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infected and uninfected tumor tissues. Similarly, a combina-
tion therapy that involves Ad-p53 and bevacizumab, a mono-
clonal antibody specific for VEGF-A, or FasL (CD95L)
transduction may be more effective than monotherapy with
Ad-p53 in completely eradicating tumor cells (Figure 4).

4. Preclinical studies of replication-competent
CRAd-p53 vectors

Although clinical studies have demonstrated that replication-
deficient Ad-p53 vector was safe, feasible and well tolerated
in patients with various cancers (Table 1), it would be impos-
sible to induce profound exogenous p53 expression in every
tumor cell via this Ad-p53 vector. The low transduction rate
of p53 gene transfer via Ad-p53 vector is a major problem
that must be overcome to improve the clinical outcomes of
patients with advanced cancers. Tumor-specific, replication-
competent oncolytic adenoviruses are being developed as
novel vectors for anticancer gene therapies; in these vectors,
the promoters of cancer-related genes are used to regulate
virus replication in a tumor-dependent manner. There are
several types of p53-expressing conditionally replicating ade-
novirus CRAd-p53 vectors, such as AdDelta24-p53 (s9),
SG600-p53 [90] and OBP-702 (Figure 1B) [91]. Next, we dis-
cuss the therapeutic potential of CRAd-p53 vectors in
adenovirus-mediated p53 cancer gene therapy.

4.1 AdDelta24-p53

van Beusechem e¢r al. previously constructed a novel
p53-expressing CRAd vector, AdDelta24-p53, in which the
RB protein-binding CR2 domain (24 base pairs) of the E1IA
region was deleted and the p53 expression cassette under the
regulation of simian virus 40 early promoter was inserted
into the E3 region (Figure 1B) (89]. AdDelta24-p53 suppressed
the viabilities of many types of human cancer cells more effi-
ciently that AdDelta-24. Moreover, AdDelta24-p53 enhanced
the sensitivity of radiation in human glioma cells [92.
However, some human cancer cells with overexpression of
the p53-negative regulator MDM2 were resistant to AdDel-
ta24-p53 because MDM2 protein efficiently suppresses exog-
enous p53 expression. Therefore, a novel CRAd-p53 vector
expressing an MDM2-resistant p53 variant, AdDelta24-p53
(14/19), has been developed (Figure 1B) [93]. AdDelta24-p53
(14/19) induces exogenous expression of a variant form of
p53 that is incapable of binding to MDM2 and is resistant
to MDM2-dependent degradation. AdDelta24-p53(14/19)
was 10 times more effective than AdDelta24-p53 in killing
MDM2-overexpressing human cancer cells. These findings
suggest that suppression of MDM2-dependent p53 negative
regulation is an effective strategy for enhancing the antitumor
efficacy of adenovirus-mediated p53 cancer gene therapy.

4.2 SG600-p53
Wang ez al. recently developed a triple-regulated CRAd carry-
ing a p53 gene expression cassette, SG600-p53, in which the

EIA gene with a deletion of 24 nucleotides in the
CR2 region is controlled by the human telomerase reverse
transcriptase promoter (W\TERT-p) and the £7B gene is regu-
lated by the hypoxia response element and the p53 gene
cassette controlled by the cytomegalovirus promoter is
inserted between the E1A and E1B regions (Figure 1B) [90].
SGG600-p53 was more cytopathic than Ad-p53 vector in the
suppression of in vitro cell viability and iz vivo tumor growth
in human tumor cells (90}, whereas intravenous or intramuscu-
lar injection of SG600-p53 had no adverse effects in rodents
and nonhuman primates (94]. These findings suggest that
CRAd-p53 vector is a safe and effective therapy for inducing

antitumor effects.

