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to cases of high-grade meningioma. Again, it is very dif-
ficult to compare our data to the data from particle ra-
diotherapies. First, almost all reported series, including
our own, have comprised a limited number of cases. The
protocols have varied as well: in some studies, particle
therapy was applied just after surgery as the initial radio-
therapy, and in others it was applied at recurrence. The
applied doses varied and in some trials, particle radiation
was followed by fractionated EBRT. In addition, the data
on tumor shrinkage after particle irradiation have been
scarce. There has been only 1 preliminary report address-
ing this subject, and the results indicated no prominent
early tumor shrinkage using proton and carbon ion beams
for the treatment of high-grade meningiomas.*

One of the advantages of BNCT is that the radia-
tion field may be planned rather more ambiguously than
in SRS and other particle radiotherapies. This merit of
BNCT might decrease recurrence in the peri-irradiated
field in comparison with other radiation techniques, even
with the same absorbed dose as described as “Gy-Eq.”
Encouragingly, almost all masses in our series responded
well, with rapid shrinkage after BNCT (Figs. 2 and 3),
as also reported elsewhere.?> This rapid shrinkage might
contribute to the prompt recovery of symptoms in some
cases. Our patient in Case 1 became ambulatory 1 week
after BNCT, and our patient in Case 7 experienced relief
from facial pain within 2 weeks of BNCT, as reported
previously. =32

In BNCT, most potent antitumor effects are caused
by particles, and we applied 33.3 Gy-Eq and 73.4 Gy-Eq
for tumor tissue as minimum and maximum 1-time tumor
doses, respectively (Table 1). In the literature on particle
radiation, some clinical trials have used proton or carbon
particle doses between 18 Gy-Eq and 56 Gy-Eq with frac-
tionation.®*® The difference in tumor shrinkage between
o and lithium particles and other particles such as carbon
and protons may be ascribed to the difference of linear
energy transfer. The linear energy transfer of o and lith-
ium particles is higher than that of both protons and car-
bon particles. It is widely accepted that high linear energy
transfer particles have greater biological effects than low
linear energy transfer particles;'® of course, there might
be other causes. For example, in BNCT a large dose can
‘be delivered at a single time, while other particles are
usually applied with fractionation and additional low lin-
ear energy transfer EBRT. Because of this difference in
. protocol, other particles might have less impact on tumor
shrinkage.

With respect to adverse effects of BNCT, we experi-
enced 6 cases of symptomatic radiation injury among our
20 cases. One instance was the occurrence of subacute
brain swelling after BNCT, as reported previously,?> while
the other 5 cases appeared to show radiation necrosis.
Because all cases were introduced to our institute after
intensive radiotherapies prior to BNCT, radiation necro-
sis may have been inevitable, despite the tumor-selective
nature of BNCT. Recently, we applicd BNCT to a patient
with a high-grade meningioma who had never been treat-
ed with any radiotherapy, and are now observing this case
carefully. Bevacizumab has shown potent effects treating
symptomatic radiation necrosis in the brain, > and we
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have applied this drug for symptomatic radiation necrosis
after BNCT for malignant gliomas.!! This strategy should
be applicable and effective for the treatment of radiation
necrosis after BNCT for high-grade meningiomas.

We should emphasize that we found pseudoprogres-
sion after BNCT in at least 3 of our 20 high-grade menin-
gioma cases. As we described previously,?? this phenom-
enon could itself be an indicator of how promising and
intensive the effects of this treatment are.

Conclusions

Boron neufron capture therapy is a new treatment
concept and method that has already been used on ma-
lignant gliomas, including glioblastomas. Our study sug-
gests that high-grade meningiomas may be an even better
candidate for BNCT than those lesions. The meningio-
mas in our series were somewhat superficial (located on
the surface of the brain), except for some specific situa-
tions at the skull base, which is advantageous to neutron
penetration.

