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kidney disease who would usually go undetected as part of
standard care could have a greater benefit than populations
who are usually more likely to have serum creatinine or
albuminuria measured. By contrast, the anticipated
benefit of screening is lower in populations with a lower
prevalence of chronic kidney disease. Several factors
influence which high-risk populations should be selected
for screening including the benefits and problems after
treatment, the consequences of non-treatment, false-
positive tests, and the feasibility of detecting the target
population and treating identified patients. All these
factors have been incompletely studied, and it is difficult
to recommend groups for whom screening should be
indicated or contraindicated. However, older age, diabetes,
or hypertension are potentially attractive criteria—and
selective testing for kidney disease in these populations
seems likely to be beneficial. ™

The ideal frequency for screening measurements is
unknown, but given the persistent nature of chronic
kidney disease, covering a high proportion of people at
risk should take precedence over frequent screening.
Whether serum creatinine or albuminuria analysis, and
which assays should be used is also unknown.”* Use of
both strategies might be most sensitive (particularly as
albuminuria does not universally accompany reduced
glomerular filration rate®) but would lower specificity.
Follow-up testing will probably be needed irrespective of
which strategy is used initially. Finally, the best way to deal
with cases identified through screening is uncertain, and
will vary by setting: some countries may favour a public
health approach (a generic bundle of effective therapies
applied to all patients), whereas more individualised treat-
ment (based on severity, stage or cause of chironic kidney
disease) might be more appropriate in others.

Despite this uncertainty, effective treatment for
diabetes, hypertension and cardiovascular disease will
also have beneficial effects on chronic kidney disease,
and vice versa. Because detection of chronic kidney
disease is unhelpful iflifelong medical therapy is unavail-
able, establishing and maintaining access to effective
treatments is a prerequisite for screening programmes
for chronic kidney disease in low-income countries but
also in high-income nations that lack universal health-
care systems. The highest priority for controlling
chronic kidney disease should be to ensure secure,
sustainable access to low cost antihypertensive drugs
(particularly angiotensin-converting-enzyme inhibitors
and angiotensin-receptor blockers), which will prevent
kidney failure and also reduce cardiovascular morbidity
and mortality® Improved access to treatments that
control blood glucose and blood cholesterol, and those
that tackle smoking will also improve renal and cardio-
vascular outcomes, Furthermore, serum creatinine and
albuminuria measurements are commonly made in
usual clinical practice; chronic kidney disease is usually
identified in the absence of organised screening pro-
grammes. Management of chronic kidney disease is

often suboptimal, and therefore improving the care of all
chronic kidney disease is important. Finally, in view of
the common causes and consequences of chronic kidney
disease with other non-communicable diseases, inte-
gration of screening into national or regional disease
management programmes will be important.

New health service models for controlling
chronickidney disease

Treatment of chronic kidney disease is an important
economic burden within health systems and is grossly
inadequate in low-income countries.** WHO has esti-
mated that in two-thirds of low-income countries there is
no access to renal replacement therapy for end-stage
renal disease.” Therefore, addressing the burden of
chronic kidney disease requires preventive measures that
include control of generic risk factors (eg, smoke, high
salt intake, or hyperlipidaemia) and, in some regions of
the world, focusing on specific causes.™

Multidisciplinary care and control of general
risk factors

The increased awareness that death caused by cardio-
vascular disease is a more common outcome than
progression to end-stage renal disease in patients with
chronic kidney disease has led nephrologists to focus
on the prevention of cardiovascular disease.” However,
management of cardiovascular disease is fragmented (and
sometimes divergent) among nephrologists, cardiologists,
and diabetologists; these issues can be further complicated
with the involvement of primary-care physicians, geri-
atricians, dietitians, pharmacists, and nurses. Two non-
exclusive approaches might bring cohesion. The first is
education of patients and support of selfmanagement;
the second is a multidisciplinary team approach. Inter-
actions between informed patients and proactive multi-
disciplinary teams might improve health outcomes for
people with chronic medical disorders.

Comprehensive, team-based, multidisciplinary inter-
ventions for chronic kidney disease are associated
with improved blood pressure and metabolic control,
preservation of glomerular filtration rate, a smaller per-
centage of patients needing dialysis, and reduced
mortality.** Multifactorial interventions including life-
style changes®™ and pharmacological interventions to
reduce proteinuria and control blood pressure with
angiotensin-converting-enzyme inhibitors or angiotensin-
receptor blockers, tight diabetic control, and treatment of
dyslipidaemia are not only cost-effective measures to
reduce the burden of cardiovascular disease but have also
a beneficial effect on chronic kidney disease.”

