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Muse cells, newly found non-tumorigenic pluripotent stem cells,
reside in human mesenchymal tissues

Shohei Wakao,! Hideo Akashi,' Yoshihiro Kushida? and Mari Dezawa'*?

Departments of 'Stem Cell Biology and Histology, and ?Anatomy and Anthropology, Tohoku University Graduate

School of Medicine, Sendai, Japan

Mesenchymal stem cells (MSCs) have been presumed to
include a subpopulation of pluripotent-like cells as they
differentiate not only into the same mesodermal-lineage
cells but also into ectodermal- and endodermal-lineage
cells and exert tissue regenerative effects in a wide variety
of tissues. A novel type of pluripotent stem cell,
Multilineage-differentiating stress enduring (Muse) cells,
was recently discovered in mesenchymal tissues such as
the bone marrow, adipose tissue, dermis and connective
tissue of organs, as well as in cultured fibroblasts and
bone marrow-MSCs. Muse cells are able to differentiate
into all three germ layers from a single cell and to self-
renew, and yet exhibit non-tumorigenic and low
telomerase activities. They can migrate to and target
damaged sites in vivo, spontaneously differentiate into
cells compatible with the targeted tissue, and contribute to
tissue repair. Thus, Muse cells may account for the wide
variety of differentiation abilities and tissue repair effects
that have been observed in MSCs. Muse cells are unique
in that they are pluripotent stem cells that belong in the
living body, and are thus assumed to play an important
role in ‘regenerative homeostasis’ in vivo.
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CURRENT STATE OF MESENCHYMAL STEM CELL
(MSC) RESEARCH

Nearly 400 clinical studies of mesenchymal stem cell (MSC)
transplantation have been performed around the world,
targeting various diseases, such as Parkinson’s disease,
Crohn’s disease, pulmonary fibrosis, and diabetes mellitus.™
Sources of MSCs vary, with the bone marrow, adipose tissue,
and umbilical cord currently being the most common. These
sources are easily accessible and avoid the ethical problems
associated with the use of fertilized eggs and fetal tissue.
Tissue banks are available for bone marrow and umbilical cord
tissues. Human MSCs have high proliferative activity and
therefore large numbers of harvested MSCs can be obtained
for clinical use.>®

The most important requirement for clinical application is
safety. To date, there have been no reports of tumorigenesis
related to MSCs. They are not artificially induced or manipu-
lated, but are naturally existing stem cells, and are thus
considered non-tumorigenic. Although MSCs have great
advantages for clinical use, they are not superior in all
aspects, and the effects of MSCs on tissue regeneration and
functional recovery are controversial.

While MSCs are referred to as ‘stem cells’, the rigorous
methods of stem cell biology that are applied to hemato-
poietic and neural stem cells have not been applied in most
of the studies performed using MSCs. Mesenchymal stem
cells are usually collected just as adherent cells from the
bone marrow and other mesenchymal tissues. While the
morphology of collected adherent cells is similar to that of
fibroblasts, they are not the same as fibroblasts. Some
basic information about MSCs remains obscure, such as
how many cells in the MSC population critically meet the
criteria of stem cells, how many types of cells comprise
MSCs, or the ratio of each cell type. The MSCs are a crude
population and may include cells other than stem cells,
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such as fibroblasts and endothelial cells, which are normally
found in mesenchymal tissue.

Mesenchymal stem cells are heterogeneous, and their
actions are pleiotropic. They produce humoral factors that
exert trophic and anti-inflammatory effects and modulate
immunologic reactions."” In addition to these humoral
effects, MSCs exhibit a broad spectrum of differentiation
abilities that cross the boundaries from mesodermal- to
ectodermal- or to endodermal-lineage cells, suggesting that
MSCs have an aspect of pluripotency.® Although at very low
frequency, transplanted MSCs show triploblastic differentia-
tion ability. In animal models transplanted with naive MSCs,
the integration of a very small number of MSCs into damaged
liver, brain, or heart, and differentiation into hepatocyte-,
neural-, or cardiomyocyte-marker expressing cells in each
organ were observed, suggesting the involvement of MSCs
in tissue repair.®" These tissue repair effects of MSCs,
however, have not yet been clearly demonstrated in humans.
Trophic effects are the most obvious effects of MSC trans-
plantation, while tissue repair effects are considered to be
minor and with a low frequency. Although MSCs are safe and
feasible for clinical use, the low frequency of tissue repair
effects limits the effectiveness of MSCs for regenerative
medicine.

