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Figure 1| Cellular defense mechanisms against hypoxia and oxidative stress (0S). (Upper panel) Prolylhydroxylase-hypoxia-inducible
factor (PHD-HIF) pathway under hypoxia. HIF-o. is constitutively transcribed and translated. Its level is primarily regulated by its rate of
degradation. Oxygen determines its stability through its enzymatic hydroxylation by PHDs. Hydroxylated HIF-o is recognized by Hippel-Lindau
tumor-suppressor protein (pVHL) and rapidly degraded by the proteasome. Nonhydroxylated HIF-o does not interact with pVHL and is
thus stable. It binds to its heterodimeric partner HIF-o mainly in the nucleus and transactivates genes involved in the adaptation to
hypoxic-schemic stress. Expression of PHDs (PHD2 and PHD3) is regulated by HIF. PHDs interact with Siah1a/2 (PHD1 and PHD3) or FKBP38
(PHD2) and are subject to proteasomal degradation. PHD activity is inhibited under hypoxia or by nitric oxide, reactive oxygen species (ROS),
transition metal chelators, cobalt chloride, 2-oxoglutarate analogs, or TM6008/TM6089. (Lower panel) Keap1-Nrf2 pathway under OS. Nrf2 is
constitutively transcribed and translated. Its level is primarily regulated by its rate of degradation by Keap1. Under OS, reactive cysteines
within the Keap1 moiety undergo conformational changes, eventually leading to detachment of Nrf2 from Keap1 and to inhibition of its
ubiquitination. OS thus inhibits the degradation of Nrf2 and facilitates nuclear translocation of Nrf2. Nrf2 then heterodimerizes with a small
Maf protein, binds to the antioxidant/electrophile-responsive element (ARE/EpRE), and transactivates a variety of antioxidant genes. GSH-Px2,
glutathione peroxidase-2; HO-1, heme oxygenase-1; NQO1, NAD(P)H-quinone oxidoreductase 1; Nrf2, nuclear factor-erythroid 2 p45-related
factor 2; VEGF, vascular endothelial growth factor.

ubiquitination. OS thus inhibits the degradation of Nrf2,
facilitating its nuclear translocation.

In Keapl knockdown mice, Nrf2-regulated gene expres-
sion significantly increases and ameliorates oxidative liver
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injuries in obstructive cholestasis.?* Inhibition of Keapl
might thus afford tissue protection against hypoxia through
an increased nuclear translocation of Nrf2 and the ensuying
activation of antioxidant genes.
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REP cells

EPO is produced in the liver by hepatocytes as well as in
the kidney by a specific cell lineage located within the
peritubular interstitium.>*3%> The latter cells, referred to as
REP cells, exhibit a fibroblastic phenotype with several
projections extending between tubular and endothelial cells
(Figure 2).8%% REP cells likely originate from the neural crest®
as they express some neural cell markers. They are widely
distributed in the interstitium of cortex and outer medulla.®>8
Under normal conditions, only a very small population of the
REP cells, mainly located in the outer medulla (corresponding
to a lower oxygen concentration, 10-15mmHg), produce
EPO.* Under moderate anemia, for example, induced in mice
by bleeding, the REP cells located in the inner cortex are
stimulated to produce EPO. Under severe chronic anemia,
almost all REP cells including those in the outer cortex
contribute to EPO production. Renal EPO production thus
appears regulated by an ON/OFF mode, that is, by the number
of EPO-producing REP cells (ON-REP cells) rather than by the
gradual regulation of the expression levels in each REP cell. 487
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Erythropoiesis and renal fibrosis
During CKD progression, myofibroblasts emerge in the
peritubular interstitium, and their expansion eventually leads
to the end-stage renal failure.”® The myofibroblasts in renal
fibrosis were initially thought to originate from a variety of
cell types including tubular epithelial cells and vascular
smooth muscle cells.’®% However, recent studies have shown
that this is not the case. A gene-modified mouse line meant
to trace the fate of REP cells has demonstrated that the REP
cells transform to myofibroblasts in an experimental CKD
model generated by unilateral ureteral obstruction.’
Almost all myofibroblasts expressing o-smooth muscle
actin are derived from the REP cells, which are innately
peritubular interstitial fibroblastic cells expressing neural
cell marker genes but not o-smooth muscle actin (Figure 2).
No myofibroblastic cell derived from the tubular epithelium
or the vasculature was found, at least in the unilateral ureteral
obstruction-treated CKD model mice.