With regard to BPA accumulation, high-grade me-
ningiomas showed a good ratio of tumor to normal brain,
even compared with malignant gliomas (Table 1). In ad-
dition, judging from the rapid shrinkage of the mass, our
assumption about the compound biological effectiveness
of BPA for high-grade meningioma—which was assumed
to be equal to that of glioblastoma—might have been an
underestimation; the real value might be higher than that
for glioblastoma. If we can apply BNCT for high-grade
meningioma as the initial radiotherapy or at least at the
first recurrence, rather than at such advanced stages, more
favorable results than those described in our study might
be obtained, such as avoiding systemic metastasis or out-
of-field recurrence.
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Cell-selective Particle Radiation, Boron Neutron Capture Therapy and
Treatment of Symptomatic Radiation Necrosis in the Brain by Anti-

angiogenic Agent

Shin-Ichi Miyatake, M.D., Ph.D.?
1) Department of Neurosurgery, Osaka Medical College

Boron neutron capture therapy (BNCT) has been advocated as a novel particle radiation therapy for malig-
nant tumors that targets tumor cells biologically. Since 2002, we have applied this unique radiotherapy for 133
malignant gliomas and malignant meningiomas at our institution. In addition, we recently applied anti-angiogenic
agents aggressively for intractable symptomatic radiation necrosis in the brain.

Here is our latest comprehensive data regarding these unique treatments, including those I presented at the
32nd annual meeting of the Japanese Neurosurgical Congress, along with some new findings.
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Fig.3 Periodic Gd-enhanced MRI findings of a GBM case treated by BNCT.

3

A newly diagnosed GBM case in which the left trigonal lesion was

treated by BNCT.

At Brain MRI, prior to BNCT. B: Brain MRI, 8 months after BNCT. C:
Spinal MRJ, 8 months after BNCT, showing CSF dissemination of the lesion

at the spinal cord.

Fig.4 Typical MRI changes of malignant meningiomas treated by

BNCT

A, B: Prior to BNCT and 3 months after BNCT of a anaplastic meningioma.
C, D : Prior to BNCT and 4 months after BNCT of a anaplastic meningioma.
E, F: Prior to BNCT and 5 months after BNCT of an anaplastic meningioma.
G, H ! Prior to BNCT and 4 months after BNCT of a rhabdoid meningioma.
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Fig.6 Photograph of the cyclotron-based accelerator for neutron generation
and a schematic drawing of the total irradiation room
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Fig.7 Case of radiation necrosis successfully
treated by bevacizumab. Radiation necrosis
was due to repetitive SRSs for a metastatic
brain tumor of uterus cancer.

A Pre-treatment T1-Gd MRI. B: Pre-treat-
ment FLAIR MRI. C: Post-treatment T1-Gd MRI.
D Post-treatment FLAIR MRI. A drastic decrease
of Gd-enhancement and brain edema was observed
by 6 cycles of bevacizumab treatment.

Jpn J Neurosurg vOL.22 NG.8 2013.8 609

146



FRRRRBI TOO— BT w S (RHEREE)

FRERIE F 2 R - v X2 T

(Wt TXAF V)

TSR T DRI ¢ FEBAE R R U

____________

3m&& BRG0P MG R I ]
DERT B RAY AT TR & BRI NT%M%
g@yrﬁ4/-1ﬁw&m%

&}‘O)lﬁ i

fgizmﬁﬁi“

-y s

BIBREADS

Lummmmmw
—17 0 4 5 LR

UyEEERECBITS
SRIREE © IRMBIFC A O R R
ERE, T I/ @PE’I"C, lﬁ', Al

IR DHITERE I 2 &0, HiRPHREL T
FROVERE : Iﬁ&é}f}ffﬂ% 1 il E&O)‘fﬂﬁﬁk Fli
AR &

$:§3n5§§$§ * IURTEREE, FHENRmL &

B ERR G AT

prrsEeys: Gl
SEDEROBNERILET
BEDOBESALGNE, THENCEEL

Fig.8 Roadmap for obtaining permission for on-label use of bevacizumab for
symptomatic radiation necrosis in the brain

EDFERICIRE Lz & 25, FIHE & 5 oMk
AU OREEZ Mo §, OG0 i 2K
BiE & BB oM 2RO LY, B R
3 DI HEHUARER I A U B GRIEO B Ss, TS
K& 202N E BN X 3 b ob o8l
2ET5HECH L, bivbitd BiRo F-BPA-PET i &
D, ZOENZT>THB0,

