S Miyagawa et al.

| - S
K_JLLWJ

50 100 50 200 250 WO 350 400 450 00 550

HSO3 «_

GalNAcB1-4G1cNAcBI-2Manal-6

HS03 ~_

50 100 150 200 250 300 350 400 450 500 550

80 100 150 200 250 300 350 400 450 500 350

Fucel-6 ~
Manf1-4GIcNACBL-4GIeNAc-PA

GalNAcBI-4GleNAcB1-2Manal-3
/ B-N-acetylhexosaminidase

HSO3
GalNAcB1-4G1cNACBI-2Manal-6
HSO3
GalNAcBI-4GleNAcBT-2Manal-3

Fucel-6 ~

Manf1-4G1eNAcBI-4G1cNACc-PA

S2

\ Methanolysis

GalNAcB1-4GlcNAcB-2Manal-6

Fueal-6 <
Manf1-4GleNACBT-4GEeNAc-PA

GalNAcB1-4GleNAch-2Mana]-3 S2a

Fig. 7. Structural analysis of S2. (A) ODS peak after methanolysis treatment to S2. Peak 1 was the nonreacted sample, S2 (12.7 GU, 2110 Da). Peak 2 lacked one
sulfate residue from S2, 13.2 GU and 2029 Da. Peak 2 lacked two sulfate residues from S2, corresponding to S2a (15.1 GU and 1948 Da). (B) ODS peak after
co-chromatography of the samples of S2a and210.4b. S2a was the same structure as the 210.4b in GALAXY. (C) ODS peak after -N-acetylhexosaminidase

treatment of S2. Peak 5 was identical to S2 in GU and molecular weight.

Materials for analyses

Glycoamidase A from sweet almond, a-manosidase, -galactosi-
dase and p-N-acetylhexosaminidase from jack bean were pur-
chased from Seikagaku Kogyo Co. (Tokyo, Japan). 0-Gal from
coffee bean was purchased from Oxford GlycoSciences, Inc.
(Oxford, UK). Trypsin and chymotrypsin were obtained from
Sigma (St. Louis, MO). Pronase protease from Strepfomyces
griseus was from Calbiochem (San Diego, CA). The PA deriva-
tives of isomalto-oligosaccharides 4-20 (indicating the degree
of polymerization of glucose residues) and reference PA-
oligosaccharides were purchased from Seikagaku Kogyo Co.

Characterization of N-glycan derived from islets

The residue after extracting each islet with a chloroform—metha-
nol solution was used as the starting material. All experimental
procedures used, including the chromatographic conditions and
glycosidase treatments, have been described previously
(Takahashi et al. 2001). The extract was proteolyzed with chymo-
trypsin and trypsin mixture and further digested with glycoami-
dase A to release N-glycans. After the removal of the peptide
materials, the reducing ends of the N-glycans were derivatized
with 2-aminopyridine (Wako, Osaka, Japan). This mixture was
applied to a DEAE column (Tosoh, Tokyo, Japan) or a TSK-gel
Amide-80 column (Tosoh), and each fraction that was separated on
the amide column was applied to a Shim-pack HRC-ODS column
(Shimadzu, Kyoto, Japan). The elution times of the individual
peaks onto the amide-silica and ODS columns were normalized
with respect to a PA-derivatized isomalto-oligosaccharide with
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a known degree of polymerization, and are represented in units
of glucose unit (GU). Thus, a given compound from these
two columns provided a unique set of GU values, which cor-
responded to the coordinates of the two dimension HPLC map.
The PA-oligosaccharides were identified by comparison with the
coordinates of <500 reference PA-oligosaccharides in a homemade
web application, GALAXY (http:/www.glycoanalysis.info/)
(Takahashi and Kato 2003). The calculated HPLC map based
on the unit contribution values was used to estimate some high-
mannose type PA-oligosaccharides. The PA-oligosaccharides were
co-chromatographed with the reference to PA-oligosaccharides
on the columns to confirm their identities.

MS analyses of PA-glycans

PA-oligosaccharides were subjected to MALDI-TOF-MS ana-
lysis. The matrix solution was prepared as follows: 10 mg of
2,5-dihydroxybenzoic acid (Sigma) was dissolved in 1:1 (v/v)
of acetonitrile/water (1 mL). Stock solutions of PA-glycans
were prepared by dissolving them in pure water. One microliter
of sample solution was mixed on the target spot of a plate with
1pL of matrix solution and then allowed to air-dry.
MALDI-TOF-MS data were acquired in the positive modes
using AXIMA-CFR (Shimadzu) operated in the linear mode.

Single islet cell preparation

Single-cell suspensions were prepared by the method described
by Ono et al. (1977). Isolated islets were exposed to 0.04%
ethylenediaminetetraacetic acid for 5 min at room temperature
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Table I. Structures and relative quantities of neutral, mono-sialyl, di-sialyl or mono-sulfate, mono-sialyl-mono-sulfate and di-sulfate PA-oligosaccharides derived from human and porcine islets

Peak code number GU* ODS (Amid) Molecular® mass (Da) Structure® Rele}itive quantity
(%)
Pig
Neutral glycan Man @ 1-2Man & 1-6 «_
Man@ 1-6
NI 4.9 (8.8) 1800 Manc1-3 < Man 8 1-4GloNAc B 1-4GIcNAG-PA 11.6 249
Man @ 1-2Man o 1-2Man o 1-3 7
Man @ 1-2Man o 1-6
Mana 1-6 ~
N2-1 5309 1638 Mano1-3 < Man 8 1-4GlcNAG £ 1-4GIcNAc-PA 58 35
Mana 1-2Man o 1-3
Man o 1-2Man & 1-6 ~
Man o/ 1-6 ~_
Nz-2 53(9.5) 1962 Man @ 1-2Man o 1-3 Man B 1-4GlcNAc B 1-4GloNAc-PA 74 9.5
Man o 1-2Man ¢ 1-2Man ¢ 1-3
Man @ 16 ~
Man @ 1-6 ~
N3 6.0(7.9) 1638 Mana 1-3 7 Man B 1-4GIcNAc & 1-4GIcNAc-PA 3.0 19
Man o 1-2Man & 1-2Man ¢ 1-3
Man o 1-6 «_
Man o 1-6 ~,
N4 62(7.0) 1475 Manca1-3 7 Man 8 1-4GlcNAc B 1-4GleNAc-PA 16.7 10.1
Man & 1-2Man @ 1-2Man ¢ 1-3
Mana 1-6 <
Manor1-6 ~
PN5=hN7 7361 1313 Mana1-3 7 Man f 1-4GIcNAc 8 1-4GleNA-PA 240 113
Man o 1-3 -
Man @ 1-6 «
pN6-1=hN8 7.5(4.2) 989 P Man £ 1-4GlcNAc 8 1-4GlcNAG-PA 23 6.2
Mana 1-3
Continued
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Table I, (Continued)