The main expectation for the near future is building
capacity to establish individualised multidisciplinary care
programmies, adapted to the highly diverse medical needs
of patients. For patients with chronic kidney disease, high
comorbidity or specific frailty (the threshold beyond which
the functional reserve of a person is critically reduced and
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the tolerance of stress negligible), optimum care will
probably be delivered with methods specific to the
disorder, including multidisciplinary specialty clinics,
aimed at reducing cardiovascular events and reducing or
allowing transition to renal replacement therapy.

However, a programme of timely nephrology referral
and specialised multidisciplinary follow-up for all
patients with chronic kidney disease would quickly
overwhelm available resources, and would not be
realistic in many settings. Thus, in most parts of the
world, primary-care physicians will have an essential
role to play in the care of chronic kidney disease.
Patients with stable renal disease, low comorbidity,
those living in remote areas or in low-income countries
could undergo comanagement, with regular monitoring
by a primary-care physician, and future nephrology
follow-up.® Similar considerations apply to the delivery
of care to patients with acute kidney injury or with
multiple organ failure syndromes (eg, combined hepatic
and renal insufficiency; cardiorenal syndrome).

Care models that incorporate nurse practitioners are
being increasingly used for the management of chronic
diseases.” In view of the success in other fields, the large
population at risk for chronic kidney disease, and the low
availability of trained nephrologists for the number of
patients, it is important to test care models in which
physicians partner with nurse practitioners to deliver care.
The interface of nephrologists with primary-care phys-
icians or other specialists could be implemented even in
low-resource setting using new telecommunication
technologies. Telehealth initiatives, in which nephrology
specialists provide their expertise remotely over the
internet, are a model that can be adopted in low-resource
settings. This approach has been successfully applied in
Bolivia where telehealth care is delivered using online
applications to provide expertise at very low cost (Raul
Plata Cornejo, Instituto de Nefrologia, La Paz, Bolivia,
personal communication). The programme not only
permits individualised multidisciplinary care and the
chance of follow-up by experienced off-site nephrologists,
but minimises the burden of travel and its impact on
family and employment (panel 3).

Control of region-specific risk factors for chronic
kidney disease

In addition to global risk factors, the burden of chronic
kidney disease has specific characteristics that should be
recognised and addressed in certain regions of the world.
Although most patients with chronic kidney disease in
high-income countries have diabetes or hypertension, as
many as 40-50% of patients have a different cause in low-
income countries.” Chronic glomerulonephritis and
interstitial nephritis resulting from bacterial, viral, para-
site or toxic causes represent a substantial proportion of
chronic kidney disease in some areas of the world.”
An example is HIV infection.” Compared with controls
without HIV, patients with HIV have an increased
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Panel 3: Telemedicine for renal care

Low availability of specialist care in developing countries is one of the limiting factors for
the prevention and cure of chronic kidney diseases or for proper management of acute
events. Geographical barriers, lack of transport or infrastructure, and low availability of
trained personnel are among the leading causes for varied management of kidney disease
in developing countries. Rather than, or in addition to, providing resources or equipment,
health-care systems'’ primary problem is effectively diffusing knowledge and information.
Technology currently offers a chance for this to change.

In many developing countries the rate of growth of digital infrastructure has surpassed
that of physical infrastructure. The deployment of mobile networks has reached an
estimated 45% global population coverage in 2011, the largest rise in developing
countries. Affordable connectivity has strong implications for the future of health care, in
particular where accessibility to specialist care is limited.

The ability to communicate through rich, easyto use, multivser applications capable of
transmitting avudio or video streams, once available in high-end teleconferencing or
telemedicine systems, has become an integral part of everyday lives in both high-income
and low-income countries. The availability of these technologies at the consumer level has
largely contributed to reduce costs for developing these systems and making them
available on a large scale, with minimum initial investments on the infrastructure of
information technology as result of cloud computing and platform-as-a-service resources.

New models of specialist health-care provision could emerge from the integration of
modern information technology and medicine. Renal care, in particular, is characterised
by the need of regular follow-ups over long periods of time. Substantial improvements to
morhidity and mortality can be achieved by simple and low-cost actions, if appropriately
putin place.

In this setting, several small peripheral centres, typically led by primary-care physicians or
nurse practitioners, could be pooled into centrally led virtual nephrology departments,
Supported by rich web applications providing clinical information management, direct
communication, and real-time data analysis, nephrologists located in these central
facilities could lead patient care by relying on peripheral practitioners for in-loco operation,

The opportunity forthe scientific community is unique. Information technology has the
potential of delivering specialist health care in inaccessible areas, but it also represents a
potential collector of data on unprecedented large scales, This collection is possible if data
are public and if data collection systems are built with a high degree of interoperability
(ie, their interfaces are fully disclosed and they are capable to interact and function with
other systems without any access or implementation restrictions). The reliance on
transparency and a consensus effort in the definition of the structure and the nature of
data to be collected are important.