4.3 OBP-702

We previously developed a telomerase-specific replication-
competent oncolytic adenovirus, OBP-301 (Telomelysin), in
which the hTERT-p drives the expression of two adenoviral
genes, EIA and EIB, that are linked to an internal ribosome
entry site [74]. OBP-301 induces tumor-selective oncolysis in
a telomerase-dependent manner (74-76]. In a Phase I clinical
study, OBP-301 was well tolerated 95]. Since the combination
therapy of Ad-p53 and OBP-301 enhanced p53 expression
and resulted in a more profound antitumor effect when com-
pared to monotherapy with either OBP-301 or Ad-p53 (771,
we generated an armed OBP-301 variant (OBP-702)
(Figure 1B) that expresses the wild-type p53 gene; this variant
suppressed the viabilities of both OBP-301-sensitive and
OBP-301-resistant tumor cells more efficiently than Ad-p53
or OBP-301 in epithelial and mesenchymal tumor cells [83.91].
Ad-p53 and OBP-301 mainly induce apoptotic and autopha-
gic cell death, respectively, whereas OBP-702 can cause both
apoptotic and autophagic cell deaths via exogenous p53
overexpression in tumor cells. These results suggest that
CRAd-p53 vector efficiently induces both apoptotic and
autophagic cell death via p53 overexpression.

5. Molecular mechanism of antitumor effect
induced by CRAd-p53 vector

CRAd-p53 vector induces higher p53 expression and stronger
antitumor effects through induction of cell death than Ad-
p53. Although the molecular mechanism by which CRAd-
p53 vector is superior to Ad-p53 vector to induce cell death
remains to be elucidated, we recently demonstrated that
CRAd-p53 vector induces a profound antitumor effect via
E1A-dependent enhancement of viral replication and the
p53-mediated cell death signaling pathway. We next discuss
advances in the understanding of the molecular mechanism

of the CRAd-p53-mediated antitumor effect.

5.1 p53-mediated cell death signaling pathway

When tumor cells were infected with a similar dose of Ad-p53
or CRAd-p53 (OBP-702), OBP-702 induced a much higher
level of p53 expression than Ad-p53 (83.911. However, despite
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the higher p53 expression, the expression levels of p53-down-
stream targets p21 and MDM2 were lower in the
OBP-702-infected tumor cells than in the Ad-p53-infected
tumor cells (91]. This discrepancy between the expression levels
of p53 and p53-downstream target genes was due to adenovi-
ral ETA accumulation, which was involved in the suppression
of p21 and MDM2 and contributed to the profound antitu-
mor effect. Thus, OBP-702 induces an antitumor effect
more efficiently than Ad-p53 via E1A-dependent enhance-
ment of virus replication and p53-mediated cell death
signaling pathway.

5.2 E1A-dependent miRNA regulatory network

CRAd-p53 vector possesses the E1A4 gene under the regula-
tion of a tumor-specific promoter for viral replication,
although a replication-deficient Ad-p53 vector is E1A-defi-
cient. Recently, we demonstrated that adenoviral E1A-
dependent activation of the transcription factor E2F1
upregulates two miRNAs, 7:R-93 and miR-106b, which effi-
ciently suppress p21 expression in OBP-702-infected tumor
cells; this suppression of p21 leads to the enhancement
of p53-induced apoptosis and autophagy in these cells
(Figure 5) (s3]. Interestingly, E2F1 has also been suggested to
suppress MDM2 expression by inducing upregulation of
miR-25 and miR-32, which target MDM2 (9¢]; therefore, the
E1A-dependent miRNA regulatory network may be impli-
cated in the fine-tuning of the p53-mediated cell death
signaling pathway. Exploration of the crosstalk between the
MDM2-p53-p21 pathway and the EIA-E2F1-miRNA
pathway may clarify the molecular mechanism of
p53-induced apoptosis and autophagy in OBP-702-infected

tumor cells.