Peak code number GU® ODS (Amid) Molecular® mass (Da) Structure® Relative quantity
©)°
Pig
Mana1-6
PN6-2 75(5.1) 1151 Mana1-3 7 Man 8 1-4GlcNAG B 1-4GIcNAc-PA 17 .
Mana1-3 <~
Mana1-6 ~,
pN7=hN3 7733 827 Man 8 1-4GlcNAc B 1-4GIcNAc—PA 24 22
Man 2 1-6 ~ Fuc1-6
pN8=hNI10 10.3 (4.6) 1135 Man f 1-4GlcNAG 8 1-4GlcNAc-PA 3.9 41
Mana1-3 7
Mana1-6 ~_ Fuca1-6 ~_
pN9=hNI11 10.5 (3.7) 973 Man £ 1-4GlcNAc B 1-4GlcNAc-PA 2.2 3.0
GleNAc 8 1-2Man o 1-6 ~_ Fucor1-6 ~_
hN12-1 12.8 (5.4) 1541 Man 8 1-4GleNAc £ 1-4GlchAc—-PA - 1.8
GleNAc 8 1-2Mana 1-3 7
Gal B 1~-4GlcNAc 5 1-6~,
Manc I-6 Fuc o 1-6 ~
. Gal 8 1-4GleNAc 8 1-2 Man B 1-4GleNAc B 1-4GlcNAc-PA
hN12-2 12.8 (6.5 1948 - f o - 2.9
6-5) Gal B 1-4GIcNAC B8 14 P
Mana 1-3
Gal B 1-4GlcNAc B 1-2 7~
Gal B 1-4GIcNAG 8 1-2Man ¢ 1-6~ Fucr1-6 ~
hN13 14.2 (7.4) 1866 /Man B 1-4GicNAe B 1-4GleNAc~PA _ 3.1
Gal B 1-4GlcNAc B 1-2Man @ 1-3
hN5-1 6.6 (7.4) 1558 (Hexose)4(HexNAc)4(PA)1¢ - 2.7
hN5-2 6.6(7.9) 1720 (Hexose)5(HexNAc)4(PA)1¢ - 2.0
hN6-1 6.9(8.1) 1720 (Hexose)5(HexNAc)4(PA)1° - 1.5
hN6-2 6.9 (8.5) 1882 (Hexose)6(HexNAc)4(PA)1° - 12

*Units of GU were calculated from the elution times of the peaks obtained from the ODS column in Figure 2 and the Amide column in Figure 3.
®Average mass calculated from the m/z values of [M +Na]* or [M + H] “ion for neural, [M ~HJ” ion for mono-sialy] and mono-sulfated and [M +Na~ 2H] ions for mono-sialyl-mono-sulfated and di-sulfated

PA-oligosaccharides (Supplementary data, Figure S1).
“Structures of PA-oligosaccharides are represented.

“Molecular percentage of was calculated from the peak area in Figure 2 by comparison with total N-glycan content in each islet tissue.

°N-glycans did not coincide with those of known references in the GALAXY database.
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N-glycans of porcine islets

Table IL. Structures and relative quantities of neutral, mono-sialyl, di-sialyl or mono-sulfate, mono-sialyl-mono-sulfate and di-sulfate PA-oligosaccharides derived
from human and porcine islets

Peak code GU* ODS Molecular®  Structure® Relative
number (Amid) mass (Da) quantity (%)
Pig  Human
Mono-sialyl glycan
VIEY Man & T-6~.
pM2-1 9.0 (5.4) 1646 Man 8 1-4GlcNAc  1-4GlcNAc-PA 02 -
NeuSAc ¢ 2-3Gal £ 1-4GlcNAc B 1-2Man o 1-3
Man o 1-6~ Fuc1-6 ~
pM3-1 11.9 (5.9) 1792 Man 8 1-4GleNAc B 1-4GIcNAc-PA 03 -
NeuSAc o 2-3Gal § 1-4GlcNAc 8 1-2Man & -3
Man 0 -6 <
hM2-1 7.9 (60) 1646 /Man ,8 1-4GlcNAc 3 1-4GlcNAc-PA _ 0.15
NeuSAc o 2-6Gal 8 1-4GicNAc B 1-2Man ¢ 1-3
Man & 16 <
Mana 1-6 «_
pM1=hM3 86(7.1) 1970 Manor1-3 Man 8 1-4GlcNAG £ 1-4GlcNAc-PA 06 02

NeuSAc ¢ 2-3Gal B 1-4GIoNAc B 1-2Man ¢ 1-3 <

Man@ 1-6
pM2-2 9.0 (6.2) 1808 Mang 1-3 Man B 1~4GlcNAc B 1-4GlcNAc~PA 0.3 _
Neu5Ac o 2-3Gal B 1-4GlcNAc B 1-2Man o 1-3 -
Mana 1-6 < Fuca 1-6 ~
pM3—2 11.9 (6.7) 1954 Mana 1-3 /Man }3 1-4GlcNAc B 1-4GlcNAG-PA 03 _
NeuSAc (¢ 2-3Gal B 1-4GlcNAG B 1-2Man & 1-3
hM1 7.6 (1.7) 1970 (Hexose)6(HexNAc)3(NEuAc) 1(PA)1¢ - 0.2
hM2-2 7.9 (6.8) 2255 (Hexose)4(HexNAc)6(NeuAc)l (PA)1¢ - 0.15
Man o 16 Fucar 1-6
hM4-1 112 (64) 1792 Man 19 1~4GlcNAc ﬁ 1-4GlcNAc~PA _ 0.1

NeuSAc o 2-6Gal £ 1-4GIcNAc § 1-2Man 13 <

Gal 8 1-4GleNAc £ 1-2Man @ 1-6 ~_
hM4-2 11.2(6.7) 2011 Man B8 1-4GlcNAc 8 1-4GleNAc~PA _ 0.4
NeuSAc @@ 2-3Gal 8 1-4GlcNAc B 1-2Man & 1-3 <

Gal § 1-4GleNAc 8 1-2Man @ 1-6 ~_ Fuc o 1-6 ~_
pM4 =hM5 13.5(7.6) 2157 Man 8 1-4GlcNAG B 1-4GleNAc-PA 05 05
NeuSAc & 2-6Gal B 1-4GloNAc B 1-2Man & 1-3
GloNAc 8 1-2Man o 1-6 «_ Fuc & 1-6 ~_
pMS 14.4 (52) 1995 Man B 1-4GlcNAc B 1-4GlcNAc-PA 0.6 _
NeuSAc & 2-3Gal 8 t-4GlcNAc § 1-2Mana 1-3 7
Gal B 1-4GlcNAc B 1-2Man & 1-6 ~_ Fuc & 1-6 ~_
M6 15.1 (7.1) 2157 Man B 1-4GlcNAc 8 1-4GlcNAc~PA 06 2.1

NeuSAc & 2-3Gal B 1-4GlcNAc £ 1-2Man o 1-8 7

“Units of GU were calculated from the elution times of the peaks obtained from the ODS column in Figure 2 and the Amide column in Figure 3.

bAverage mass calculated from the m/z values of [M + Na]” or [M + H]" ion for neural, [M — H] ™ ion for mono-sialyl and mono-sulfated and [M +Na—2H] " ions for
mono-sialyl-mono-sulfated and di-sulfated PA-oligosaccharides (Supplementary data, Figure S1).

“Structures of PA-oligosaccharides are represented.

dMolecular percentage of was calculated from the peak area in Figure 2 by comparison with total N-glycan content in each islet tissue.

