-stage formation of an epigenetic field defect in a mouse colitis model, and non-essential roles of T- and B-cells in DNA methylation induction.	Oncogene	31	342- 351	2012
Takeshima H, <u>Ushijima</u> <u>T</u> , et al.	Effects of genome architecture and epigenetic factors on susceptibility of promoter CpG islands to aberrant DNA methylation induction.	Genomics	98	182- 188	2011
Cai LY, <u>Ushijima T</u> , et al.	Does aberrant DNA methylation occur in human uterine leiomyomas? An Attempt of Genome-Wide Screening by MS-RDA.	Tokai J Exp Clin Med	36	84- 90	2011
Hattori N, <u>Ushijima T,</u> et al.	Methylation silencing of angiopoietin-like 4 in rat and human mammary carcinomas.	Cancer Sci	102	1337- 1343	2011
Hur K, <u>Ushijima T,</u> et al.	Insufficient role of cell proliferation in aberrant DNA methylation induction, and involvement of specific types of inflammation.	Carcinogenesis	32	35- 41	2011

Gyobu K, <u>Ushijima T</u> , et al.	Identification and validation of DNA methylation markers to predict lymph node metastasis of esophageal squamous cell carcinomas.	Ann Surg Oncol	18	1185- 1194	2011
Yoshida T, <u>Ushijima T</u> et al.	<i>Alu</i> and Sata hypomethylation in <i>Helicobacter pylori</i> -infected gastric mucosae.	Int J Cancer	128	33- 39	2011
<u>Ushijima T</u> and Asada K.	Aberrant DNA methylation in contrast with mutations.	Cancer Sci	101	300- 305	2010
Takeshima H and <u>Ushijima T</u> .	Methylation destiny: Moira takes account of histones and RNA polymerase II.	Epigenetics	5	89- 95	2010
Niwa T, <u>Ushijima T</u> , et al.	Inflammatory processes triggered by <i>Helicobacter pylori</i> infection cause aberrant DNA methylation in gastric epithelial cells.	Cancer Res	70	1430- 1440	2010
Tomita H, <u>Yamada Y</u> , <u>Ushijima T</u> , et al.	Suppressive effect of global DNA hypomethylation on gastric carcinogenesis.	Carcinogenesis	31	1627- 1633	2010
Ishii G, <u>Ushijima T</u> , et al.	Fibroblasts associated with cancer cells keep enhanced migration activity after separation from cancer cells: a novel character of tumor educated fibroblasts.	Int J Oncol	37	317- 325	2010
Nakajima T, <u>Ushijima</u> <u>T</u> , et al.	Persistence of a component of DNA methylation in gastric mucosae after <i>Helicobacter pylori</i> eradication.	J Gastroenterol	45	37- 44	2010
Sato T, <u>Kanai Y.</u>	Epigenetic clustering of lung adenocarcinomas based on DNA methylation profiles in adjacent lung tissue: its correlation with smoking history and chronic obstructive pulmonary disease.	Int J Cancer			in press
<u>Kanai Y</u> and Arai E.	Multilayer-omics analyses of human cancers: exploration of biomarkers and drug targets based on the activities of the International Human Epigenome Consortium.	Front Genet	5	24	2014
Sato T, <u>Kanai Y</u> , et al.	DNA methylation profiles at precancerous stages associated with recurrence of lung adenocarcinoma.	PLoS One	8	e59444	2013
Arai E, <u>Kanai Y</u> , et al.	Single-CpG-resolution methylome analysis identifies clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas.	Carcinogenesis	33	1487- 1493	2012
Nagashio R, <u>Kanai Y</u> , et al.	Carcinogenetic risk estimation based on quantification of DNA methylation levels in liver tissue at the precancerous stage.	Int J Cancer	129	1170- 1179	2011
Nishiyama N, <u>Kanai Y</u> , et al.	Copy number alterations in urothelial carcinomas: Their clinicopathological significance and correlation with DNA methylation alterations.	Carcinogenesis	32	462- 469	2011
Arai E and <u>Kanai Y</u> .	Genetic and epigenetic alterations during renal carcinogenesis.	Int J Clin Exp Pathol	4	58- 73	2011
Arai E, <u>Kanai Y</u> , et al.	Genome-wide DNA methylation profiles in renal tumors of various histological subtypes and non-tumorous renal tissues.	Pathobiology	78	1- 9	2011