Telemedicine has had a rich history in the past two decades. For the first time, this model
is becoming cost effective for developing and high-income countries, marking the path
towards global health-care provision and new opportunities for scientific advancement.

prevalence of impaired kidney function (six times),
albuminuria (five times), and end-stage renal disease (ten

times).** Between 770000 and 2-6 million individuals in
sub-Saharan Africa have HIV nephropathy. The existing
guidelines for management and referral of patients with
HIV for nephrology care in high-income countries are not
applicable in sub-Saharan Africa and a recently proposed
screening algorithm that starts with the determination of
microalbuminuria deserves careful assessment.”
Registries should be a key priority for control of chronic
kidney disease, and could document the total burden of
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kidney disease in each country or region and progress
made over time—as well as quantifying the comparative
contribution of common and specific regional risk factors.
The feasibility of large, cross-sectional studies to assess
the prevalence of chronic kidney disease was confirmed in
a study™* done in several countries (Bangladesh, Bolivia,
Georgia, and Nepal), with the support of the International
Society of Nephrology in both the general population
and in patients at high-risk of the disease. Advances in
diagnostic testing will help the expansion of such
programmes—including availability of cheap point-of-
care testing for kidney function and albuminuria (with
appropriate attention to assay standardisation and
calibration), and validation of new creatinine-based or
cystatin-based prediction equations for estimation of
glomerular filtration rate in low-income countries.

New approaches for drug and clinical
development

Drug and clinical development have become lengthy and
expensive as a result of the number of newly marketed
drugs by the pharmaceutical industry.” Few drugs to treat
kidney disease have been developed in the past 15 years,
despite a large number of potential beneficiaries.

Reduction in the time and costs of pharmacology
research requires not only an understanding of the
pathophysiology of the targeted disease but also an early
test of the drug’s effects on human physiology and
pathology. Early clinical trials in patients are now more
practical since there is new guidance from the
international conference on harmonisation of technical
requirements for registration of pharmaceuticals for
human use that introduces exploratory clinical trials as
first-in-human studies that assess a drug’s distribution in
vivo as well as its physiological and pharmacological
effects in a few patients.” These studies notably reduce
the duration of preclinical assessment. These latest
regulations for pharmaceutical practice as well as newer,
state-of-the-art, efficient strategies for preclinical and
clinical development require a thorough understanding
by the investigator.®

Exploratory dlinical trials are important for drug
development, especially in kidney diseases for which
experimental animals mimicking human disease are
difficult to obtain, and where clinical endpoints such as
renal death are elusive.

A renewed partnership between pharmaceutical indus-
try and academia is needed. Large clinical trials required
for marketing authorisation are the responsibility of the
pharmaceutical industry. By contrast, academia selects
the compounds to be tested by industry, by assessing the
physiological and pharmacological relevance of candidate
molecules. Of importance, neither academia nor the
pharmaceutical industry pay sufficient attention to
orphan diseases® or less common kidney diseases.**

In the next few years, this new vision for the
development of new drugs in clinical trials should be

extended from high-income to low-income countries. It
will be important to ensure that the capacity for clinical
trials is developed locally in low-resource regions. Thus,
dissemination of clinical trials will require opportunities
for training in clinical trial methodology, design, and
statistics. Nevertheless, the important task will be to
protect emerging countries from pharmaceutical com-
panies taking advantage of patients in these countries
who are rarely treated according to standard guidelines.

Focus on research for rare and genetic

kidney diseases

The specialty of rare and genetic kidney diseases is
expected to change fundamentally during the next decade.
The International Rare Disease Research Consortium has
formulated two key objectives to be reached by 2020: to
establish diagnostic tests for most rare diseases, and to
find medical treatments for 200 rare disorders.* These
targets suggest the most important needs, and fore-
seeable accomplishments, in rare kidney diseases.

The most imminent progress is expected in the
identification of causes for genetic disease. The advent of
next-generation sequencing allows screening of the exome
quickly and cost effectively.” This technique will accelerate
the identification of new disease genes but also pose
challenges in bioinformatic processing and define a need
for new methods for high-efficiency functional assessment
of gene variants by cell, tissue, and animal models. Cell
and tissue modelling may be boosted by current advances
in inducible stem cell and transdifferentiation technology.
Conventional transgenic rodent disease models will
probably be complemented by refined lower vertebrate
models (such as zebrafish and xenopus frogs) suitable for
rapid phenotypic and functional screening of candidate
proteins and their mutants.®

The proportion of patients with an unambiguous
genetic diagnosis will increase notably. The development
of targeted sequencing arrays covering all genes
associated with a particular disease or disease group will
substantially improve diagnostic time and cost efficacy.
Targeted sequencing will also avoid the ethical dilemmas
associated with incidental discovery of mutations in
genes unlinked to the disease of interest that can occur
with whole-exome sequencing.”