“N-glycans did not coincide with those of known references in the GALAXY database.
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S Miyagawa et al.

Table III. Structures and relative quantities of neutral, mono-sialyl, di-sialyl or mono-sulfate, mono-sialyl-mono-sulfate and di-sulfate PA-oligosaccharides derived
from human and porcine islets

Peak code GU*ODS  Molecular® Structure® Relative quantity
number (Amid) mass (Da) %)*
Pig Human
Di-sialyl glycan
NeubAc ot 2-6Gal 5 1-4GlcNAc B 1-2Mana 1-6
D1 10.6(7.5) 2302 Man B 1-4GlcNAc B 1-4GlcNAc-PA 02 04

Neu5Ac & 2-6Gal B 1-4GlcNAc 8 1~2Mana 1-3 <~

NeuSAc & 2-3Gal 8 1-4GlcNAc 8 1-2Man & 1-6
hD2 12165 2302 Man 8 1-4GlcNAc B 1-4GIcNAc-PA _ 03
NeuSAc @ 2-3Gal B 1-4GlcNAc B 1~2Man @ 1-3

NeubSAc & 2-6Gal B t-4GlcNAc £ 1-2Man & 1-6 < Fuc & {~6 ~

pD2=hD3 13.5(7.9) 2448 Man 8 1-4GlcNAc B 1-4GIcNAc-PA ¢ g 0.2
NeuSAc (¥ 2-6Gal B 1-4GlcNAc B 1-2Man ¢ 1-3
NeuSAc & 2-3Gal B 1-4GleNAc 8 1-2Man & 1-6 < Fuca1-6

pD3=hD4  158(69) 2448 Man B 1-4GlcNAc 8 1-4GloNAc-PA ¢ 5 0.9

NeuSAc @ 2-3Gal 8 1-4GleNAc 8 1-2Man ¢ 1-3 <

“Units of GU were calculated from the elution times of the peaks obtained from the ODS column in Figure 2 and the Amide column in Figure 3.

b Average mass calculated from the m/z values of [M + Na]" or [M + H]" ion for neural, [M — H]™ ion for mono-sialyl and mono-sulfated and [M +Na-2H]™ ions for
mono-sialyl-mono-sulfated and di-sulfated PA-oligosaccharides (Supplementary data, Figure S1).

“Structures of PA-oligosaccharides are represented.

9Molecular percentage of was calculated from the peak area in Figure 2 by comparison with total N-glycan content in each islet tissue.

°N-glycans did not coincide with those of known references in the GALAXY database.

Table IV. Structures and relative quantities of neutral, mono-sialyl, di-sialyl or mono-sulfate, mono-sialyl-mono-sulfate and di-sulfate PA-oligosaccharides derived
from human and porcine islets

Peak code GU* ODS Molecular®  Structure® Relative
number (Amid) mass (Da) quantity (%)°
Pig  Human
Mono-sulfated glycan
S1-1 73 (3.8) 1478 (Hexose)3(HexNAC)4(HSO3)1 (PA)1® 02 -
/Man al1-6
S1-2 73 (4.5) 1641 SHO3 “ Man 1-3 Man B 1-4GlcNAc 8 1-4GlcNAC-PA 0.6 _

GalNAc B8 1-4GiIcNAc B 1-2Man @ 1-3 7

“Units of GU were calculated from the elution times of the peaks obtained from the ODS column in Figure 2 and the Amide column in Figure 3.

b Average mass calculated from the m/z values of [M + Na]" or [M -+ H]" ion for neural, [M — H]" ion for mono-sialyl and mono-sulfated and [M + Na— 2H] ™ ions for
mono-sialyl-mono-sulfated and di-sulfated PA-oligosaccharides (Supplementary data, Figure S1).

“Structures of PA-oligosaccharides are represented.

dMolecular percentage of was calculated from the peak area in Figure 2 by comparison with total N-glycan content in each islet tissue.

°N-glycans did not coincide with those of known references in the GALAXY database.

and collected by centrifugation at 400 x g for 1 min. The islets
were then suspended in 4 mL of 1000 PU/mL Dispase-II
{Godo-Shusei Co. Tokyo, Japan) and treated at 37°C for 15 min.
Cell aggregates were allowed to settle and the supernatant was
transferred to a conical tube. The pooled harvests were centri-
fuged at 400 x g for 3 min. The cell pellet was washed twice
with phosphate buffer saline (PBS) and re-suspended in PBS.

Flowcytometry

The islets were incubated with a 10% solution of normal human
pooled serum (NHS) at 4°C for 1 h, washed and then incubated
with 1.25 pg of fluorescein isothiocynate-conjugated anti-human
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IgG and IgM (Cappel, West Chester, PA) as a second antibody for
1 h at 4°C. The stained cells were analyzed with a FACS Calibur
flow cytometer (Nippon Becton Dickinson, Tokyo, Japan).

Sulfate-depleted cells

Islets were starved for 24 h in sulfate-free RPMI1640 medium
containing 1% of fetal cow serum supplemented with fresh 10
mM sodium chlorate (Nakarai Tesque, Kyoto, Japan).

Supplementary data

Supplementary data for this article are available online at http:/
glycob.oxfordjournals.org/.
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N-glycans of porcine islets

Table V. Structures and relative quantities of neutral, mono-sialyl, di-sialyl or mono-sulfate, mono-sialyl-mono-sulfate and di-sulfate PA-oligosaccharides derived
from human and porcine islets

Peak code GU*ODS  Molecular®  Structure® Relative quantity
number (Amid) mass (Da) (%)*
Pig Human
Mono-sialyl-mono-sulfated glycan
MS1 9.8(5.0) 2133 (Hexose)4(HexNAc)5(NeuAc) (HSO3)1 (PA)1® 0.3 -
NeuSAc ¢ 2-6Gal B 1-4GlcNAc 8 1-2Man & 1-6 - Fuca 1-6
MS2 127(53) 2279 SHO3 . Man A 1-4GlcNAG 8 1-4GlcNAG-PA | 3 _

GallNAc B 1-4GIcNAc 8 (-2Mana 1-3 <

MS3 159(5.4) 2279 (Hexose)4(HexNAc)5(Deoxyhexose)1(NeuAc) 1(HSO3)1(PAT 0.4 _

“Units of GU were calculated from the elution times of the peaks obtained from the ODS column in Figure 2 and the Amide column in Figure 3.

®Average mass calculated from the m/z values of [M + Na]” or [M + H]* ion for neural, [M — HJ™ ion for mono-sialyl and mono-sulfated and [M + Na —2H] " ions for
mono-sialyl-mono-sulfated and di-sulfated PA-oligosaccharides (Supplementary data, Figure S1).

“Structures of PA-oligosaccharides are represented.

YMolecular percentage of was calculated from the peak area in Figure 2 by comparison with total N-glycan content in each islet tissue.

“N-glycans did not coincide with those of known references in the GALAXY database.