Nevertheless, MSCs are suggested to include a small
population of stem cells that have the ability to differentiate
into any cell type, much like pluripotent stem cells, and par-
ticipate in tissue repair. Isolation of such stem cells from
MSCs could have a critical impact in the fields of regenerative
medicine and cell-based therapy. What kinds of cells might
these be?

DISCOVERY OF MUSE CELLS

Pluripotent stem cells that account for one to several percent
of MSCs, Muse cells, were first reported in 2010.'2 Muse cells
are found in adult mesenchymal tissues such as the bone
marrow, adipose tissue and dermis, but are generally distrib-
uted sparsely in organ connective tissue.'® Muse cells can be
conveniently obtained from commercially available mesen-
chymal cultured cells such as bone marrow- and adipose
tissue-MSCs, as well as from fibroblasts, one of the most
generally used cultured cells in the world, as several percent-
age of total MSCs. (Fig. 1)'2'*'S Muse are pluripotent but
non-tumorigenic, thus early realization of their application to
regenerative medicine is highly anticipated.

The discovery of Muse cells is important in several
aspects. First, the pluripotency of Muse cells and their small
proportion of total MSCs are consistent with the previously
reported low frequency of trans-differentiation of MSCs
across triploblastic lineages. Second, the pleiotropic actions
of MSCs are clarified by the division of the roles played by

Muse cells and cells other than Muse cells, namely non-Muse
cells. That is, Muse cells are responsible for the triploblastic
differentiation and tissue repair effects, while non-Muse cells
are deeply involved in trophic and immunosuppressive
effects.’?1®

Muse cells were initially identified as stress-tolerant cells.
When bone marrow-MSCs (BM-MSCs) or fibroblasts are cul-
tured for longer than overnight under stress-inducing condi-
tions, e.g., incubated in trypsin or under low nutrition
conditions, the vast majority of MSCs die and only a small
number of cells, containing a high ratio of Muse cells,
survive.'? Somatic stem cells that normally reside in tissue
are dormant and not usually active, but once the tissue is
damaged or exposed to stress, they become activated and
begin to proliferate, differentiate, and contribute to tissue
restoration. In contrast to these stem cells, functioning differ-
entiated cells tend to die after damage or stress. For
example, neural stem cells that are located in the brain are
normally inactive, but following stroke, these stem cells enter
into the cell cycle and begin to generate neuronal and glial
cells whereas mature neuronal cells tend to die.'” Recently,
Shigemoto et al. succeeded in efficiently collecting muscle
stem cells, namely satellite cells, from adult skeletal muscle
tissue by taking advantage of their stress tolerance proper-
ties.'® In the same manner, Muse cells are stem cells that
reside in mesenchymal tissues, and are tolerant to stress. In
contrast to other somatic stem cells, however, such as neural
and muscle stem cells, their actions are not confined to the
tissue where they are located but they expand their field of
activities, perhaps via the peripheral blood stream, and
participate in extensive tissue repair, as described below.

CHARACTERISTICS OF MUSE CELLS
Muse cells have remarkable characteristics, including:

1 Muse cells are pluripotent stem cells that are able to differ-
entiate into mesodermal-, ectodermal-, and endodermal-
lineage cells from a single cell and can be directly collected
from human tissues (Fig. 1).1?