In patients with rare kidney disorders in whom a
genetic diagnosis cannot be made, new technologies with
systems-biology approaches integrating DNA variants,
gene transcript patterns, urine proteomic, and metabol-
omic profiles will soon be available to complement
clinical trials by molecular phenotyping. These strategies
will identify molecular markers that individually (as
disease biomarkers) or in combination (as molecular
signatures) will lead to a mechanistically based molecular
spectrum of rare kidney diseases.

The availability of reliable genetic and molecular
diagnosties will affect clinical disease management—eg,
by replacing histopathology, accurately defining the need
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for and susceptibility to pharmacological interventions,
and by predicting the risk of post-ransplant disease
recurrence. In families with congenital kidney diseases,
accurate prenatal diagnosis and risk assignment will allow
individualised genetic counselling and help development
of early intervention and secondary prevention strategies.

To date, the development of therapeutics in rare
diseases has been lagging behind the advances in genetic
and pathophysiological mechanisms, since the altered
protein products of the disease-causing genes are com-
monly not treatable or there is no obvious molecular
approach to bypass gene deficiencies. Notwithstanding
these challenges, the widespread application of exome
sequencing is expected to increase the number of
molecular drug targets in rare kidney diseases.® Rare
diseases with a renal phenotype are usually systemic
disorders with multi-organ involvement. Hence, under-
standing the molecular pathophysiology of these
diseases might contribute to knowledge about other
organ-specific diseases. For example, research in rare
complement kidney diseases will advance the global
understanding of complement-mediated tissue and
organ damage.”” Furthermore, podocyte-specific pro-
teins deficient in inherited glomerulopathies are also
involved in acquired glomerulopathies, such as diabetic
nephropathy, and study of these proteins could help
understand the mechanism of glomerular disease”
Studying the pathophysiology of tubulopathies might
have immediate relevance in understanding regulation
of blood pressure, formation of kidney stones, and
kidney disease progression. Finally, systems biology
approaches that integrate molecular characteristics of
different kidney disorders and phenotypes of disease
progression may help identify common pathways that
lead to kidney disease progression.”” If new targets for
pharmacological nephroprotection can be identified,
progress in research on rare kidney disease could help
with understanding several progressive kidney disorders.

Promotion of research in developing countries
Local health problems in low-income countries indicate
the importance of economic and social development:
relevant research must focus on the biological causes of
such illnesses, but also on how to break the vicious cycle
of economic development and new emerging disease.
For example, growing urbanisation and pollution have
led to rising rates of environmental illness, including
sick-building syndrome” and sick-house syndrome.™
Several kidney diseases that are associated with environ-
mental causes (such as glomerular nephropathies
associated with organic solvents, common in high-
income countries in the last century”) have begun to
emerge in low-income countries.

The number of researchers moving out of their home
countries that are low income increases the gap between
north and south, and reduces capacity to address local
issues in these regions.™ Taiwan has implemented
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several policies to keep researchers, including financial
incentives reimbursement for the costs of repatriation
and grants for business development, which reversed
previous trends in migration of Taiwanese scientists.*”
Scientists, political leaders, and decision makers in low-
income and high-income countries must collaborate to
produce policies and education systems that promote
and enable research and development. Easy communi-
cation, quick travel, and greater collaboration between
high-income and low-income countries are increasingly
common and should help expatriate professionals to
contribute to their countries of origin.

A capacity gap remains between low-income or
middle-income countries and high-income nations in
health science, including nephrology. According to a
WHO report” public health-care systems receive only
4-3-6-3% of the GDP in low-income or middle-income
countries compared with 11% in high-income countries.
Physician density in low-income or middle-income
countries was 10-1 per 10000 population, as opposed to
28-6 per 10000 population in high-income countries.
High-income countries and the global kidney research
community should help low-income countries to
increase their funding for primary health systems but
also to increase their local capacity for research on local
problems. The fellowship, sister renal centres and
educational ambassadors programmes from the Inter-
national Society of Nephrology are important mechan-
isms to strengthen kidney research capacity in
low-income countries.” The global kidney research
community should also focus on developing global
clinical practice guidelines, which are suitable for
patients in low-income countries.

At the same time, a new gap in capacity has appeared
between scientifically proficient emerging countries
(Argentina, Brazil, Chile, China, India, Malaysia, Mexico,
and South Africa) and other emerging countries, the so
called South-South gap. However, there are examples of
increasing South—~South cooperation that are helping to
close this gap:* these initiatives must be promoted in
renal medicine as well.

Today, even important ideas and studies from low-
income or middle-income countries have little chance to
reach international journals and are ignored.™ Access to
health information in low-income and middle-income
countries should be improved. The gap between evi-
dence and practice can have profound health effects
when highly effective interventions exist.* Encouraging
original research in low-income or middle-income coun-
tries should also increase visibility in these ideas to a
wider audience—perhaps providing specific space in
international journals for papers focusing on local
problems needing specific solutions.