6. Conclusion

Adenovirus-mediated p53 cancer gene therapy is a promising
antitumor strategy to induce a profound p53-mediated cell
death signaling pathway in tumor cells. Clinical studies of
replication-deficient Ad-p53 vectors (Advexin, Gendicine
and SCH-58500) have shown that administration of Ad-
p53 vector by intratumoral, intraperitoneal and intravesical
approaches is a safe, feasible and effective antitumor strategy
against many types of cancers. However, Ad-p53-mediated
p53 activation is often insufficient for efficiently inducing
cell death pathways in tumor tissues; therefore, replication-
competent oncolytic adenoviruses that express p53, such as
AdDelta24-p53 891, SG600-p53 [90] and OBP-702 (91, have
recently been developed to improve the clinical outcome of
adenovirus-mediated p53 cancer gene therapy (Figure 1).
Moreover, given the underlying molecular mechanisms of
the p53-mediated tumor suppression network induced by
Ad-p53 and CRAd-p53 vectors, we should make an effort
to develop safe and effective cancer gene therapies that are
based on the potent tumor suppressor p53 gene.

Advances in adenovirus-mediated p53 cancer gene therapy

7. Expert opinion

Adenovirus-mediated p53 cancer gene therapy is a promising
antitumor therapy to restore the wild-type p53 function,
because many human cancers lose p53 function due to genetic
alterations in the p53 gene. Over the past decade, clinical stud-
ies have shown that replication-deficient Ad-p53 vector admin-
istered with various injection approaches is safe, feasible and
well tolerated in patients with malignant tumors. However,
the antitumor efficacy of Ad-p53 vector in clinical studies has
been limited in some cancer patients, unlike the antitumor
effect of Ad-p53 vector in preclinical experiments. To improve
the therapeutic potental of Ad-p53 vector, we must develop
an effective strategy for Ad-p53-based cancer gene therapy.
Since mesenchymal types of malignant tumors, including oste-
osarcomas, are sensitive to p53 restoration in preclinical
experiments [97-100], sarcoma patients may also be good candi-
dates for treatment with Ad-p53-based cancer gene therapy.
Based on preclinical experiments for the improvement of
Ad-p53-mediated antitumor efficacy, several combination ther-
apies with E1A-expressing replication-competent adenovirus,
MDM2 inhibitors and p21-targeted siRNA/miRNA would
enhance the therapeutic potential of Ad-p53 vector via an
increased p53-mediated cell death signaling pathway. More-
over, antiangiogenic therapy with bevacizumab and proapop-
totic therapy via the Fas receptor/ligand system would also
promote the bystander effect of Ad-p53 therapy. In contrast,
replication-competent p53-expressing CRAd-p53 vector may
be superior to Ad-p53 vector in inducing the p53-mediated
cell death signaling pathway via not only viral replication but
also E1A-dependent suppression of p21/MDM?2 expression.
Exploration of the interaction between p53- and ElA-
mediated signaling pathways is needed to understand the
molecular mechanism of the CRAd-p53-mediated antitumor
effect. In the near future, clinical studies of CRAd-p53 vectors
should be conducted to evaluate the safety and antitumor effi-
cacy of CRAd-p53 in cancer patients. Moreover, to improve
the clinical outcome of adenovirus-mediated p53 cancer gene
therapy in patients with advanced cancers, we must develop a
delivery system for intravenous administration of Ad-p53 and
CRAd-p53 vectors because metastatic tumors are often directly
inaccessible. In particular, tumor-specific delivery system of
adenoviral vectors using carrier cells or nanotechnologies
would be a promising antitumor strategy to overcome preexist-
ing or induced immunity to adenoviral vectors. Thus, the
development of potent p533-expressing adenovirus vectors and
delivery systems would provide great opportunities to treat
p53-inactivated primary and metastatic tumors.
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Oncolytic Adenovirus-Induced Autophagy:
Tumor-Suppressive Effect and Molecular Basis
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Autophagy is a catabolic process that produces energy through lysosomal degradation of intracellular
organelles. Autophagy functions as a cytoprotective factor under physiological conditions such as
nutrient deprivation, hypoxia, and interruption of growth factors. On the other hand, infection with
pathogenic viruses and bacteria also induces autophagy in infected cells. Oncolytic virotherapy with
replication-competent viruses is thus a promising strategy to induce tumor-specific cell death.
Oncolytic adenoviruses induce autophagy and subsequently contribute to cell death rather than cell
survival in tumor cells. We previously developed a telomerase-specific replication-competent oncolytic
adenovirus, OBP-301, which induces cell lysis in tumor cells with telomerase activities. OBP-301-
mediated cytopathic activity is significantly associated with induction of autophagy biomarkers. In this
review, we focus on the tumor-suppressive role and molecular basis of autophagic machinery induced
by oncolytic adenoviruses. Addition of tumor-specific promoters and modification of the fiber knob of
adenoviruses supports the oncolytic adenovirus-mediated autophagic cell death. Autophagy is cooper-
atively regulated by the El-dependent activation pathway, E4-dependent inhibitory pathway, and
microRNA-dependent fine-tuning. Thus, future exploration of the functional role and molecular
mechanisms underlying oncolytic adenovirus-induced autophagy would provide novel insights and
improve the therapeutic potential of oncolytic adenoviruses.