Table VL. Structures and relative quantities of neutral, mono-sialyl, di-sialyl or mono-sulfate, mono-sialyl-mono-sulfate and di-sulfate PA-oligosaccharides derived
from human and porcine islets

Peak code number GU" ODS (Amid) Molecular® mass (Da) ~ Structure® Relative
quantity (%)°
Pig Human
Di-sulfated gl
i-sulfated glycan SHO3\
GalNAc 8 1-4GIcNAc 8 1-2Man o 1-6 ~ Fuc & 1-6
82 12.73.9) 2110 SHO3 Man 8 1-4GloNAG 8 1-4GIcNAc-PA 70 =

GalNAc B 1-4GIcNAc B 1~2Man 13 7

“Units of GU were calculated from the elution times of the peaks obtained from the ODS column in Figure 2 and the Amide column in Figure 3.

®Average mass calculated from the m/z values of [M + Na]* or [M +H]" ion for neural, [M — H]” ion for mono-sialyl and mono-sulfated and [M + Na—2H] ions for
mono-sialyl-mono-sulfated and di-sulfated PA-oligosaccharides (Supplementary data, Figure S1).

“Structures of PA-oligosaccharides are represented.

Molecular percentage of was calculated from the peak area in Figure 2 by comparison with total N-glycan content in each islet tissue.

“N-glycans did not coincide with those of known references in the GALAXY database.
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Fig. 8. FACS analysis for the antigenicity of sulfate structures. Islets from adult pigs were treated with 10% NHS as the first antibody and anti-human
immmunoglobulins as the second antibodies. Typical FACS profiles of human IgG (A) and IgM (B) deposition on islets are shown. The effect of removal of sulfate
structures by sodium chlorate and sulfate-free medium on the antigenicity of pig islet cells was next investigated. The presence of sodium chlorate led to a reduction
in the reactivity of islets to a natural antibody, suggesting that the sulfate structures of islets contain a considerable amount of natural antibody epitopes; a, Normal
line: API in usual medium; b, painted out: Sulfate depleted API and ¢, dotted line: Second antibody control.
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Abbreviations

2D, two dimension; API, adult pig islets; ATP, adenosine triphos-
phate; DEAE, diethylaminoethyl; FCS, fetal cow serum; FITC,
fluorescein isothiocynate; GALAXY, glycoanalysis by the three
axes of MS and chromatography; GalNAc, N-acetylgalactosamine;
GKO, al-3-galactosyltransferase knockout; GlcNAc, N-acetyl-
glucosamine; GU, glucose unit; Hex, hexose; HexNAc,
N-acetylhexosamine; HPLC, high-performance liquid chroma-
tography; Lew®, Lewis x; MALDI-TOF-MS, matrix-assisted
laser desorption/ionization time-of-flight mass spectrometric;
Man, mannose; MS2, mono-sialyl-mono-sulfate; NeunAc,
neuranimic acid; NeuGe, N-glycolylneuraminic acid; NHS,
normal human pooled serum; ODS, octa decyl silyl; PA,
pyridylamino; PBS, phosphate buffer saline; S2, di-sulfate;
0-Gal, o-galactosidase.
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SIC AND EXPERIMENTAL RESEARCH

A Novel Resting Strategy for Improving Islet
Engraftment in the Liver

Takuya Jimbo," Akiko Inagaki,” Takehiro Imura,” Satoshi Sekiguchi," Yasuhiro Nakamura,’
Keisei Fujimori,’ Jun-ichiro Miyagawa,* Noriaki Ohuchi," Susumu Satomi,' and Masafumi Goto™*’

Background. Several studies have revealed that posttransplant insulin treatment is beneficial to rest the islet grafts.
However, insulin infusion per se is not enough to completely suppress the heavy workload arising caused by post-
prandial hyperglycemia. Therefore, the present study examined whether short-term fasting combined with insulin
treatment could effectively prevent graft exhaustion after intraportal islet transplantation.

Methods. A marginal dose of syngeneic rat islet grafts were transplanted intraportally into the control, insulin-
treated, and insulin+rest groups of streptozotocin-induced diabetic rats. The control group fed freely without insu-
lin treatment, and the other groups were continuously treated with an optimal amount of insulin to maintain
normoglycemia. In addition, the insulin+rest group fasted and received total parenteral nutrition during the 2 weeks
after transplantation.

Results. The curative rate was significantly higher in both the insulin and insulin+rest groups than the control group
(P<0.0001). The glucose tolerance, residual graft mass, and graft function were significantly ameliorated in the in-
sulin+rest group, but not in the insulin group, compared to the control group (P<0.01, P=0.03, P=0.001).
Conclusions. These data suggest that short-term fasting combined with insulin treatment, especially during the
avascular period of the grafts, could therefore be a promising regimen for improving pancreatic islet engraftment in

the liver.
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wing to recent advances, islet transplantation is be-
coming one of the most attractive treatments for type 1
diabetic patients. However, there are still many issues to be
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resolved regarding this treatment. One of the current draw-
backs to islet transplantation is the necessity of multiple donor
organs to effectively cure one diabetic patient. For islet trans-
plantation to become more widespread, diabetes reversal must
be achieved with a single donor to reduce the risks and costs,
and to increase the availability of cells for transplantation.

One of the possible explanations for the requirement of
multiple donor organs in islet transplantation is poor en-
graftment. Unlike whole pancreas transplantation, pancreatic
islet grafts are rendered avascular after enzymatic isolation
and must become revascularized after transplantation (1, 2).
Several studies have shown that it takes approximately 2 weeks
until angiogenesis and revascularization of the transplanted
islets can be completed (I-3). Therefore, the poor engraft-
ment during islet transplantation may at least in part be at-
tributable to islet exhaustion resulting from a high workload
during the avascular period following transplantation.

Several studies have reported that exogenous insulin
treatment after transplantation could effectively prevent islet
exhaustion (4-9). In support of these findings, Koh et al.
recently demonstrated that peritransplant infusions of in-
sulin and heparin were positively correlated with the clinical
outcome of islet transplantation (10). On the other hand,
Dafoe et al. (1I) and Keymeulen et al. (12) have shown that
exogenous insulin treatment after transplantation did not
improve subsequent endocrine function.

Most likely, the beneficial effects of exogenous insu-
lin administration could be explained by the avoidance of

Transplantation ¢ Volume 97, Number 3, February 15, 2014
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glucotoxicity (13-16), a protective and trophic action on
islet grafts (17-20), and a reduction of the heavy workload
resulting from postprandial hyperglycemia (21, 22). How-
ever, it may be speculated that exogenous insulin infusions
per se are insufficient to completely suppress the deleterious
effects of a heavy workload caused by postprandial hyper-
glycemia. This may explain the conflicting results obtained
following exogenous insulin treatment after transplantation.
It was hypothesized that short-term fasting, supported by a
total parenteral nutrition during a limited period after trans-
plantation, could be a helpful strategy to avoid overtaxing the
islet grafts and allow them to rest during the avascular period.

Hence, in the present study, it was examined whether
short-term fasting, combined with insulin treatment during
the avascular period, could prevent graft exhaustion after
intraportal islet transplantation.

RESULTS

Metabolic Evolution After Transplantation

The control group maintained high blood glucose levels
during the whole study period, even after transplantation. In
contrast, the insulint+rest and insulin groups remained
normoglycemic throughout the study (Fig. 1A). The curative
rate was significantly higher in both the insulin+rest and in-
sulin groups than in the control group (100% [7/7] and 100%
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[5/5] vs. 12.5% [1/8], P<0.001) (Fig. 1B). Moreover, both the
insulin+rest and insulin groups had a tendency to demon-
strate an increase in their body weight than did the control
group (Fig. 1C).