2 Muse cells can be obtained from easily accessed tissues,
such as the bone marrow, adipose tissue, and dermis, as
well as from commercially available cultured fibroblasts and
BM-MSCs (Fig. 1).121315.16

3 Muse cells have low telomerase activity and are non-
turmorigenic.*

4 Muse cells comprise 0.03% of bone marrow mononucle-
ated cells, and several percentage of cultured fibroblasts
and BM-MSCs.'?

5 Muse cells also comprise a part of MSCs, which are already
used in clinical studies; thus, Muse cells are highly expected
to be safe for clinical use.

© 2014 The Authors
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Muse cells can be collected from cultured mesenchymal cells (for example, fibroblasts and bone marrow mesenchymal stem cells (BM-MSCs))
and mesenchymal tissues (adipose tissue, dermis and bone marrow) as cells double-positive for SSEA-3 and CD105. After isolating Muse cells
by fluorescence-activated cell sorting, single Muse cells cultured in suspension (single cell-suspension culture) generate characteristic clusters
that are very similar to the embryoid bodies formed by human embryonic stem (ES) cells. When the cell clusters are transferred onto gelatin
culture and spontaneous differentiation is induced, cells with endodermal- (i.e., hepatocytes), ectodermal- (neuronal cells), and mesodermal-
(skeletal muscle cells) lineage are observed. The rest of the clusters were individually transferred to adherent culture and allowed to proliferate
for 7 to 10 days, after which they underwent a second round of single cell-suspension in culture to generate second generation clusters. This
experimental cycle was repeated three times, demonstrating that Muse cells maintain self-renewal, as well as triploblastic differentiation ability

up to the third generation.

6 Muse cells have a proliferation rate of ~1.3 day/cell division,
slightly slower than that of fibroblasts in adherent culture, so
a large number of Muse cells can be prepared.'

7 Muse cells act as repair cells in vivo.'

Muse cells have dual aspects

Muse cells belong to MSCs. Therefore, they have nearly all of
the properties of MSCs. Unlike general mesenchymal cells,
however, Muse cells are pluripotent. These dual aspects of
Muse cells are reflected by their expression of cell surface
markers; they are positive for both mesenchymal (CD105,
CD90 and CD29) and pluripotency (SSEA-3) markers
(Fig. 1)."2

Muse cells are unique, not only in their surface marker
expression profile, but also in their behavior and other prop-
erties. In adherent culture, they appear similar to fibroblasts,
but when they are transferred to a single cell-suspension
culture, they can survive and begin to proliferate to form cell

© 2014 The Authors

clusters that resemble embryonic stem (ES) cell-derived
embryoid bodies formed in suspension. Such single cell-
derived Muse cell clusters are similar to ES cells in their
appearance, and positive for alkaline phosphatase as well as
for the pluripotency markers Nanog, Oct3/4, and Sox2. Con-
sistent with the expression of pluripotency markers, cells
derived from Muse cell clusters are able to differentiate into
endodermal-, ectodermal-, and mesodermal-lineage cells
when transferred to gelatin cultures, proving that single Muse
cells are able to generate cells representative of all three
germ layers.™' Importantly, non-Muse cells in MSCs have
only mesenchymal aspects; that is, they do not express
pluripotency markers, nor do they survive, proliferate, or form
clusters in suspension.’™

Triploblastic differentiation and self-renewal abilities of
Muse cells

Muse cells are pluripotent stem cells because they can gener-
ate endodermal-, mesodermal- and ectodermal-lineage cells

Pathology International © 2014 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd
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from a single cell and to self-renew (Fig. 1). The markers of
each lineage into which Muse cells are able to differentiate
are: ectodermal- (neural markers such as nestin, NeuroD,
Musashi, neurofilament, microtubule associated protein-2, and
markers for melanocytes such as tyrosinase, microphthalmia-
associated transcription factor, ¢f100, tyrosinase-related
protein 1, and dopachrome tautomerase'®'®), mesodermal-
(brachyury, Nkx2.5, smooth muscle actin, osteocalcin, oil red-
(+) lipid droplets, and desmin'®'3), and endodermal-lineages
(GATA-6, o-fetoprotein, cytokeratin-7, and albumin'), Ex-
pression of these markers is recognized under both spontane-
ous differentiation on gelatin and cytokine induction systems.