Ureteral obstruction immediately suppresses the EPO-
producing ability of REP cells, and induces their transformation®
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Figure 2| Relevance of REP cells to renal fibrosis. REP (renal erythropoietin (EPO)-producing) cells are peritubular interstitial cells
distributing over all the renal cortex (top). An electron microscopic image of the interstitium of renal cortex is shown in the inlet picture: REP
cells localized in a transgenic mouse between tubular epithelial cells (TECs) and vascular endothelial cells (ECs). Inflammatory signals in
chronic kidney disease (CKD) transform REP cells into the myofibroblasts and deteriorate their EPO-producing ability (middle). In the early
phase of renal fibrosis, REP cells may recover their initial nature through the correction of the inflammatory milieu. However, during prolonged
CKD progression, the transformed REP cells are no longer able to regain their EPO-producing ability (bottom).
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(Figure 2). The loss of renal EPO production eventually leads to
anemia. Myofibroblastic transformation in tissue fibrosis is
mainly mediated by inflammatory signals such as those of the
nuclear factor-kB pathway.®® Forced activation of nuclear factor-
«B signaling in the REP cells suffices to induce fibrosis in healthy
mouse kidneys. Anti-inflammatory drugs may therefore block
the transformation of REP cells and prevent a negative spiral
between renal fibrosis and anemia.®

POTENTIAL FUTURE THERAPIES

The therapeutic perspectives in this section rest on recent
findings in the fields of basic biology and of clinical medicine
of diseases other than DN. These hypothetical approaches
require further testing in DN.

PHD inhibitor
HIF activation potentially corrects tissue hypoxia and
provides pleiotropic effects, such as anti-inflammation,
antioxidative stress, and oxygen-independent energy produc-
tion. The degradation of HIF-o through the oxygen-
dependent hydroxylation of specific proline residues by
PHDs is amenable to inhibition. Small-molecular inhibitors
of PHDs have thus been investigated.®? Binding of the
substrate 2-oxoglutarate to the catalytic domain of PHDs
appears essential for the PHD enzymatic activity. Chemical
compounds whose structure mimic 2-oxoglutarate (for
example, N-oxalylglycine,”® N-oxalyl-D-phenylalanine,” and
L-Minosine®?) are therefore able to inhibit PHD activity.
Relying on a strategy including docking simulation based
on the three-dimensional protein structure of human
PHD2 (Figure 3a), we synthetized two novel inhibitors
of PHDs (TM6008 and TM6089).”> Both compounds bind
to the same active site as HIE Orally, they stimulate
HIF activity in various organs of transgenic rats expressing

a hypoxia-responsive reporter vector. Locally, they induce
angiogenesis in a mouse sponge assay.

Unfortunately, nonspecific inhibition of HIF-o degrada-
tion also augments vascular endothelial growth factor and
EPO production, both of which have proven detrimental for
proliferative diabetic retinopathy in humans.**

The role of the three PHD isoforms has been recently
delineated by the specific disruption of their gene. Broad-
spectrum conditional knockout of PHD2 induces vascular
endothelial growth factor and hyperactive angiogenesis, with
the formation of mature and perfused blood vessels.®>%
PHD3 is also involved in angiogenesis: in mice with hindlimb
ischemia, therapeutic revascularization is better after PHD3
than after PHD2 gene silencing.”’

In mice, both PHD1 and PHD3 gene knockout does not
affect erythropoiesis but double PHD1 and PHD3 knockout
induces the accumulation of HIF-2o in the liver with a
moderate erythrocytosis.”® Adult PHD2-deficient mice
develop a prominant erythrocytosis with a dramatic
increase in the serum levels of EPO and EPO mRNA in
kidney. These results are taken to indicate that PHD1/3
double deficiency leads to erythrocytosis partly through the
activation of the hepatic HIF-20/EPO pathway, whereas
PHD?2 deficiency acts by activating the renal pathway.>®