Intravenous Glucose Tolerance Test

Although the blood glucose changes and curative rates
were similar in the insulin+rest and insulin groups, glucose
tolerance was significantly ameliorated only in the insulin+
rest group (AUC: 23,587+456 min*mg/dL, Kg: 1.62+0.08%/min;
insulin group AUC: 25,289+1,399 min*mg/dL, Kg: 1.34+%
0.05%/min) compared to the control group (AUC: 32,138+
2,673 min*mg/dL, P<0.01; Kg: 1.04 £0.11%/min, P< 0.001)
(Fig. 2A-C).

The Amount of Insulin in the Liver

The amount of insulin in the liver was higher in the
insulin+rest group (13.2+3.8 ng/IEQs) and the insulin group
(7.0+1.5 ng/IEQs) than in the control group (3.5%1.1 ng/IEQs),
but the increase was only statistically significant in the case of
the insulin-+rest group (P=0.03) (Fig. 3A).

The Secretory Unit of Islet Transplant Objects
(SUITO) Index

At 5 weeks after transplantation, the SUITO index
(23), which reflects the graft function, was again higher in
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FIGURE 1.

Metabolic evolution after islet transplantation. A, the changes in the blood glucose levels after islet frans-

plantation. B, the number of normoglycemic rats at the end of the observation period. *P<0.001 between the control group vs.
the insulin+rest and insulin groups. C, the changes in body weight after islet transplantation.
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FIGURE 2. Profile of glucose tolerance in each group. A, the results of the intravenous glucose tolerance test IVGTT)

in each group at 5 weeks after transplantation. Glucose tolerance was significantly ameliorated in the insulin+rest group,
but not in the insulin group, compared to the control group as indicated by both the AUC (B) (*P<0.01) and Kg values

(*¥%P<0.001) (C).

the insulintrest group (13.242.3) and the insulin group
(8.1£1.6) than in the control group (3.6%1.1), but the im-
provement was only statistically significant in the case of the
insulin+rest group (P=0.002) (Fig. 3B).

The Expression of Inflammatory Mediators in
Each Group

Regarding the expression of inflammatory mediators,
such as TNF-«, IL-6, and MCP-1, no significant differences
were observed in any of the groups on day 14 after islet
transplantation (Table 1).

The Influence of Short-Term Fasting on Oxidative
Stress in the Transplant Recipients

The serum levels of 8-hydroxy-2'-deoxyguanosine
(8-OHAG) were measured to analyze the extent of oxidative
DNA damage in each group (Table 1). Although the serum
levels of 8-OHAG in the insulin+rest group were considerably
lower than those of the insulin and control groups, the dif-
ferences did not reach significance (P=0.08).

The Influence of Short-Term Fasting on the
Clucagon-Like Peptide-1 (CLP-1) Levels

The serum active GLP-1 levels were measured in all
three groups at 14 days after transplantation (Table 1).

Significantly lower levels of GLP-1 were observed in the in-
sulin+rest group compared to the insulin and the control
groups (P =0.0001).

The State of Apoptosis and Revascularization of
the Islet Crafts

Using the terminal deoxynucleotide transferase-mediated
dUTP nick-end labeling (TUNEL) assay, the number of apo-
ptotic islet cells in the liver sections was examined. Repre-
sentative examples are shown in Figure 4A. No significant
differences were observed among the groups (P=0.28) (Fig. 4C).
The number of vWE-positive vessels around the islets was
also counted to examine the state of revascularization of
the islet grafts (Fig. 4B). The counts of the vWEF-positive ves-
sels in the insulin+rest (375+35/mm®) and insulin groups
(564£71/mm”) were remarkably lower than those in the
control group (923+227/mm?) (P=0.08) (Fig. 4D).

DISCUSSION
A considerable number of studies to date, including a
recent clinical report (10), have revealed that posttransplant
glycemic control is crucial for successful islet transplantation
(4-9). Most of these studies concluded that exogenous insulin
treatment is beneficial to allow the transplanted islet grafts to
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Evaluation of graft function. A, the amount of insulin in the liver. After the intravenous glucose tolerance test, the

recipient livers were harvested, and the amount of insulin in the liver per transplanted islet equivalents (IEQs) was evaluated.
The level was significantly higher in the insulin+rest group compared to that in the control group (*P=0.03). B, the secretory
unit of islet transplant objects (SUITO) index at 5 weeks after islet transplantation. The SUITO index, which is used as an
index of graft function in clinical islet transplantation, was significantly improved in the insulin+rest group compared to the

control group (*P=0.002).

rest, particularly during the avascular period. Because it can
minimize the workload experienced by the transplanted grafts,
the regulation of postprandial hyperglycemia is therefore
considered to be of great importance. However, the current
manner of insulin infusion may not be sufficient to effectively
prevent the development of postprandial hyperglycemia. It
was therefore assumed that short-term fasting, supported by
total parenteral nutrition, during a limited period after trans-
plantation could be a helpful strategy to more effectively rest
the islet grafts during the avascular period.

In the present study, normoglycemia in both the insulin+
rest and insulin groups was maintained even after discontinu-
ing insulin treatment, which did not occur in the control
group. The cure rate at 5 weeks after transplantation was
also significantly improved in both the insulin+rest and in-
sulin groups compared to the control group. These results are
consistent with the previous reports indicating that exoge-
nous insulin treatment during the early stage of engraft-
ment improved the outcome of islet transplantation (4-10).

Furthermore, it was demonstrated that the glucose tolerance,
the function of transplanted islet grafts indicated by the
SUITO index (23), and the amount of insulin in the trans-
planted livers were significantly improved in the insulin+rest
group, but not in the insulin group, compared to the control
group. These data clearly show that short-term fasting, com-
bined with insulin treatment during the avascular period, can
better preserve transplanted islet grafts in the liver.

Although exogeneous insulin was administered subcu-
taneously in the previous studies (5, 6, 12), it was infused in-
travenously to more precisely control the blood glucose level in
the present study. In fact, such intensive insulin treatment
during the early stage of engraftment would likely be performed
intravenously in the clinical setting. Moreover, in the present
study, the short-term fasting was performed in conjunction
with total parenteral nutrition via a central venous catheter to
mimic the clinical condition. The experimental models used in
the present study demonstrate approaches that could be ap-
plied clinically.

TABLE 1.
glucagon-like peptide-1 (GLP-1) levels

The influence of short-term fasting on the expression of inflammatory mediators, oxidative stress, and

Insulin+rest (n=4) Insulin (n=5) Control (n=8)
TNFe, pg/mL 50.9+11.6 39.8+3.1 59.76.6
IL-6, pg/mL 3,199+752 2,651£412 4,812+933
MCP-1, pg/mL 823+182 752453 1,018+97
8-OHdG, ng/mL 0.22+0.07 0.89+0.40 0.59+0.23
GLP-1 levels, pmol/L* 1.0+1.0° (n = 6) 9.0+1.2 (n = 6) 11.6%1.6 (n = 8)

“ Values are obtained in the other series of experiments.
¥ P=0.0001 vs. the insulin and the control groups.