Key words: oncolytic adenovirus, autophagy, E2F1, microRNA

A utophagy is a catabolic process that produces infected cells [5, 6]. Virus-mediated autophagy func-
energy through the lysosomal degradation of  tions as an antiviral defense to eliminate viral compo-
cytoplasmic organelles in autophagosomes [1]. nents in the innate immune system and as virus repli-
Physiological conditions such as nutrient deprivation  cation machinery to produce virions in the viral life
[2], hypoxia [3], and abrogation of growth signaling  cycle [5]. Oncolytic virotherapy with replication-
[4] induce autophagy as a cytoprotective function. On  competent oncolytic viruses is a promising antitumor
the other hand, infection with pathogenic viruses and  strategy to induce tumor-specific cell death [7].
bacteria can also activate the autophagic machinery in ~ Among the oncolytic viruses, oncolytic adenoviruses
frequently induce autophagy and consequently contrib-
Received August 30, 2013; accepted September 26, 2013. ute to cell death in tumor cells [8-10]. We previously

Con:esponding author. Phone:+8.1*86*235*7491; Fax:+81-86-235-7492 generated a telomerase-speciﬁc, replication-competent
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$The winner of the 2012 Incentive Award of the Okayama Medical Association oncoly’Fic adenovirus, OBP'BO]" which drives the
in Medical Science. adenoviral E1A and E1B genes under the control of the
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human telomerase reverse transcriptase (ATERT) ute to cell death rather than cell survival in tumor
promoter for tumor-specific virus replication and cells. For example, a conditionally replicating onco-
induces oncolytic cell death in tumor cells with telom-  lytic adenovirus, hTERT-Ad, which contains a 255-
erase activities [11]. OBP-301 induces autophagy- bp hTERT promoter fragment in the E1A promoter
related cell death primarily in tumor cells [12, 13]. region for tumor-specific virus replication, induces
To enhance the antitumor effect of OBP-301, we  autophagic cell death in malignant brain tumor cells
generated an armed OBP-301 variant (OBP-702) that  [8]. Our hTERT promoter-driven oncolytic adenovi-
expresses the tumor suppressor p53 gene. OBP-702  rus, OBP-301, which contains a 455-bp hTERT
exhibits a more profound antitumor effect in associa-  promoter, also induces autophagic cell death in tumor
tion with autophagic and apoptotic cell death than cells with telomerase activities [12, 13]. An RGD
OBP-301 [14]. Interestingly, we found that the fiber-modified OBP-301 variant (OBP-405) and a p53-
E1A-mediated microRNA (miRNA) signaling pathways  expressing OBP-301 variant (OBP-702) also induce
were involved in the OBP-301- and OBP-702-mediated  more profound autophagic cell death than OBP-301 in
autophagic death of tumor cells [13, 14]. In the press malignant brain tumor cells [15] and mesenchymal
ent review, we focus on the tumor-suppressive role of  tumor cells [14], respectively. Tumor-specific sur-
autophagy induced by oncolytic adenoviruses and the  vivin promoter-driven oncolytic adenoviruses, CRAd-
molecular mechanisms underlying the oncolytic adeno-  S-pk7 and CRAd-S-RGD, which contain modified fiber

virus-induced autophagic cell death of tumor cells. knobs with PK7 and RGD motifs, respectively, also
induce autophagic cell death in malignant brain tumor