Unfortunately, none of the present PHD inhibitors is
specific for a distinct PHD subtype.®? A Phase 11 clinical trial of
a PHD inhibitor, FG-4592, is currently underway in patients
with stage 34 CKD to alleviate anemia, hypertension, and
hyperlipidemia, all of which are independent risk factors
not only for cardiovascular events but also CKD.”® FG-4592
corrects and maintains stable hemoglobin levels without
intravenous supplementation with iron in patients, irespective
of whether they received dialysis or mnot. Surprisingly,
total cholesterol levels decreased in the FG-4592 group after

Figure 3| Predicted binding modes by docking simulation computer study. (a) Oxygen sensor (human prolylhydroxylase-2 (PHD2)).
TM6008 (blue), TM6089 (magenta), hypoxia-inducible factor (HIF) proline (orange), 2-oxoglutarate (light green), and Fe(l)(pink sphere) are
shown. (b) Keap1 is depicted as a colored cartoon mode and an inhibitor molecule bound in the center of the concavity is shown by a space-

filling model. Reprinted with permission from Miyata et al.?*
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16 weeks of treatment. The fall was similar irrespective of the
concomitant intake of lipid-lowering agents (primarily statins
and fibrates). Levels returned to control values after completion
of the FG-4592 treatment. The high-density lipoprotein/low-
density lipoprotein ratio also increased. During the 24-week
observational period, FG-4592 treatment did not raise the risk
of cardiovascular events, polycythemia, and thrombosis, or
elevate blood pressure requiring initiation or intensification of
antihypertensive medications. None of the adverse effects seen
in experimental animals on long-term PHD2 inhibition (for
example, polycythemia®®*1%0 and congestive heart failure,'%!)
were reported.

Although clinically available PHD inhibitors such as
FG-4592 are not specific for a distinct PHD subtype, they
mainly inhibit PHD2. Dissociation between the benefits of HIF
activation and the effects on angiogenesis and erythropoiesis
has been recently examined by the Aragonés et al.® The specific
disruption of PHD1 induces hypoxic tolerance in muscle cells,
without angiogenesis and erythrocytosis, at least in part
through the activation of HIF-20.. Basal oxygen metabolism is
reprogramumed and OS generation is decreased in hypoxic
mitochondria. Inhibition of PHD1 further stimulates various
protective mechanisms: adenosine-5'-triphosphate is produced
through enhanced glycolysis and substrate for oxidative
phosphorylation is restricted through the induction of
pyruvate dehydrogenase kinase, with the eventual attenuation
of electron entry into electron transport chain. Energy is thus
conserved, oxidative damage reduced, and cells protected from
hypoxic damage. A similar sequence of events has been
proposed to explain why hibernating or hypoxia-tolerant
animals are more resistant to ischemic insults.!0%1%%

A specific PHD1 inhibitor has not yet been reported but it
should protect hypoxic tissues through a reduced OS without
affecting angiogenesis and/or erythropoiesis. It might be
suitable for the treatment of DN and other types of CKD
where chronic hypoxic renal injury is concomitant.

Allosteric effector of hemoglobin

Recently, unique compounds have been reported that also
increase oxygen supply and lead to the suppression of HIF
activity.!04

At physiological oxygen partial pressure levels, normal red
blood cells release up to 25% of the oxygen bound by
hemoglobin (Hb). The organic phosphate 2,3-bisphospho-
glycerate,)® a natural allosteric effector, decreases the
oxygen-binding affinity of human Hb: increases in its level
play a compensatory role in a variety of circumstances
including high altitude, chronic pulmonary disease, and in
patients with low-output heart failure.'% Interventions to
further decrease Hb oxygen-binding affinity might prove to
be of clinical value.

Myo-Inositol hexakisphosphate is a powerful allosteric
effector of Hb but is unable to cross the red blood cell
membrane.'%” More recently, myo-inositol trispyrophosphate
(ITPP) hexasodium salt, a synthetic derivative of myo-
inositol hexakisphosphate, has been developed.!® It crosses

Kidney International (2013) 84, 693702

the red blood cell plasma membrane and acts as an allosteric
effector of Hb, shifting the oxyhemoglobin dissociation curve
to higher oxygen pressures. ITPP given in mice with severe
exercise limitation due to a reduced cardiac output enhances
exercise capacity.!%® It is noteworthy that ITPP suppresses
HIF-1o and downstream hypoxia-inducible genes such as
vascular endothelial growth factor in rats.!%° This mechanism
is in contrast to PHD2 inhibitors that increase oxygen supply
by augmenting the activity of HIF. Because of its
antiangiogenic effect, ITPP has been tested for its
anticancer potential in animals.'9%110 Its clinical benefits in
DN and CKD remain to be demonstrated.