Renal replacement therapies
Despite the success of strategies for preventing pro-
gression of chronic nephropathies,® kidney failure
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remains an important clinical problem. The outcomes
associated with chronic dialysis have not substantially
improved over the past two decades and further work is
needed in this area to improve renal replacement
therapy, either for acute kidney injury and chronic
kidney injury.

New dialysis research includes cheaper treatments,
home-based therapies, and simpler methods of blood
purification, objectives that can be achieved with new
disciplines such as miniaturisation and nanotechnology.
In the field of renal replacement therapy, technical
innovation can be the result of a joint effort of not-for-
profit organisations, rather than industrial investment,
when considering the needs of small populations. For
example, the development of equipment for miniatur-
ised renal replacement therapy for newborn babies and
very young infants.”

Although kidney transplantation is the best available
treatment for kidney failure, the supply of renal
allografts is insufficient to meet the demands. New and
more effective strategies are needed, including the use
of self-repair of human tissues and organs.

The human kidney has an intrinsic capacity to
repair after injury.® The repair process is accomplished
by migration of stem or progenitor cells into the
damaged region, with eventual reconstitution of a
functional epithelium. Such progenitors have been
identified in resident epithelial cells® and glomerular
parietal epithelial cells,”” but stem cells with broader
regenerative properties are also found in the proximal
tubuli, glomeruli, papilla, and peritubular capillaries,
and in urine.”

Understanding how these unspecialised precursors
are maintained and regulated has practical implications,
as the regenerative potential of tissue-specific pro-
genitor cells can be therapeutically used to boost the
repair activity of cells in models of chronic kidney
disease.”” Efforts are also directed to replenish the
renal stem-cell pool and potentiate the regenerative
repairing process by transplantation of mesenchymal
stromal cells from bone marrow or other tissue sources.
This regenerative cell-based approach has been applied
in rodent models with damaged renal tissue and is
more effective in acute kidney injury than in chronic
kidney injury.”** However the main barrier to effective
implementation of therapies based on mesenchymal
stromal cells is the absence of specific homing of
exogenously infused cells and the inability to direct
these cells to the diseased tissue. Genetic modification
of mesenchymal stromal cells with retroviral vectors
that encode homing receptors” or preconditioning of
mesenchymal stromal cells before infusion with
compounds possessing promigratory properties (and
possibly without side-effects)” are now being explored
to direct therapy to diseased cells. Stem-cell therapies,
however, might not be acceptable since some studies
have suggested an increase in interstitial fibrosis.”

Investigators are trying to bioengineer kidneys™ but
this work is in its infancy and ex-vivo kidney regeneration
with extracellular matrix scaffolds will probably not be
clinically viable for at least a decade, despite a recent
clinical attempt.™

Recently in-vivo experiments in athymic rats showed
the development of renal organoids from embryonic
murine cells, indicating that generation of vascularised
glomeruli attached to nephrons with filtration and active
re-uptake, from simple cell suspension is possible.” As
engineering and nanotechnology advance, implantable
artificial devices that could provide both glomerular and
tubular function may be developed.

Whether and when these new technologies will result
in significant clinical applications cannot be determined
at present. Even more difficult is to predict how much
such technologies would cost when applied on a large
scale, and whether they would be affordable in low-
income countries.
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Diabetic nephropathy: are there new and potentially
promising therapies targeting oxygen biology?
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The multipronged drug approach targeting blood pressure
and serum levels of glucose, insulin, and lipids fails to fully
prevent diabetic nephropathy (DN). Recently, a broad range
of anomalies associated with oxygen biology, such as
hypoxia, oxidative stress (0S), and dyserythropoiesis, have
been implicated in DN. This review delineates the cellular
mechanisms of these anomalies to pinpoint novel
therapeutic approaches. The PHD-HIF system mitigates
hypoxia: HIF activates a broad range of reactions against
hypoxia whereas PHD is an intracellular oxygen sensor
negatively regulating HIF. The Keap1-Nrf2 system mitigates
OS: Nrf2 activates cellular reactions against OS whereas
Keap1 negatively regulates Nrf2. Clinical trials of PHD
inhibitors to correct anemia in patients with CKD as well as of
a Nrf2 activator, bardoxolone methyl, for DN are under way,
even if the latter has been recently interrupted. A specific
PHD1 inhibitor, a Keap1 inhibitor, and an allosteric effector of
hemoglobin may offer alternative, novel therapies.
Erythropoietin (EPO) is critical for the development of
erythroid progenitors and thus for tissue oxygen supply.
Renal EPO-producing (REP) cells, originating from neural
crests, but not fibroblasts from injured tubular epithelial cells,
transdifferentiate into myofibroblasts and contribute to renal
fibrosis. Agents restoring the initial function of REP cells
might retard renal fibrosis. These newer approaches
targeting oxygen biology may offer new treatments not only
for DN but also for several diseases in which hypoxia and/or
OS is a final, common pathway.
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Numerous factors have been implicated in the development
of diabetic nephropathy (DN). Their actual significance
has been documented in several animal and human studies
by the demonstration that their inhibition slowed the
progression of DN. Still, despite a multipronged drug
approach targeting blood pressure, serum levels of glucose,
insulin, lipids, obesity, and so on, full prevention of
DN remains elusive. Newer culprits thus remain to be
identified. Besides hemodynamic and metabolic abnormal-
ities, a broad range of abnormalities associated with
oxygen biology, such as hypoxia, oxidative stress (OS),
and dyserythropoiesis, have emerged in our understanding
of DN.