TNFo, tumor necrosis factor-alpha; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; GLP-1, glucagon-like peptide-1; 8-OHdG; 8-hydroxy-2'-

deoxyguanosine.
Values are means=SE.
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Mean number of new vessels per islet area. The vWF-positive vessels in the insulin+rest (375:35/mm?) and insulin groups
(564+71/mm?) were remarkably lower than those in the control group (923+227/mm?) (P=0.08).

Moreover, the current rat model enabled us to achieve
almost the same background, including the insulin dose, the
rate of the increase in body weight, and the inflammatory status
between the resting and insulin groups. Therefore, it is believed
that the differences between them may be more accurately at-
tributed to the stressful workload on the islet grafts resulting
from the postprandial hyperglycemia in the non-fasting group.
In this study, postprandial blood glucose fluctuation in the
insulin group was not directly measured because of a technical
limitation. However, postprandial hyperglycemia under con-
tinuous insulin administration has already been reported
(24, 25) even when CSII (continuous subcutaneous insulin
infusion) was introduced. Therefore, it is speculated that there
was not enough regulation of postprandial hyperglycemia in
the insulin group in the present study as well. Corroborating
the findings of this study, Sato et al. reported that isolated
islets with a high mitochondrial workload can become hyp-
oxic, especially when the oxygen supply is limited (22). In that
report, the authors also observed that decreasing the mito-
chondrial workload rescued the islet cells from becoming
hypoxic. Likewise, Yanjun et al. showed that blood glucose
fluctuations substantially damaged the pancreatic islets by
enhancing oxidative stress (21). Although the difference did
not reach statistical significance, it was observed that there is

a tendency toward reduction of oxidative stress in the insulin+
rest group in this study compared with the other groups. Be-
cause the revascularization was pronounced in the control
group compared with the insulin+rest group, it seems likely
that the avoidance of oxidative stress may be one of the crucial
targets for preventing or overcoming islet exhaustion.

Unexpectedly, the newly formed vessels surrounding
the grafts were markedly sparse in the insulin+rest and in-
sulin groups compared with the control group. Considering
that the islets subjected to the various stresses are well
known to release a potent angiogenesis factor (26), it may be
speculated that enhanced revascularization in the control
group is attributed to angiogenesis factors released from the
stressful islets exposed to hyperglycemia and a heavy work-
load. In other words, this novel finding also suggests that the
grafts in the resting group appear to be free from several
types of stress, and therefore the resting protocol is most
likely highly effective.

In this study, both insulin treatment and fasting were
performed throughout the initial 2 weeks after islet transplan-
tation because it was previously demonstrated that the vascu-
larization process is completed after approximately 14 days
(1, 3). Indeed, Merino et al. reported that the beneficial effect
of insulin treatment was maximal when it was maintained
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throughout the 14-day revascularization period after trans-
plantation (5). Considering that insulin per se seems to be a
strong trophic factor for islet grafts (19, 27-30) and an effective
inhibitor of glucotoxicity (13-16), it may be speculated that
the optimal duration of insulin treatment would be no less
than 14 days. This would be feasible in view of practical aspects
as well because diabetic patients are often already being
treated with insulin. On the other hand, further investigations
of the optimal duration for short-term fasting are required
because parenteral feeding may be associated with a risk of
bacterial translocation and down-regulation of endogenous
incretin production.

In the present study, the influence of short-term
fasting on the serum concentration of GLP-1, one of the
crucial incretins, was examined and found that the GLP-1
levels were significantly suppressed in the insulin+rest
group compared to the other groups. In general, stimulation
of proliferation and inhibition of the apoptosis of beta cells
in vivo or in vitro studies are induced by a pharmacological
level of GLP-1 analogues with a longer half-life or continu-
ous infusion of GLP-1 (31, 32). Considering that the serum
levels of GLP-1 in all experimental groups are within phys-
iological level, and might not be enough to effectively cir-
cumvent apoptosis of 3 cells, it is believed that the advantages
of graft preservation by the resting protocol outweigh the
disadvantages of GLP-1 down-regulation, at least during the
initial avascular period following transplantation. Of partic-
ular interest, the resting protocol, used in combination with
GLP-1 analog administration, represents a promising regimen
for further improving the graft function in the liver.

In summary, the present study demonstrates that
short-term fasting combined with insulin treatment during
the initial avascular period after transplantation could be a
promising strategy for improving islet engraftment in the
liver. Further optimization of the present resting protocol,
especially with regard to the minimum duration of fasting,
would be facilitated by a prospective clinical study.

MATERIALS AND METHODS

Animals

All animals used in the present study were handled in accordance with the
Guide for the Care and Use of Laboratory Animals published by the National
Institutes of Health (33). Male Lewis rats were used as both donors (weighing
280-350 g, 10-12 weeks of age) and recipients (weighing 220-260 g, 8 weeks
of age) (Japan SLC Inc., Shizuoka, Japan).

Islet Isolation and Transplantation

Islet isolation and culture were performed as previously described (34).
Diabetic Lewis rats underwent intraportal islet transplantation after re-
ceiving isoflurane (Abbot Japan Co., Ltd., Tokyo, Japan) for anesthesia. Rat
islets were infused at a total volume of 1 mL into the recipient liver through
the portal vein using a 25-gauge insulin syringe.

Induction and Diagnosis of Diabetes in
the Recipients

Diabetes was induced by intravenous injection of streptozotocin (65 mg/kg)
7 days before surgery. Rats whose non-fasting blood glucose levels were
>400 mg/dL on two consecutive measurements were considered diabetic.
Serial blood glucose levels were determined, and recipients whose non-
fasting blood glucose was <200 mg/dL on two consecutive measurements
were considered to be cured.
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Experimental Groups

Four islet equivalents (IEQs) per gram of syngeneic rat islet grafts were
transplanted intraportally into three groups of streptozotocin-induced di-
abetic rats: the control, insulin-treated, and insulin-+rest groups (868+14,
886x11, and 895t8 IEQs/rat, respectively). The control group (n=8) fed
freely without insulin treatment during the study period. Both the insulin
(n=5) and insulin+rest (n=7) groups received continuous insulin (Eli Lilly
Japan Corp., Kobe, Japan) infusion intravenously from days 1 to 14 after
transplantation by the following method. At day 1, in both groups, a small-
gauge catheter was inserted into the right jugular vein under isoflurane
anesthesia. The proximal end of the catheter was tunneled subcutaneously,
exited between the shoulders and connected to a harness (Quick Connect
Infusion System with Harness; Strategic Applications Inc., Lake Villa, IL).
The catheter was then passed through a flexible and protective coil and
attached via a freely rotating swivel (Strategic Applications Inc.) to an in-
fusion pump (REGRO Digital; Ismatec SA, Glattbrugg, Switzerland).

The insulin dose was adjusted daily so that blood glucose levels
were maintained between 80 and 150 mg/dL (mean dose: insulin group
1.87£0.24 U/day, resting group 1.89+0.23 U/day, P=0.91).