Nrf2 activator/Keap1 inhibitor

Recent demonstration that the radical scavenger NXY-059
eventually proved ineffective for acute ischemic stroke in
humans should call for caution.!'! Although radical
scavengers are effective in experimental animals including
those with kidney disease,!'? this may not be the case in
humans. Strategies to reduce OS intended to alleviate various
diseases have been widely explored in experimental animals,
but clinical success in humans is yet to be shown.

An alternative, novel approach to reduce OS has been
devised and tested. Bardoxolone methyl,'’® derived from a
natural product oleanolic acid, is a potent inducer of Nrf2.
Originally developed as an anticancer drug, it produced
unexpected benefits on the kidney during a clinical trial and
was further developed as a renal drug.!'* A Phase II clinical
trial, known as BEAM, has thus been undertaken in patients
with advanced CKD and type 2 diabetes.''> Bardoxolone
improved renal function with only mild side effects, such as
muscle spasm, weight loss, and hypomagnesemia.
Unfortunately, a subsequent Phase III BEACON trial in
patients with stage 4 CKD and type 2 diabetes had to be
terminated on 18 November 2012 because of serious adverse
events (www.clinicaltrials.gov/ct2/show/NCT01351675).

No effective Keapl inhibitor is currently available.
Sulforaphane, a natural product present in broccoli sprouts,
modulates Keapl.!'® Given to a mouse model of
streptozotocin-induced DN, sulforaphane ameliorated renal
injury.!''” Recent informations on the X-ray crystal structure
of Keap1'!® and on the molecular interaction between Nrf2
and Keapl led us to search, by computer-based virtual
screening, for a compound binding the active site of Keapl
and able to inhibit the interaction between Nrf2 and Keapl
(Figure 3b). Should its benefits be confirmed in experimental
animals, a specific Keapl inhibitor might offer an alternative
approach to blunt OS injury.

REP modulating agent

EPO production in the liver is significantly larger in the fetus
than in the adult.'’ Hence, the idea to treat renal anemia
through the induction of EPO production in the liver. As
already stated, under hypoxic conditions, EPO production is
activated through the PHD-HIF pathway in the liver as well
as in the kidney.® Hopefully, the development of PHD
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Figure 4| A broad range of anomalies associated with oxygen
biology. Hypoxia, oxidative stress, and dyserythropoiesis have

been implicated in chronic kidney disease (CKD). The prolylhydro-
xylase-hypoxia-inducible factor (PHD-HIF) system mitigates hypoxia
whereas the Keap1-Nrf2 system does the same for oxidative stress.
Under hypoxia, renal erythropoietin (EPO)-producing (REP) cells,
originating from neural crests, transdifferentiate into myofibroblasts
and contribute to renal fibrosis. The interrelationship between
these pathways or factors may preclude the identification of a single
culprit in the progression of CKD. Besides these oxygen-associated
anomalies, many more pathways or factors involve and exacerbate
renal injury. Recent findings in the fields of basic biology and of
clinical medicine of diseases other than CKD suggest that agents
interfering with the PHD-HIF system (e.g., PHD inhibitor, HIF
activator) or the Keap1-Nrf2 system (e.g., Keap1 inhibitor, Nrf2
activator), or restoring the initial function of REP cells might retard
renal fibrosis and progression of CKD. These hypothetical approaches
require further testing in CKD.

inhibitors (mainly PHD2) might stimulate EPO production
in the liver instead of the damaged kidneys.?®11%120

The kidney structure is dramatically changed by the influx
of REP cell-derived myofibroblasts filling the peritubular
interstitium within 2 days after unilateral ureteral obstruc-
tion, whereas the controlateral kidney (nontreated side)
remains normal.® REP cells retain cellular plasticity for a
while after their transformation. Release of the obstruction
within a week returns the transformed myofibroblasts to their
original status, including their hypoxia-dependent EPO
production, but the myofibroblastic transformation
becomes irreversible after a more prolonged obstruction
and inflammatory stimulations.