With regard to ectodermal differentiation, Tsuchiyama et al.
recently demonstrated that human dermal fibroblast-Muse
cells could cross the boundary between mesodermal and
ectodermal-lineages and efficiently differentiate into functional
melanin-producing melanocytes by applying a cocktail of
cytokines, including Wnt3a, stem cell factor, endothelin-3, and
basic fibroblast growth factor, while the remainder of the
fibroblasts, non-Muse cells, could not differentiate into melano-
cytes at all.™® Muse cell-derived melanocytes expressed
the melanocyte markers tyrosinase and microphthalmia-
associated transcription factor, were positive for 3,4-dihydroxy-
L-phenylalanine, an indicator of melanin production, and
maintained their melanin-producing activity in the basal layer of
the epidermis when transplanted into the skin. Together, these
results demonstrated the absolute superiority of Muse cells
over non-Muse cells in terms of pluripotency.

Although Muse cells are pluripotent, they tend to differen-
tiate more frequently into their background lineage; they
spontaneously differentiate into mesodermal-lineage cells
with a higher percentage (10-15%) than into ectodermal
(3-4%) or endodermal (3—4%)-lineage cells.'

The ratio of spontaneous differentiation of Muse cells is not
very high, but an induction system with a certain combination
of cytokines and trophic factors directs their differentiation
more efficiently. For example, when Muse cells are treated
with hepatocyte growth factor, fibroblast growth factor-4, and
dexamethasone in insulin-transferrin-selenite medium, more
than 90% of the cells become hepatocyte-like cells that
express alpha-fetoprotein and human albumin'® Muse cells
treated with Neurobasal medium supplemented with B-27,
basic fibroblast growth factor, and brain-derived neurotrophic
factor differentiate into neuronal cells that are positive for
MAP-2 and neurofilament.' In osteocyte or adipocyte induc-
tion medium, nearly 98% of Muse cells differentiate into cells
positive for osteocalcin or oil-red, respectively.’® In this
manner, mesodermal-, ectodermal-, or endodermal-lineage
cells can be more efficiently obtained from Muse cells,
depending on the induction system. More importantly, none
of the above differentiations requires the introduction of
exogenous genes, and thus Muse cells produce the desired
cells with lower risk.

Muse cells are self-renewable. When half of the first-
generation clusters formed from Muse cells in single cell-
suspension culture were transferred individually onto a
gelatin culture and expanded, the expression of endodermal
(alpha-fetoprotein, GATA-6), mesodermal (Nkx2.5), and
ectodermal markers (MAP-2) was observed. The remaining
clusters were individually transferred to an adherent culture
and allowed to proliferate, after which they underwent a
second round of single cell-suspension in culture to generate
second generation clusters (Fig. 1). This experimental cycle
was repeated up to three times and clusters from each step
were analyzed. Expression of the above genes was detected
in first, second, and third generation clusters, demonstrating
that Muse cells maintain the gene expression profile required
for self-renewal, as well as triploblastic differentiation ability.®

Non-tumorigenicity of Muse cells

When Muse cells are compared with tumoirgenic pluripotent
stem cells such as ES and induced pluripotent stem (iPS)
cells, the repertoire of the genes related to pluripotency,
including Nanog, Oct3/4, and Sox2, expressed in Muse cells
is similar to that of ES and iPS cells, while the expression
level of those factors in Muse cells is lower compared to ES
and iPS cells. Compatible with their tumorigenic activity, ES
and iPS cells have high levels of telomerase activity as well
as high expression levels of genes related to cell-cycle pro-
gression compared with Muse cells, which have the same
low levels as naive fibroblasts.'