In addition, the insulin+rest group fasted while receiving total parenteral
nutrition (TPN) from days 1 to 14 after transplantation. Nutritional sup-
port was prepared and infused under sterile conditions. The TPN solution
(FULCALIQ No. 3; Tanabe Seiyaku Co., Ltd., Osaka, Japan) was composed
of amino acids, dextrose, vitamins, and electrolytes. One liter contained
36.3 g of amino acids and 226.7 g of dextrose. Rats in the insulin+rest group
received approximately 300 kcal/kg per day infused at 1.05 kcal/mL x
2.7 mL/h (35-39).

Blood Analyses

Blood samples were collected from anesthetized rats via a tail incision on
days 0, 14, and 35. These samples ware centrifuged immediately for 10 min
at 2,200 g, and the resulting serum was frozen at —80°C until the analyses.
The serum levels of interleukin-6 (IL-6), monocyte chemoattractant
protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-a) were deter-
mined using a MILLIPLEX MAP Kit Rat (Millipore Corp., Billerica, MA).
The serum levels of 8-OHdG were determined using a Highly Sensitive
ELISA kit for 8-OHdG (NIKKEN SEIL Corp., Shizuoka, Japan) to analyze
the oxidative stress in the recipients. For the glucagon-like peptide-1 (GLP-1)
analysis, blood samples obtained on days 0 and 14 were collected into
microtubes containing a dipeptidyl peptidase 4 (DPP-4) inhibitor and
centrifuged immediately for 10 min at 1,000 g, and then the serum was
frozen at —80°C. The blood samples from the resting group on day 14 were
collected under fasting conditions. The serum levels of GLP-1 were de-
termined using a GLP-1 (Active) ELISA Kit (Shibayagi, Gunma, Japan).

Intravenous Glucose Tolerance Testing (IVGTT)

The IVGTT was performed 5 weeks after islet infusion. After a 14-hr fast,
p-glucose (1.0 g/kg) was infused intravenously as a single bolus, and the
blood glucose concentrations were determined before and at 5, 10, 20, 30,
60, 90, and 120 min after the glucose injection. The results of the IVGTT
were evaluated by area under the curve (AUC) and Kg values.

Quantitation of Insulin in the Recipient Livers

Recipient livers were retrieved and homogenized in 5 mL of deionized
water at 4°C. After adding 25 mL of deionized water and 75 mL of 0.18 M
HCl in 96% ethanol, the homogenate was stored at 4°C for 24 hr and was
then centrifuged at 2,150 g for 10 min. The resulting supernatant was stored
at —80°C. The insulin concentration in the supernatant was evaluated using
a commercial ELISA kit (Mercodia, Uppsala, Sweden).

Immunohistochemical Staining

The recipient livers with islet grafts were harvested and fixed with 4%
paraformaldehyde overnight, and embedded in paraffin for immunohis-
tochemical staining 14 days after transplantation. Immunohistochemical
staining was performed using an In Situ Apoptosis Detection Kit (Trevigen,
Inc. Gaithersburg, MD) for TUNEL staining, and an anti-von Willebrand
Factor (vWEF) antibody (Millipore) and Envision kit (Dako, Glostrup,

Copyright © 2014 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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Denmark) for vWF staining. At least 35 sections from each experimental
group (n=3, respectively) were evaluated for islet apoptosis by counting the
TUNEL-positive cells. For the evaluation of revascularization, the number
of new vessels around the grafts that consisted of vWE-positive cells was
compensated by graft size. The mean number of new vessels per islet area
from three individual experiments (at least 10 sections from one experi-
ment) was compared among the three groups. The count was per-
formed among triple-blind evaluations.

Statistical Analysis

All data are expressed as the meanstSEM and were compared using a
one-way factorial analysis of variance (ANOVA). The Bonferroni correction
was used as a post hoc test when the data were determined to be significant
by ANOVA. Differences were considered to be significant when P<0.05.
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A Review of Autologous Islet Transplantation
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Autologous islet transplantation after total or semitotal pancreatectomy aims to preserve insulin secretory func-
tion and prevent the onset of diabetes. The major indication for pancreatectomy is chronic pancreatitis with
severe abdominal pain, a benign pancreatic tumor, and trauma. The metabolic outcome of autologous islet
transplantation is better than that of allogeneic transplantation and depends on the number of transplanted
islets. Achieving islet isolation from a fibrous or damaged pancreas is one of the biggest challenges of autolo-
gous islet transplantation; a major complication is portal vein thrombosis after crude islet infusion. However,
the incidence of portal vein thrombosis has decreased as islet preparation techniques have improved over time.
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INTRODUCTION

Autologous islet transplantation may prevent the onset
of postoperative diabetes. Even if some exogenous insu-
lin is required, diabetic control is simplified because the
transplanted islets produce insulin in the long term. The
major indication of pancreatectomy is chronic pancreatitis
with severe abdominal pain. The first total pancreatectomy
with autologous islet transplantation was carried out in
1977 at the University of Minnesota (28). Recently, some
institutions have reported high numbers of autologous
islet transplantation, including the University of Alberta
(15 cases in 2012) (12), the University of South Carolina
(33 cases in 2012) (19), the Baylor Research Institute (17
cases in 2010) (29), the University of Alabama (27 cases
in 2009) (3), the University of Minnesota (86 cases in
2009) (2), the University of Leicester (46 cases in 2008)
(32), and the University of Cincinnati (45 cases in 2005)
(1). Here we review the current status of autologous islet
transplantation.

Indications

Autologous islet transplantation is chiefly applied after
a pancreatectomy to relieve pain due to chronic pancreati-
tis. However, the indications of total pancreatectomy are
strict (5). The first step in managing pain due to chronic

pancreatitis is to confirm its diagnosis. The next step is to
search for complications related to the diagnosis, includ-
ing pancreatic cancer and gastroparesis, which should be
treated first. Abstinence from tobacco and alcohol prior
to and during the autologous islet transplantation pro-
cess is essential (6). Medical therapy includes the use of
nonsteroidal anti-inflammatory drugs, narcotic analgesic
agents, antidepressant agents, and pancreatic enzymes.
Endoscopic therapy, including ductal decompression, is
limited to the dilated main pancreatic duct and requires the
highest level of experience. The most commonly performed
procedure for chronic pancreatitis with a dilated pancreatic
duct is Jateral pancreaticojejunostomy (27). A part of the
pancreas is also resected. The final surgical component is
total pancreatectomy with autologous islet transplantation.
Autologous islet transplantation is applied after partial
pancreatectomy in cases of insulinoma (20), neuroendo-
crine tumeors, and cystic neoplasms of the pancreas (11,23).
We have also experienced two cases of autologous islet
transplantation following a distal pancreatectomy. In these
cases, tumors such as microcystic serous cystadenoma and
intraductal papillary mucinous adenoma were present in
the center of the pancreas; the tail part of the pancreas was
digested and infused into the patient. In addition, autologous
islet transplantation has been performed for trauma (10).
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Islet Preparation and Transplantation

In cases of chronic pancreatitis, islet isolation is dif-
ficult because of the presence of fibrous tissue in pan-
creatic parenchyma. The method of islet isolation for
autologous transplantation is not different from that
for allogeneic transplantation. Islets are isolated using
Ricordi’s method (22) with modifications by each faculty.
Collagenase, which is used to digest the pancreas, is a crit-
ical factor affecting isolation results. Liberase HI (Roche
Diagnostics, Indianapotis, IN, USA) was widely used for
clinical islet isolation for more than 10 years. However,
this enzyme was disqualified from clinical use because of
the potential risk of transmissible spongiform encephalop-
athy. Currently, the SERVA/Nordmark Collagenase NB1
and Neutral Protease NB Blend (SERVA Electrophoresis,
Heidelberg, Germany) and Liberase MTF (mammalian
tissue free) are used for clinical islet isolation (2,15). The
development of new enzyme blends containing purified
collagenases from Clostridium histolyticum and a neu-
tral protease from Bacillus thermoproteolyticus rokko or
C. histolyticum has also progressed (4).