Reverse transformation of the myofibroblasts in CKD may
be expected. A previous paper demonstrated that the
attenuated EPO production by transdifferentiated REP cells
was restored and the prevention of renal fibrosis was achieved
by the administration of neuroprotective agents, dexametha-
sone and neurotrophins, in agreement with the neural crest
origin of REP cells.®

CONCLUSION

The concern of DN prevention remains shared by all
physicians as the meticulous correction of obesity, blood
pressure, serum glucose, or lipid level is still unable to fully
avoid the renal consequences of diabetes mellitus. This failure
points to the limits of the present hypotheses to unravel the
various mechanisms of DN and requires the consideration of
newer pathophysiologic culprits.
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The roles of defective oxygen delivery, of ROS generation,
and of impaired erythropoiesis are scrutinized. How these
pathways interact, how these pathways contribute to the
progression of CKD, and promising therapeutic targets are
summarized in Figure 4. Their diverse steps and their
compensation are considered: the PHD-HIF pathway for
hypoxia, the Keapl-Nrf2 pathway for OS, and the altered
production of EPO by REP cells. Diverse agonists and
antagonists are to be considered and their usefulness to reach
the ultimate goal, that is, full prevention, discussed and
tested. These novel prospects justify renewed efforts and
suggest that full prevention might be in sight.
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Plasminogen Activator Inhibitor-1 Antagonist TM5441
Attenuates N°-Nitro-L-Arginine Methyl Ester-Induced
Hypertension and Vascular Senescence

Amanda E. Boe, BA; Mesut Eren, PhD; Sheila B. Murphy, BS; Christine E. Kamide, BS;
Atsuhiko Ichimura, PhD; David Terry, PhD; Danielle McAnally, MS; Layton H. Smith, PhD;
Toshio Miyata, MD; Douglas E. Vaughan, MD

Background—I_ ong-term inhibition of nitric oxide synthase by L-arginine analogues such as N®-nitro-L-arginine methyl
ester (L-NAME) has been shown to induce senescence in vitro and systemic hypertension and arteriosclerosis in vivo.
We previously reported that plasminogen activator inhibitor-1 (PAI-1)-deficient mice (PAI-17") are protected against
L-NAME-induced pathologies. In this study, we investigated whether a novel, orally active PAI-1 antagonist (TM5441)
has a similar protective effect against L-NAME treatment. Additionally, we studied whether L-NAME can induce vascular
senescence in vivo and investigated the role of PAI-1 in this process.

Methods and Resulis—Wild-type mice received either L-NAME or L-NAME and TM5441 for 8 weeks. Systolic blood
pressure was measured every 2 weeks. We found that TM5441 attenuated the development of hypertension and cardiac
hypertrophy compared with animals that had received L-NAME alone. Additionally, TM5441-treated mice had a 34%
reduction in periaortic fibrosis relative to animals on L-NAME alone. Finally, we investigated the development of vascular
senescence by measuring pl6™* expression and telomere length in aortic tissue. We found that L-NAME increased
pl6™* expression levels and decreased telomere length, both of which were prevented with TM5441 cotreatment.

Conclusions—Pharmacological inhibition of PAI-1 is protective against the development of hypertension, cardiac
hypertrophy, and periaortic fibrosis in mice treated with L-NAME. Furthermore, PAI-1 inhibition attenuates the arterial
expression of pl6™* and maintains telomere length. PAI-1 appears to play a pivotal role in vascular senescence,
and these findings suggest that PAI-1 antagonists may provide a novel approach in preventing vascular aging and

hypertension. (Circulation. 2013;128:2318-2324.)