All mammalian organs require a supply of oxygen to fuel
various biometabolic processes. A decreased oxygen supply,
that is, hypoxia, induces not only acute disorders such as
ischemic heart disease but also chronic disorders such as
renal fibrosis. OS during hypoxia may sound paradoxical.
Yet, it may be induced not only by a rise but also a fall in
oxygen tension. Hypoxic cells rely on anaerobic glycolysis to
generate adenosine-5'-triphosphate but their residual low
oxygen supply supports some level of oxidative production
of adenosine-5'-triphosphate through the tricarboxylic
acid cycle and electron transport chain. Electrons leaking
from the mitochondrial electron transport chain generate
an excess of reactive oxygen species (ROS), that is, OS.
Thus, hypoxia and OS are closely linked. Reoxygenation
or high oxygen levels following severe hypoxia further
exaggerate ROS generation, a concept validated by the
clinical benefits accruing from the use of agents able to
scavenge ROS or the prevention of their formation in
hypoxic lesions.!

Erythropoietin (EPO) is essential for the proliferation
and differentiation of erythroid progenitors and hence of
tissue oxygen supply.? Recent studies have unraveled the
cellular mechanism of renal EPO production and the
sequential events leading to renal fibrosis, both of which
are closely linked to each other3® In contrast to previous
knowledge, fibroblasts originating from injured tubular
epithelial cells do not play a major role in renal fibrosis,
but renal EPO-producing (REP) cells, stemming from
neural crests, do transdifferentiate into myofibroblasts
upon long-term exposure to inflammatory conditions and
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contribute to renal fibrosis.® Fortunately, to some extent, REP
cells retain their plasticity: in experimental animals, some
agents restore their initial function and retard renal fibrosis.®
These observations provide the missing link in chronic
kidney disease (CKD) between anemia and renal fibrosis.

We review the cellular mechanisms of various abnormal-
ities associated with oxygen biology, such as hypoxia, OS, and
dyserythropoiesis, with an emphasis on the genesis of DN.
Eventually, we propose novel and potentially promising
therapeutic approaches for DN.

OXIDATIVE STRESS

OS results from the accumulation of ROS and disrupts
cellular function. Its existence and its possible localization in
diabetes have been disputed. Williamson et al.” demonstrated
an increased cellular nicotinamide adenine dinucleotide ratio
(NADH/NAD ™) and suggested that diabetes is a state of
‘reductive stress’ and ‘pseudo-hypoxia’ rather than OS. On
the contrary, OS was postulated in diabetes on the basis of
indirect evidence including increased nicotinamide adenine
dinucleotide phosphate ratio (NADP "/NADPH) and of
oxidized to reduced glutathione.®% Still, Wells-Knecht
et all! argued against a ‘generalized’ OS in diabetes: the
age-adjusted levels in skin collagen of two oxidized amino
acids, ortho-tyrosine and methionine sulfoxide, proved
virtually identical in diabetics and nondiabetics.

In contrast, we demonstrated a ‘local’ OS in the human
diabetic kidney.'>!* Advanced glycation end products (AGEs),
generated nonenzymatically with sugars on proteins, include
two different classes of structures: OS-dependent molecules

(pentosidine and N°-(carboxymethyl)lysine) and OS-
independent molecules (pyrraline). Should tissue AGE
formation depend solely on hyperglycemia, all AGE

structures should be detected in the diabetic kidney. The
identification of individual AGE structures established that this
is not the case. Both pentosidine and N°-(carboxymethyl)lysine
were present in diabetic glomerular lesions, together with other
protein modifications derived from the oxidation of lipids
(for example, malondialdehyde-lysine), whereas pyrraline was
absent. The contention of a local’ OS in DN was subsequently
confirmed in diabetic vascular lesions by us and others'»!®
and is now supported by a large body of evidence gathered
in in vitro experiments as well as in in vivo animal and human
studies.!®17

The primary cause of local OS in DN remains debated as
ROS are generated by numerous enzymatic and none-
nzymatic sources,'8?? for example, the activation of the
renin-angiotensin system, of NADPH oxidase, of nitric oxide
synthase, and so on.