Islets are generally transplanted into the portal vein
immediately after jsolation. Heparin is infused intrave-
nously or with islet suspension to prevent clot formation
around islets. Portal vein pressure is monitored during
infusion. If portal hypertension (>25-28 mm H,0) is
observed, infusion into the portal vein is abandoned, and
the remaining islets are transplanted into other sites.

Preventing hyperglycemia during the operative period
is important because it can damage islet cells as a result of
islet exhaustion (24). Hyperglycemia is reported to decrease
blood flow in the transplanted islets and inhibit their vas-
cularization (7). Glucose-containing solutions should not
be administered to patients before islet cell infusion. More-
over, IV exogerous insulin administration is essential after
transplantation (14),

Complications

Portal vein thrombosis can occur after autologous islet
transplantation. The Leicester group reported their expe-
riences with 24 patients who underwent this process (33),
in which one patient (4.2%) developed portal vein throm-
bosis and was subsequently treated with anticoagulant
therapy. The University of Cincinnati group reported por-
tal vein thrombosis in 1 (0.9%) of 107 cases (30) that was
treated with a combination of mechanical thrombectomy
and thrombolytics. The Baylor group reported that major
portal vein thrombosis with radiological intervention was
required in 1 (3.8%) of 26 autologous islet transplanta-
tion procedures (15). The University of Minnesota (31)
and University of Alabama (3) groups have reported 48
and 26 cases of autologous islet transplantation, respec-
tively; neither group reported any patient who developed
portal vein thrombosis. The crude preparation increased

MARUYAMA ET AL.

thrombogenicity due to elevated thromboplastin activ-
ity (8,30). The University of Alberta group reporied that
nonpurified islet autologous transplantation increases the
risk of acute portal hypertension compared to allogeneic
islet transplantation; in addition, they have reported that
portal hypertension is associated with the packed cell vol-
ume and number of transplanted cells (12).

Several cases of disseminated intravascular coagu-
lation (DIC) after transplantation have been reported
(8,16). Severe postoperative hemorrhage was observed in
some cases. The presence of tissue factor from the minc-
ing of the pancreas is suggested to be an initiating factor
for the development of thrombosis and DIC. Heparin is
infused before autologous islet transplantation to prevent
clot formation. One case of heparin-induced thrombocy-
topenia has been reported (21). The incidence of portal
vein thrombosis has decreased over time as the technique
of islet preparation has improved.

Postoperative infectious complications require atten-
tion because pancreatic fluid is frequently reported to
be infected (18). The University of Cincinnati group
reported that 25 (89.3%) of 28 patients had bacterial
culture-positive media solution (transport or transplanta-
tion solution); however, only four (14.3%) patients had
an infectious complication (35).

The Leicester group reported splenic infarction after
spleen-preserved total pancreatectomy and autologous
islet transplantation into the spleen (34). They mention
that if the splenic artery and vein are ligated, the spleen
should be used for islet transplantation with caution.

Transplantation Site

Most programs apply intraportal infusion to the liver
because of its large capacity to receive transplanted islets
as well as the relative ease of transplantation with minimal
side effects. However, the liver may not be the optimal
transplantation site (25,26). The liver presents unstable
environments for the islets including variable oxygen
availability and angiogenic activity. Postprandial hyper-
glycemia in the liver may affect islet B-cells. Insulin and
glucagon from the islets transplanted in the liver drain
into the systemic vein and not into the portal vein. The
spleen and intra-abdominal cavity, especially the omen-
tal pouch, are suggested to be optimal autologous islet
transplantation sites (9). Theoretically, the spleen pro-
vides an environment similar to the native pancreas for
the transplanted islets. Moreover, insulin naturally drains
into the portal vein. However, as described above, islet
transplantation into the spleen confers risks of splenic
infarction and portal vein thrombosis. The intraperito-
neal and omental pouch sites are suitable for transplant-
ing unpurified autologous islets because they do not limit
the amount of transplanted tissue (13). Furthermore, the
omentum has a relatively high blood content and a number
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of blood vessels, which increases the vascular supply to
the transplanted islets. However, a large number of islets
are required to actually reverse hyperglycemia (17).

At present, comparatively pure islets should be trans-
planted via the portal vein while monitoring the portal
vein pressure; if the portal vein pressure is elevated,
relatively crude islets should be transplanted into the
omental pouch.

Metabolic Outcome

The University of Minnesota, University of Alabama,
University of Cincinnati, and University of Leicester have
reported on the metabolic outcomes of autologous islet
transplantation. The Minnesota group used two different
enzyme blends: Liberase HI (LH) and SERVA/Nordmark
(SN). In the LH group (n=33), 5 patients (15%) were insu-
lin independent, 21 (64%) had partial function, and 7 had
graft failure. In the SN group (n=26), 6 patients (23%)
were insulin independent, 19 (73%) had partial function,
and 1 had graft failure, If 5,000 IEQ/kg islets were trans-
planted, the probability of graft function was 100% (2).
The Alabama group reported that insulin independence
was not achieved in any of their patients (n=27); how-
ever, the total number of transplanted islets was very low
(1,331+304 IEQ/kg, mean+SEM) (3). Meanwhile, the
Cincinnati groupdivided 45 patients into insulin-dependent
(27 patients, 60%) and insulin-independent (18 patients,
40%) groups. The number of transplanted islets was sig-
nificantly greater in the insulin-independent group than in
the insulin-dependent group (6,635£229 vs. 3,799+ 629),
Interestingly, only ! of 15 male patients achieved insu-
lin independence, in contrast to 17 of 30 female patents.
The authors reported that the possible reason of higher
islet yields in women was that they were 10 kg lighter
than men, on average (1). The Leicester group reported
the long-term assessment of graft function. Twelve of 46
patients (26%) showed periods of insulin independence
for 2-63 months. Over a 10-year follow-up period, nota-
ble increases in insulin requirements and the percentage of
glycosylated hemoglobin levels were observed. However,
all tested patients were C-peptide positive, and high fast-
ing and stimulated C-peptide values were recorded 10
years after transpiantation (32).

CONCLUSIONS

Total pancreatectomy may provide pain relief for
patients with chronic pancreatitis when other therapies
have failed. Autologous islet transplantation is performed
to prevent or minimize postsurgical diabetes. In addition,
it is performed after total or partial pancreatectomy for
benign pancreatic tumors and trauma. The major com-
plication is portal hypertension and portal thrombosis.
Improvements in islet preparation have decreased the
incidence of portal vein thrombosis.
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