Key Words: aging m hypertension ® nitric oxide synthase

Endothelial nitric oxide (NO) synthase is an enzyme that
catalyzes the formation of NO from L-arginine. NO is
an important signaling molecule that is involved in a variety
of physiological processes,' most notably the regulation of
vascular tone and structure. By stimulating the production of
cyclic guanosine monophosphate (¢cGMP) in vascular smooth
muscle cells surrounding blood vessels, NO causes muscle
relaxation and a decrease in blood pressure.? Additionally, NO
has atheroprotective, antithrombotic, and anti-inflammatory
properties through its ability to inhibit platelet aggregation,
expression of adhesion molecules, and lipid oxidation.? Mice
lacking expression of endothelial NO synthase lose the abil-
ity to produce vascular NO, and as a result develop hyperten-
sion.3# Similar results are also seen when NO synthase activity
is blocked by the competitive inhibitor N®-nitro-L-arginine

methyl ester (L-NAME).>” NO also has important biological
functions outside of the vasculature, including roles in the gas-
trointestinal, respiratory, nervous, and immune systems.>

Editorial see p 2286
Clinical Perspective on p 2324

It has been reported that NO suppresses the expression of
plasminogen activator inhibitor-1 (PAI-1) in vascular smooth
muscle cells.® Similarly, long-term inhibition of NOS in rats by
L-NAME treatment resulted in increased vascular PAI-1 expres-
sion.® PAI-1 is the primary physiological inhibitor of plasmino-
gen activation and is a member of the SERPIN superfamily of
serine protease inhibitors.® In plasma, PAI-1 has a critical role
in regulating endogenous fibrinolytic activity and resistance to
thrombolysis. In vascular tissues, PAI-1 mediates the response
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to injury by inhibiting cellular migration'! and matrix degrada-
tion.”? Additionally, substantial evidence exists showing that
PAI-1 may contribute to the development of fibrosis and throm-
bosis as a result of chemical'® or ionizing injury.* In the absence
of vascular injury or hyperlipidemia, our group has reported that
transgenic mice overexpressing a stable form of human PAI-1
develop spontaneous coronary arterial thrombosis.!

We have also previously reported that PAI-I deficiency
prevents the development of perivascular fibrosis associated
with long-term NOS inhibition by L-NAME.!¢'7 In the present
study, we demonstrate that a novel, orally active small mol-
ecule inhibitor of PAI-1, TM5441, is as effective as complete
deficiency of PAI-1 in protecting against L-NAME-induced
pathologies. TM5441 is a derivative of the previously reported
PAI-1 inhibitor TM5275,'® which was generated by optimiz-
ing the structure-activity relationships of the lead compound
TM5007. TM5007 was originally identified as a PAI-1
inhibitor by virtual, structure-based drug design, which used
a docking simulation to select candidates that fit within a cleft
in the 3-dimensional structure of human PAI-1.

Beyond examining PAI-1 in L-NAME-induced arterio-
sclerosis, the present study focuses on the roles of NO and
PAI-1 in vascular senescence. Senescent endothelial cells
exhibit reduced endothelial NO synthase activity and NO pro-
duction,®?! and NO has been shown to be protective against
the development of senescence, an effect that is abrogated
by L-NAME treatment.”*”® However, the role of NO and
L-NAME in vascular senescence in vivo is uncertain. PAI-1
is recognized as a marker of senescence and is a key member
of a group of proteins collectively known as the senescence-
messaging secretome.? However, it is likely that PAI-1 is not
just a biomarker of senescence, but instead may be a critical
driver of this process. Evidence supporting this hypothesis has
already been shown in vitro. PAI-1 expression is both neces-
sary and sufficient to drive senescence in vitro downstream
of p53, and PAI-1-deficient murine embryonic fibroblasts are
resistant to replicative senescence.”>* However, very little is
known about the role of PAI-1 in senescence in vivo.

In this study, we show that L-NAME treatment and the sub-
sequent loss of NO production induces vascular senescence
in wild-type (WT) mice, and that treatment with the PAI-1
antagonist TM5441 is protective against this senescence.
Therefore, in addition to validating TM5441 as a potential
therapeutic, we also have demonstrated a role for L-NAME,
NO, and PAI-1 in vascular senescence in vivo.