A newer pathway for OS has recently emerged: the
prolylhydroxylase-1 (PHD1)-hypoxia-inducible factor (HIF)
system. Aragonés et al.?® demonstrated in mice that the
genetic disruption of PHDI, an intracellular oxygen sensor,
lowers oxygen consumption in mitochondria of skeletal
muscle, mitigates the OS, and enhances cellular survival
during hypoxia.

694

HYPOXIA

Renal tissue hypoxia remains difficult to document directly
from blood or urine analyses; however, recently, molecular
imaging technologies have allowed an evaluation of renal
oxygen levels. For instance, blood oxygen level-dependent
magnetic resonance imaging performed in a healthy subject
given 11 water load after an 8-h water restriction documents
a significant increase in the oxygen level of the renal
outer medulla®® In addition, inhibition of sodium
reabsorption in the outer medulla by furosemide should
reduce oxygen consumption and, indeed, renal blood oxygen
level-dependent magnetic resonance imaging reveals a rise in
medullary oxygen level within 15min after furosemide
administration to a healthy subject.?*

Tissue hypoxia in the streptozotocin-induced diabetic rat
kidney has been visualized by Ries et al.®> by blood oxygen
level-dependent imaging, a finding confirmed later by
Rosenberger er al.*® by pimonidazole staining (a probe to
detect hypoxia) and HIE

Localization of hypoxia within the kidney is hampered by
the scarcity of methods that are able to identify and quantify
tissue oxygenation at the cellular level. Tanaka et al.?’ relied
on a new hypoxia-responsive reporter vector to generate a
novel hypoxia-sensing transgenic rat. In this model, they
identified ‘diffuse cortical’ hypoxia in the puromycin
aminonucleoside-induced nephrotic syndrome and ‘focal
and segmental’ hypoxia in the remnant kidney model. In
both models, the degree of hypoxia was positively correlated
with microscopic tubulointerstitial injury. Localization of
tissue hypoxia may thus differ according to the type of renal
disease, but remains precisely elusive in DN.

The causes of chronic hypoxia in DN are heteroge-
neous.”?!  Glomerular efferent arterioles enter the
peritubular capillary plexus to provide oxygen to tubular
and interstitial cells. Lesions in efferent arterioles decrease the
number of peritubular capillaries, which in turn impair
oxygen diffusion to tubulointerstitial cells and lead eventually
to tubular dysfunction and fibrosis. Dyserythropoiesis and
anemia associated with chronic kidney disease further hinder
oxygen supply.

Hypoxia not only causes local OS in DN, but also affects
various biological reactions linked to oxygen metabolism,>?
including nitrosative stress, > advanced glycation and
carbonyl stress,**?® and endoplasmin reticulum stress.39:40
The interrelationship between these detrimental chain
reactions is so complex that a single culprit unlikely
accounts for the alterations of DN. Whatever the sequential
events of diabetic renal injury, the consequences of hypoxia
and the attendant impairment of oxygen metabolism is
pivotal in the genesis and progression of DN. Therapies
interfering with it may prove clinically useful.

DYSERYTHROPOIESIS

EPO production occurs mainly in the kidney and is reduced
in CKD patients with an eventual anemia.”® Plasma EPO
concentration is dramatically reduced in a uremic animal

Kidney International (2013) 84, 633-702
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model.*'*2 Recombinant human EPO has been used for
more than 20 years in CKD to compensate for the reduced
endogenous EPO production.’

Recent studies have indicated that EPO administration
improves kidney functions in CKD either directly or
indirectly*® Low hemoglobin levels are associated with
adverse outcomes such as renal and cardiac failure, the so-
called cardio—renal anemia syndrome.**** A broad array of
cellular processes is modulated not only by the mitigation of
hypoxia but also by the development of progenitor stem cell,
cellular integrity, and angiogenesis.*>** The therapeutic benefits
of EPO beyond the correction of anemia are still debated. It is
noteworthy that recently evidence has been published on the
pleiotropic effects of EPO on the central nervous and the
cardiovascular systems as well as on the kidney.*>47

CELLULAR MECHANISMS
PHD-HIF pathway
Defense against hypoxia hinges upon the HIF#4 that
activates a broad range of genes that stimulate erythro-
cytosis, angiogenesis, glucose metabolism, or cell pro-
liferation/survival, and eventually protect hypoxic tissues.
The level of HIF-o is determined by its oxygen-dependent
degradation rate. In the presence of oxygen, it undergoes
enzymatic hydroxylation by PHDs,*®! is recognized by the
Hippel-Lindau tumor-suppressor protein (pVHL),”> acting
as an E3 ubiquitin ligase, and is rapidly degraded by the
proteasome (Figure 1, upper panel).”**> During hypoxia, the
nonhydroxylated HIF-o escapes interaction with Hippel-
Lindau tumor-suppressor protein, is thus stabilized, and
binds to its heterodimeric partner HIF-18, mainly in the
nucleus, to transactivate genes involved in the adaptation to
hypoxic-ischemic stress.”®