Tumor-Suppressive Role of Oncolytic cells [10, 16]. In contrast, an oncolytic adenovirus,
Adenovirus-Induced Autophagy Delta-24-RGD, which lacks 24 bps (919-943) in the

E1A region that binds to tumor suppressor retino-

Recent evidence in oncolytic virotherapy has shown  blastoma (Rb) protein and contains RGD-modified fiber
that autophagy induction is associated with both cell  knobs, induces autophagic cell death in malignant
death and cell survival in tumor cells infected with  brain tumor cells [9, 17-19]. Human chorionic
oncolytic adenoviruses (Table 1). Most oncolytic ade-  gonadotropin (hCG)-expressing oncolytic adenovirus
noviruses induce autophagy and subsequently contrib-  Ad5/3A24hCG, which lacks a 24-bp segment (919~

Table 1 Role of autophagy induced by oncolytic adenoviruses

Onoo!ytp E1 Promoter E1A region E1B region Fiber knob Transgene Function of
adenovirus autophagy

bBP-405 Cell death

th

1y
dl922-947 wild-type del (922-947) + wild-type — Cell survival
hTERT, human telomerase reverse transcriptase; RGD, arginine-glycine-aspartate motif; PK7, polylysine motif; hCG, human chorionic
gonadotropin; LC3, microtubule-associated protein 1 light chain 3; AVO, acidic vesicular organelle; Atg5, autophagy-related 5; mTOR,
mechanistic target of rapamycin; EGFR, epidermal growth factor receptor; FADD, Fas-associated via death domain; DRAM, DNA-
damage regulated autophagy modulator.
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943) of the E1A region and contains Ad5/3-modified Biomarkers for Oncolytic Adenovirus-
fiber, also induces autophagic cell death in human Mediated Autophagy

cancer cells [20]. However, one type of oncolytic

adenovirus, d1922-947, induces autophagy as a cyto- When tumor cells are infected with oncolytic aden-

protective function [21, 22]. A 24-bp segment (922-  oviruses, the modulation of autophagy-related marker
947) of the E1A region is deleted in d1922-947; this  proteins, such as autophagy-related 5 (Atgb) [23],
deleted area is similar to the 24-bp deletion (919-943)  microtubule-associated protein 1 light chain 3 (LC3)
in the E1A region of Delta-24-RGD. However, infec- [24], and p62 [25], is observed in the infected tumor
tion with d1922-947 induces autophagy as a cell-sur-  cells (Table 1 and Fig. 1). After infection with onco-
vival mechanism in ovarian cancer cells [21] and lytic adenoviruses, Atgb expression is upregulated
brain tumor cells [22]. The relationship between  following viral replication in the infected tumor cells
oncolytic adenoviruses and the function of autophagy  [9]. Atgb is conjugated with Atgl2 to form the Atgh-
is summarized in Table 1. Oncolytic adenoviruses that  Atgl2 complex, which accumulates in the isolation
induce autophagic cell death have tumor-specific pro- membrane derived from the phagophore. The long
moters for promoting viral replication and/or modified  form of LLC3-I is then converted to the short form of
fiber knobs for enhancing virus infection, whereas only ~LC3-II. LC3-II, p62, and intracellular organelles
dl922-947, which induces cytoprotective autophagy, cooperatively bind to the isolation membrane contain-
possesses both the wild-type E1 promoter and wild- ing the Atg5-Atgl2 complex. Autophagosomes fuse
type fiber knobs. These findings suggest that oncolytic ~ with lysosomes to become autolysosomes, which are
adenoviruses with tumor-specific promoters and fiber  acidic vesicular organelles (AVOs) in which p62 and
modifications induce a greater amount of autophagy intracellular organelles are degraded. Thus, oncolytic
through the enhancement of viral replication and infec-  adenovirus-induced autophagy can be confirmed by
tion efficiency than wild-type adenovirus, probably detecting changes in autophagy-related biomarkers,
resulting in cell death rather than cell survival in  including Atgd upregulation [9, 13, 14, 17, 18],
tumor cells. LC3-II upregulation [8, 9, 13-19, 22], p62 down-