In sharp contrast with Muse cells, non-Muse cells do not
originally express pluripotency genes. Expression levels of
genes related to cell-cycle progression are similar between
Muse and naive fibroblasts.!®

Embryonic stem and iPS cells are known to form teratomas
when transplanted in vivo. In fact, teratomas form when those
cells are transplanted into the testes of immunodeficient
mice.'??° |n contrast, Muse cells do not develop into teratomas
in vivo. Even after 6 months, none of the Muse cell-
transplanted immunodeficient mouse testes formed terato-
mas (Fig. 2)."22° Together these results support that Muse
cells are pluripotent but with non-tumorigenic and low
telomerase activities. The non-tumorigenicity of Muse cells is
considered to be consistent with the fact that they reside in
normal adult mesenchymal tissue. ~

Ability of Muse cells to spontaneously repair damaged
tissues in vivo

For application of ES and iPS cells to regenerative medicine
in humans, two major conditions are required: (i) the cells
must be differentiated into objective cells in a cell processing

© 2014 The Authors
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Figure 2 Muse cells are non-tumorigenic.
When embryonic stem (ES) or induced plu-
ripotent stem (iPS) cells were infused into
immunodeficient mice (SCID mice) testes,
they formed teratomas within 8 to 12 weeks
while none of the Muse cell-transplanted
testes generated teratomas and instead
maintained normal tissue structure. (pictures
reproduced from Proc Natl Acad Sci USA
2010; 107: 8639—43 and Proc Natl Acad Sci
USA 2011; 108: 9875-80) (12,13).

center; and (ii) undifferentiated cells must be eliminated from
the differentiated population before transplantation. These
prerequisite conditions are based on the fact that undifferen-
tiated ES and iPS cells have tumorigenic activity. As men-
tioned above, directly transplanted undifferentiated ES or iPS
cells may form tumors in vivo. Furthermore, even if differen-
tiation induction with high efficiency could be realized, some
undifferentiated cells will remain.

For Muse cells, however, the above two conditions are not
required. One possible scheme is that naive Muse cells can
be applied directly to patients. Muse cells have the ability to
migrate and integrate into the site of damage and then spon-
taneously differentiate into cells compatible with the tissue
they target (Fig. 3). Such differentiation is observed in meso-
dermal, ectodermal, and endodermal tissues, and the Muse
cells can act as ‘repairing cells’ in a wide spectrum of tissues
and organs as described below.'? Because differentiation
and repair are induced spontaneously by Muse cells them-
selves, there is no need to control their differentiation prior to
transplantation. Furthermore, as Muse cells are inherently
non-tumorigenic and have low telomerase activity, it is not
necessary to eliminate undifferentiated naive Muse cells. Ulti-
mately, a cell processing center and complex systems are not
necessary for Muse cell therapy.

The repairing effect of naive Muse cells is most striking in
acute damage models. This was demonstrated by the infusion
of green fluorescent protein-labeled naive human Muse cells
into immunodeficient mouse (SCID mouse) models with ful-
minant hepatitis, skeletal muscle degeneration, spinal cord

© 2014 The Authors
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injury and skin injury. (Fig. 4)'22' Naive human Muse cells
infused into the bloodstream of mouse models targeted
damaged sites and differentiated into hepatocytes (positive
for human albumin), skeletal muscle cells (human dystrophin),
neuronal cells (neurofilament), and keratinocytes (cytokeratin
14), respectively (Fig. 4). The findings revealed that Muse
cells can differentiate into ectodermal- (neuronal cell,
keratinocytes), endodermal- (hepatocytes), and mesodermal-
lineage cells (skeletal muscle cells) that are compatible with
the targeted tissue and contribute directly to tissue repair.

While some infused Muse cells were trapped in the lung,
the majority integrated into damaged tissues but not into
intact tissues.? This suggests that disruption of blood vessels
and destruction of tissues in damaged tissue are required for
naive Muse cells to migrate and target, and thus Muse cells
are able to perceive damage signals produced by damaged
tissues. After integration, Muse cells differentiate into tissue-
specific cells, but the factors that define the microenviron-
ment of the site, which instruct the Muse cells how to
differentiate correctly, remain unclear. Further elucidation of
signals responsible for Muse cell migration and differentiation
is needed.