Three isoforms of the HIF-o. subunit have been identified
(that is, HIF-1o, HIF-201, and HIF-301).5” HIF-1o: and HIP-20
are structurally and functionally similar. In contrast, HIF-3a
lacks the structures for transactivation present in the C-termini
of HIF-1¢t and HIF-20 and might play an alternative role as a
negative regulator of hypoxia-inducible gene expression.

Recent studies in mice, utilizing gene disruption of either
HIF-1o or HIF-20, disclosed that HIF-2« acts as a physiolo-
gical regulator of EPO.*® In humans, the HIF2A gene is
responsible for familial erythrocytosis®® and for compara-
tively high hemoglobin concentrations in polycystic kidney
disease® (pericystic hypoxia leading to HIF-2 induction). In
addition, it plays a crucial role in the defense against 0S.2%!

PHDs belong to the Fe(Il) and 2-oxoglutarate-dependent
dioxygenase superfamily, which incorporates two atoms of
molecular oxygen into their substrates:*” the first, used in the
oxidative decarboxylation of 2-oxoglutarate, yields succinate
and carbon dioxide, whereas the second is incorporated
directly into the proline residue of HIF-o. They are called
‘oxygen sensors’ as their activity rigorously depends on
oxygen tension.®?

PHD activity critically requires iron and is thus inhibited
by transition metal chelators.®* Cobalt chloride inhibits PHD

Kidney International (2013) 84, 693702

activity through an intracellular depletion of ascorbate
necessary for iron (reduced) activity.9> Its erythropoietic
effect is known in humans since the 1940s%4% and has been
utilized in the 1970s to treat anemia associated with chronic
renal failure.®® Unfortunately, cobalt chloride proved too
toxic and is no longer in clinical use.

Three different PHD isoforms have been identified (that
is, PHD1, PHD2, and PHD3),%” each of which has its own
tissue and subcellular distribution.?”6® PHDI is exclusively
nuclear, PHD2 is mainly cytoplasmic (but shuttles between
nucleus and cytoplasm), and PHD3 is present in both
cytoplasm and nucleus. PHD2 acts as a decisive oxygen
sensor in the HIF degradation pathway.®® Although hypoxia
decreases overall PHD activity, upregulation of HIF-1g
induces the expression of PHD2 and PHD3.”% This HIF-
induced PHD expression ensures rapid removal of HIF-«
after reoxygenation. Feedback loops may thus exist during
hypoxia signaling.”""?

Keap1-Nrf2 pathway

Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a
transcriptional factor, regulates the expression of several
cellular antioxidant and cytoprotective genes’>’* (Figure 1,
lower panel). Upon exposure to OS and/or electrophiles,
Nrf2 translocates into nuclei, heterodimerizes with a small
Maf protein, eventually binds to the antioxidant/electrophile-
responsive element, and activates the transcription of
antioxidant genes, including heme oxygenase-1, glutathione
peroxidase-2, NAD(P)H-quinone oxidoreductase 1, and
glutathione S-transferase. Nrf2 thus causes a broad and
coordinated set of downstream reactions against OS.

Nrf2-mediated transcriptional responses are protective
in a variety of experimental animals models including
oxidative lung injury and fibrosis, asthma, and brain
ischemia-reperfusion damage.”>”” For example, induction
of renal ischemia followed by reperfusion in wild-type mice
elevates Nrf2 levels and activates their downstream target
genes in the kidney.”® In contrast, Nrf2 deficiency enhances
their susceptibility to both ischemic and nephrotoxic acute
kidney injury.”® Treatment of Nrf2 knockout mice with the
antioxidants N-acetyl-cysteine or glutathione improves renal
function. Furthermore, Nrf2 knockout with
streptozotocin-induced diabetes progressively increase their
urinary levels of nitric oxide metabolites (an indirect
evidence of OS) and develop renal injury.®® Upregulation of
Nrf2 is thus a potential therapeutic target in order to mitigate
OS-induced tissue injury.

The regulation of Nrf2 has been recently elucidated
(Figure 1, lower panel). Nrf2 is ubiquitinated continuously
through the Keapl-Cul3 system and degraded within the
proteasome.?!'82 Tts level depends on its rate of destruction.
Keapl is a sensor of OS and acts as a negative regulator of
Nrf2.83 Under OS, reactive cysteines within the Keapl moiety
undergo conformational changes, eventually leading to the
detachment of Nrf2 from Keapl and the inhibition of its
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