Gotoh M, <u>Kanai Y</u> , et al.	Diagnosis and prognostication of ductal adenocarcinomas of the pancreas based on genome-wide DNA methylation profiling by bacterial artificial chromosome array-based methylated CpG island amplification.	J Biomed Biotechnol	2011	780836	2011
<u>Kanai Y</u> .	Genome-wide DNA methylation profiles in precancerous conditions and cancers.	Cancer Sci	101	36- 45	2010
Arai E and <u>Kanai Y</u> .	DNA methylation profiles in precancerous tissue and cancers: Carcinogenetic risk estimation and prognostication based on DNA methylation status.	Epigenomics	2	467- 481	2010
Nishiyama N, <u>Kanai Y</u> , et al.	Genome-wide DNA methylation profiles in urothelial carcinomas and urothelia at the precancerous stage.	Cancer Sci	101	231- 240	2010
Suzuki R, <u>Suzuki H</u> , et al.	Aberrant methylation of microRNA-34b/c is a predictive marker of metachronous gastric cancer risk.	J Gastroenterol			online
Sawada T, <u>Suzuki H</u> , <u>Toyota M</u> , <u>Itoh F</u> , et al.	Association between genomic alterations and metastatic behavior of colorectal cancer identified by array-based comparative genomic hybridization.	Genes Chromosomes Cancer	52	140- 149	2013
Shimizu T, <u>Suzuki H,</u> <u>Toyota M</u> , et al.	Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer.	Eur Urol	63	1091- 1100	2013
<u>Suzuki H</u> , et al.	Epigenetic alteration and microRNA dysregulation in cancer.	Front Genet	4	258	2013
Yamamoto E, <u>Suzuki H</u> , <u>Toyota M</u> , et al.	Molecular dissection of premalignant colorectal lesions reveals early onset of the CpG island methylator phenotype.	Am J Pathol	181	1847- 1861	2012
Takamaru H, <u>Suzuki H</u> , <u>Toyota M</u> , et al.	Aberrant methylation of <i>RASGRF1</i> is associated with an epigenetic field defect and increased risk of gastric cancer.	Cancer Prev Res	5	1203- 1212	2012
<u>Suzuki H</u> , et al.	DNA methylation and microRNA dysregulation in cancer.	Mol Oncol	6	567- 578	2012
Shitani M, <u>Suzuki H</u> , <u>Toyota M</u> , et al.	Genome-wide analysis of DNA methylation identifies novel cancer-related genes in hepatocellular carcinoma.	Tumour Biol	33	1307- 1317	2012
Maruyama R and <u>Suzuki H</u> .	Long noncoding RNA involvement in cancer.	BMB Rep	45	604- 611	2012
Kimura T, <u>Suzuki H</u> , <u>Toyota M</u> , et al.	A novel pit pattern identifies the precursor of colorectal cancer derived from sessile serrated adenoma.	Am J Gastroenterol	107	460- 469	2012
Niinuma T, <u>Suzuki H</u> , <u>Toyota M</u> , et al.	Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors.	Cancer Res	72	1126- 1136	2012
<u>Suzuki H</u> , <u>Toyota M</u> , et al.	Genome-wide profiling of chromatin signatures reveals epigenetic regulation of microRNA genes in colorectal cancer.	Cancer Res	71	5646- 5658	2011
Kamimae S, <u>Suzuki H</u> , <u>Toyota M</u> , et al.	Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors.	Cancer Prev Res	4	674- 683	2011

<u>Suzuki H</u> , <u>Itoh F</u> , <u>Toyota M</u> , et al.	IGFBP7 is p53 responsive gene specifically silenced in colorectal cancer with CpG island methylator phenotype.	Carcinogenesis	31	342- 349	2010
<u>Suzuki H</u> , <u>Toyota M</u> , et al.	Methylation- associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect.	Carcinogenesis	31	2066- 2073	2010
Yamashita M, <u>Toyota</u> <u>M, Suzuki H, Itoh, F</u> , et al.	DNA methylation of interferon regulatory factors in gastric cancer and noncancerous gastric mucosae.	Cancer Sci	101	1708- 1716	2010
Fujikane T, <u>Toyota M,</u> <u>Suzuki H</u> , et al.	Genomic Screening for genes upregulated by demethylation identified novel targets of epigenetic silencing in breast cancer.	Breast Cancer Res Treat	122	699- 710	2010
Igarashi S, <u>Suzuki H,</u> <u>Toyota M</u> , et al.	A novel correlation between genome-wide hypomethylation and malignancy of gastrointestinal stromal tumor.	Clin Cancer Res	16	5114- 5123	2010
Ohnishi K, Semi K, <u>Yamada Y</u> , et al.	□ Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation.	Cell	156	663- 677	2014
Hirata A, <u>Ushijima T,</u> <u>Yamada Y</u> , et al.	Dose-dependent roles for canonical Wnt signaling in <i>de novo</i> crypt formation and cell cycle properties of the colonic epithelium.	Development	140	66- 75	2013
Yamada K, <u>Yamada Y</u> , et al.	<i>EWS/ATF1</i> expression induces sarcomas from neural crest-derived cells in mice.	J Clin Invest	123	600- 610	2013
Semi K, <u>Yamada Y</u> , et al.	Cellular reprogramming and cancer development.	Int J Cancer	132	1240- 1248	2012
Arioka Y, <u>Yamada Y</u> , et al.	Activation-induced cytidine deaminase alters the subcellular localization of Tet family proteins.	PLoS One	7	e45031	2012
Aoki H, <u>Yamada Y</u> , et al.	Genetic ablation of Rest leads to in vitro-specific derepression of neuronal genes during neurogenesis.	Development	139	667- 677	2012
Hatano Y, <u>Yamada Y</u> , et al.	Genetic ablation of a candidate tumor suppressor gene, <i>Rest</i> , does not promote mouse colon carcinogenesis.	Cancer Sci	102	1659- 1664	2011
Sakai H, <u>Yamada Y</u> , et al.	Genetic ablation of Tnf alpha demonstrates no detectable suppressive effect on inflammation-related mouse colon tumorigenesis.	Chem Biol Interact	184	423- 430	2010
Yamada Y, et al.	Rest promotes the early differentiation of mouse ESCs but is not required for their maintenance.	Cell Stem Cell	6	10- 15	2010