DIFFERENT ROLES OF MUSE CELLS AND NON-MUSE
CELLS IN MSCS

Although the action of MSCs is considered pleiotropic, recent
findings of Muse cells are expected to elucidate the various
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Figure 3 Tissue repair effect delivered by Muse cells. @, red blood; ®, Muse cells; =, non-Muse cells.
When Muse and non-Muse cells were supplied to the blood stream, only Muse cells integrate into the damaged site, differentiate, and repaired
the tissue, while non-Muse cells do not remain in the damaged tissue nor do they participate in tissue repair.

functions of the MSC components. Although Muse cells
account for only several percent of the total MSCs, they play
an exclusive role in triploblastic differentiation and tissue
repair, while non-Muse cells do not directly participate in
these events and rather have major roles in trophic and
immunosuppressive effects. There are remarkable differ-
ences between Muse and non-Muse cells. First, non-Muse
cells do not form clusters in suspension like single Muse
cells.” Assuming that non-Muse cells are just like general
mesenchymal cells, such as fibroblasts, they are essentially
adherent cells and thus do not inherently survive and function
in suspension.

Second, pluripotency genes that are expressed in Muse
cells are not expressed in non-Muse cells and thus non-Muse
cells are not pluripotent. Although they have lower efficiency
than Muse cells, non-Muse cells do have the ability to differ-
entiate into osteocytes, chondrocytes, and adipocytes. They
are, however, unable to differentiate into neuronal cells (ecto-
dermal), hepatocytes (endodermal), or even into the same
mesodermal lineage skeletal muscles.'® Thus, they are not
pluripotent. Consistently, as shown in melanocyte induction,
Muse cells from dermal fibroblasts can differentiate into func-
tional melanocytes that produce melanin pigment following
induction with cytokine cocktails while fibroblast-derived non-
Muse cells fail to differentiate.’® Gene expression patterns in
non-Muse cells during melanocyte induction are interesting
to observe; they respond partially to the induction stimulation

and indeed some melanocyte markers are newly expressed
in an earlier period of induction, but those markers disappear
later and the gene expression pattern returns back to the
original state of fibroblasts at the later stage.™

The partial responsiveness of non-Muse cells is also
observed in iPS cell generation. Muse cells that are already
pluripotent express pluripotency genes and lack tumorigenic
activity, readily become iPS cells when treated with the four
Yamanaka factors, and newly acquire tumorigenicity,
whereas non-Muse cells do not show an increase in major
pluripotency genes, including Nanog and Sox2, even after
receiving the four Yamanaka factors.'®?? Their responsive-
ness to the four Yamanaka factors is only partial, however,
and thus non-Muse cells fail to generate iPS cells.

Third, non-Muse cells, unlike Muse cells, do not integrate
nor differentiate into functional cells in damaged tissues.'?!
Previous reports demonstrated that the large majority of
MSCs do not remain in the transplanted tissue, but rather
exert trophic effects that occasionally lead to some degree of
functional recovery. As the majority of MSCs are non-Muse
cells, the major role of non-Muse cells after transplantation
might be a trophic effect.

LOCALIZATION OF MUSE CELLS IN VIVO

Mesenchymal tissues, such as the bone marrow, adipose
tissue, and dermis, are the main reserve of Muse cells in vivo.
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Figure 4 Tissue repair effect of Muse cells.

Green fluorescent protein (GFP)-positive human Muse cells integrated into (a) fulminant hepatitis, (b) muscle degeneration, (c) spinal cord
injury (made by crush injury), and (d) skin injury models, and became (a) human albumin-, (b) human dystrophin-, (¢) neurofilament- (cells were
also positive for the human cell marker, anti-human Golgi complex, confirming that the positive cells were of human origin), and (d) cytokeratin
14- positive cells 4 weeks after injection. When non-Muse cells were infused into fulminant hepatitis, cells did not differentiate into
albumin-positive cells. Scale bars; a, b =100 um, ¢, d = 50 um. (Pictures reproduced from Proc Natl Acad Sci USA 2010; 107: 8639-43, and

Cells 2012; 1: 1045-60, 2012).'22!