Methods

TM5441 Activity and Specificity Assays

The inhibitory activity and specificity of TM5441 (developed at the
United Centers for Advanced Research and Translational Medicine
(ART), Tohoku University Graduate School of Medicine, Miyagi,
Japan) was assessed using recombinant PAI-1, antithrombin III, and
a2-antiplasmin by chromogenic assay as previously described.??
The reaction mixture includes 0.15 mol/L NaCl, 50 mmol/L Tris-HCl
pH 8, 0.2mmol/L. CHAPS, 0.1% PEG-6000, 1% dimethylsulfox-
ide, 5 nmol/L of either human active PAI-1 (Molecular Innovations,
Southfield, MI), human antithrombin III (Sigma-Aldrich, Saint
Louis, MO), or human a2-antiplasmin (Sigma-Aldrich), 2 nmol/L,
of either human 2-chain tPA (American Diagnostica Inc, Stanford,
CT), thrombin (Sigma-Aldrich), or plasmin (Sigma-Aldrich), and 0.2
mmol/L of either Spectrozyme tPA (Chromogenix, Milano, Italy),
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chromogenic substrate S-2238 (Sekisui medical, Tokyo, Japan), or
chromogenic substrate S-2251 (Sekisui medical) at a final concentra-
tion. Tested compounds were added at various concentrations and the
IC50 was calculated by the logit-log analysis.

TM5441 Pharmacokinetics and Toxicity

TM5441, suspended in a 0.5% carboxymethyl cellulose sodium salt
solution, was administered orally by gavage feeding to male Wistar
rats (5 mg/kg; CLEA Japan Inc.). Heparinized blood samples were
collected from the vein before (0 h) and 1, 2, 6, and 24 h after oral
drug administration. Plasma drug concentration was determined on
a reverse-phase high-performance liquid chromatography. Maximum
drug concentration time (T__ ), maximum drug concentration (C_ ),
and drug half-life (T, ) were then calculated.

All toxicity studies followed the International Conference on
Harmonization of Technical Requirements for Registration of
Pharmaceuticals for Human Use Harmonized Tripartite Guidelines at
the non-GLP conditions. A repeated-dose toxicity study of TM5441
was assessed for 2 weeks in 5 Crl:CD (SD) rats per sex per group and
no observed adverse effect level was concluded at 30 mg/kg in female
rats and 100 mg/kg in male rats. As for the reverse mutation Ames test,
TM5441 was negative. The effect of TM5441 on the human ether-a-
go-go-related gene (hERG) electric current was investigated in HEL293
cells, which were transfected with the hERG gene, and TM5441 does not
affect on hERG electric current in a concentration of up to 10 mmol/L.

Experimental Animals

Studies were performed on littermate 6- to 8-week-old C57BL/6]
mice of both sexes purchased from Jackson Laboratories (Bar Harbor,
ME). L-NAME (Sigma Aldrich, St. Louis, MO) was administered
in the drinking water at 1 mg/mL (approximately 100—120 mg/kg/
day). TM5441 was mixed in the chow at a concentration of 20 mg/
kg/day. This dose was based on both preliminary studies conducted
in our laboratory feeding mice with TM5441 and on personal com-

munication with Dr Miyata. The weight of chow consumed by the -

mice and their body weight were monitored. Mice remained in the
study for 8 weeks before undergoing final measurements and tissue
harvest. All experimental protocols were approved by the TACUC of
Northwestern University.

Blood Pressure

Systolic and diastolic blood pressures were measured in conscious
mice (n=12-13/group) at baseline and every 2 weeks thereafter
using a noninvasive tail-cuff device (Volume Pressure Recording,
CODA, Kent Scientific Corp, Torrington, CT). Mice were placed in
the specialized holder for 10-15 minutes before the measurement to
acclimate to their surroundings. The animals underwent 3 training
sessions before initial baseline measurements. This method has been
validated against classic tail plethysmography.

Echocardiograms

Left ventricular function at diastole was determined in the mice
(n=12-13/group) with the use of 2-dimensional (2D), M, and Doppler
modes of echocardiography (Vevo 770, Visualsonics Inc, Toronto,
Ontario, Canada). Mice were imaged at both baseline and after 8
weeks of treatment. The animals were anesthetized and placed supine
on a warming platform. Parasternal long- and short-axis views were
obtained in each mode to assess function.

Histology and Morphometry

Hearts and aortas were harvested from the animals after 8 weeks of
treatment. The tissues were formalin fixed, paraffin embedded, and
sectioned at 6 microns. Morphometric analysis was performed on left
ventricular myocytes stained with hematoxylin and eosin (H & E) to cal-
culate myocyte cross-sectional area using ImagePro Plus 6.3. Myoyctes
that had a clear, unbroken cellular membrane and a visible nucleus were
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