regulation [13, 14, 18, 19, 22], and formation of

cytoplasmic AVO [8-10, 12, 15-22]. Many oncolytic

Table 1 Continued from the opposite page

Autophagy-related markers Autophagy-inducing factors References

LC3-It, AVO Y Rapamycin (mTOR inhibitor) Yokoyama et al. [15]

LC3-1l1, Atg51, AVO 1 Jiang et al. [9]

AVO * 4 Suppression of Mre11 Rajecki et al. [20]

LC3It, p62}, AVO? Botta et al. [22]
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Schematic diagram of oncolytic adenovirus-mediated autophagy induction. In tumor cells infected with oncolytic adenovirus,

Atg5 expression is upregulated following viral replication. The Atg5-Atg12 complex binds to the isolation membrane. After conversion from
LC3-Ito LC3-ll, LC3-ll, p62, and intracellular organelles cooperatively accumulate in the isolation membrane, resulting in the formation of
autophagosomes, which fuse with lysosomes to form autolysosomes, in which the p62-binding cytoplasmic organelle is degraded under the

acidic condition and p62 expression is decreased.

adenoviruses induce these autophagy-related markers
in tumor cells (Table 1).

Mechanism of Oncolytic Adenovirus-Mediated
Autophagy Induction

With respect to the molecular mechanism of the
oncolytic adenovirus-mediated autophagy induction,
adenoviral DNA-derived proteins, including E1A,
E1B, and E4, function as pro-autophagic and anti-
autophagic factors. The E1A and E1B proteins
mainly act as autophagy-inducing factors (Fig. 2). In
fact, when 3 types of adenovirus vectors with differ-
ent E1A and E1B regions, i.e., the wild-type adenovi-
rus serotype 5 (Add), E1B-deleted Adhz60, and E1A-
and E1B-deleted AdlacZ, were compared with respect
to their induction of autophagy in human tumor cells,
Ad5 induced a higher level of autophagy than E1B-
deleted Adhz60, and E1A- and E1B-deleted AdlacZ
hardly induced autophagy [26], suggesting the critical
role of E1A and E1B in adenovirus-mediated autophagy
induction. Adenoviral E1A protein binds to tumor
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suppressor Rb protein, which results in the activation
of transcription factor E2F1 [27]. E2F1 activation
induces autophagy through the upregulation of
autophagy-related markers, such as Atgh and L.C3, in
a transactivation-dependent and a transactivation-
independent manner [28, 29]. ElA-mediated E2F1
upregulation may be mainly involved in the upregula-
tion of Atgb and L.C3-II after adenovirus infection. In
contrast, adenoviral E1B protein interacts with pro-
autophagic Beclinl through dissociation of the
Beclinl-B cell/CLL lymphoma 2 (BCLZ2) complex,
contributing to the induction of Beclinl-dependent
autophagy [19]. E1B protein has also been suggested
to induce autophagy through the inhibition of Mrell
activity and dissociation of the Mrell-Rad50-NBS1
complex, contributing to the enhancement of radio-
sensitivity in human cancer cells [20, 30]. E1B may
act mainly to support the E1A-mediated autophagy
induction. Moreover, oncolytic adenovirus-induced
autophagy may be enhanced by activation of the Fas-
associated via death domain (FFADD)/caspase-8 signal-
ing pathway [18] and result in autophagic cell death