In the human dermis and adipose tissue, Muse cells detected
as SSEA-3-positive cells locate sparsely in the connective
tissues of the dermis and hypodermis, and do not associate
with particular structures such as blood vessels or dermal
papilla (Fig. 5)3. Similarly, they distribute in the connective
tissue of many organs in the same manner as seen in the
dermis and adipose tissue (unpublished data). Because
tissue stem cells are generally confined to the tissue where
the stem cells belong, i.e., neural stem cells in the brain,
hematopoietic stem cells in the bone marrow, Muse cells are
unique in that they are distributed throughout the body and
are not confined to a specific organ or tissue.
Organ-derived Muse cells, however, might not be a practical
source for clinical use. Rather, easily accessible mesenchy-
mal tissues are realistic and feasible sources for obtaining
Muse cells for clinical use. In the case of human bone marrow

© 2014 The Authors

aspirate, SSEA-3/CD105 double-positive Muse cells were
identified at a ratio of 0.03%, namely, 1 in 3000 mononucle-
ated cells.’ The proliferation speed of Muse cells is ~1.3
day/cell division, so that 10 ml of fresh bone marrow aspirate
may yield nearly 1 million Muse cells within 10 days.

Commercially available cultured mesenchymal cells, such
as human dermal fibroblasts and BM-MSCs, are another
potential source for Muse cells. While the ratio and quality of
Muse cells may be altered by handling and depend the
number of subcultures, fibroblasts and BM-MSCs contain
Muse cells at levels ranging from 1% to 5-6%.™

MUSE CELLS AND REGENERATIVE HOMEOSTASIS

The fact that Muse cells reé.ide in connective tissue and bone
marrow suggests that they are widely distributed in the body.
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Figure 5 Muse cells sparsely locate in the adult human skin connective tissue.
Muse cells labeled by SSEA-3 are sparsely detected in the connective tissue of the dermis, sweat glands, adipose tissue and hypodermis.
(pictures reproduced from Proc Nat/ Acad Sci USA 2011; 108: 9875-80)."°

If so, what kind of systems do Muse cells maintain in vivo?
Because the bone marrow is directly connected to the periph-
eral bloodstream, the marrow is thought to be the hub of the
Muse cell system in the body where the Muse cells are
reserved and maintained in the normal state. Muse cells
might be mobilized very slowly to the peripheral blood from
the bone marrow in the normal state and distributed to the
connective tissue of peripheral organs, including mesenchy-
mal tissues such as adipose tissue and the dermis.

Comparison of the gene expression levels of Muse cells
from bone marrow, adipose tissue, and dermis reveals that
bone marrow-Muse express higher levels of genes related to
ectodermal and endodermal-lineages than adipose- and
dermal-Muse cells, suggesting that bone marrow-Muse cells
have higher pluripotency than the other two types of Muse
cells.’® Bone marrow Muse cells are also unique in that they
are highly dormant and more stress tolerant than adipose-
and dermal-Muse cells.

Assuming that Muse cells build up a system in vivo, what is
the function of Muse cells in the connective tissue of each
organ? Because Muse cells are pluripotent, they can repair
tissues that span endodermal-, mesodermal- and ectodermal-

lineages. Connective tissue is very common and generally
distributed in each organ, so that Muse cells residing in
connective tissue can easily access small areas of damage
that occur every day and replenish cells that are compatible
with the tissue in the nearest parenchyma. It is conceivable
that each organ is exposed to daily stress and minute damage
that may cause cell degeneration. Our bodies are able to
maintain function because of ‘regenerative homeostasis’ due
to these small maintenance systems. The true mechanisms of
regenerative homeostasis are still not clear, but the Muse cell
system may have an important function. Further studies are
needed to elucidate how Muse cells relate directly to regen-
erative homeostasis.
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