INGOEBRED i, BEAeHMEICEEERE (B3
THARMERRRE) & LT TGRSR 4 2 % e
SEMNRBHT & RNy Xe 7 OMIRAREIC & 2T 20
L, EANMBIRROYA—FbuiE, 2011
4 F 1 E XY 40 M & SHPERE L CLE 16 fuik
u;%%ﬁ&%ﬁ%&%ﬁaEermém ARG
Bcid & D% Oifko2mEHFL T, Zoicik
BPA-PET O34, Met-PET bAIATMEL L TR, 20D
SRR R TRV E E 0 bbb N OREE
% Fig. 7 IR T

53 M. FEdEN L TelMliiiE 2Tk, 2o
E & D IMAIC S FHIERER R 2 320, BRElOERBEE
PSRRI Cw3, FAHEREORZE I 2 EOEMR
HhhufFah, 2 EHORED 2 AA% LY, B, %
ENERIEEL, AFuA4 FAAerof5ic ko Thi

Prdd®, UBHIBAEINA, £REOERRIRVLTRY
BPA-PET T2 RH 3, I & IcEmPEomER
FRES/IEHMLE 2.1 LR Eh, Db OED st
MBI ORE#EHLL, AN X 7T0RE5%
bxweekly, 5mg/kg TiTo 7. ARSI & hiER e

L, 6 @RS MRI GBI, 120 & B iR
L Tws,

ZREusflich o 2103 4F 1 A 25 HICFEEMRED 40 B
OEMERA, MAICERESIDET L Tv 3, R
BoBEE b it Lk, bitbhodiivy T 335K
ZEHELE-T—F<y 7"* % Fig. 8 ISR Y. fEMRAERRUE
PRSE I LR TR I GG T RE X TERT
@%%#,ﬁ%@t&%@%&&u%hﬁ£%<aa
BEBEHAIC Y, Z22THRBEVWI 7o A2ET
YRR L HET VAT AL LT, HEERFICE
BOLKETH 5, AERRFICTHADRED S 280
T RRD L EMTENE, SHEEPLOHEH
WEIRLT, NEHEHETY, ELB e kﬁ’i‘hfjﬁnu
AL T2 & 5 R E BA S lE oM E &
ﬁ?%%ht.iof%i%zﬁﬁk,afium%%
EtEs, HARMERARER, B4R,
HAMESESD S OEQUEEBLLIT B &), KRR

610 Wisbsk 224 8% 20134E8 H

147



BrEfT> TR RETH BW,
IR ISR A LT, BNCT %179 &,
LiF L I pseudoprogression (Z AN 312 Z @ pseudo-
progression 13 intensive treatment DFLE L TR S N

Tw3Y, L OBREMFEETHD, RFu4 KAl
ErO/ETHIGHHRTH S Z LH%v. Ebihvbh
12 T I T AR IB I % L € @ BNCT #21C sympto-
matic psendoprogression & %% = el EMIC, XSy A=
BRELIZETH, BINREEEEREIRL TR Y, i
DF B E %2 T3, Pseudoprogression & AL
UEISAE & ORICIBIER M E S S L v~
i3 pseudoprogression (& JMHCHBUESE & BT, SR -
DIEICIE UTHRIZIR C, Do ialih s I £ Tl
AW E PR L M S T B, R 15 TN
U 7 fE a2 5 MG - O W £ T o M E <,
PET L bHPED ML ¢ &, symptomatic pseudopro-
gression & W L/<iERICH B, R~ v T OHE
WaEZDBE, SHEBIEMN O BNCT BRI ARG TEE H
I REFEMLRIINT B LELZ S,

Ei

BleRA B hib, REERRSIEHRII RO S HE
HIZLUT R, 2 &I BNCT % & bl U< &7z, JIUH
B, 745 CICIBUHURIE O It Y7 o o i lieEse
DI OMBERT S, £/, BNCT 0T e wici &,
& B IR BNCT Ol HBEL Tv 3, /MNFA A
T, WHECRER T PREBATO&ETICL NS 5.

Xk

1) Brandsma D, Stalpers L, Taal W, Sminia B van den Bent
MJ: Clinical features, mechanisms, and management of
pseudoprogression in malignant gliomas. Lancet Oncol
9 453-461, 2008.

2) Carson KA, Grossman SA, Fisher JD, Shaw EG: Prognos-
tic factors for survival in adult patients with recurrent
glioma enrolled onto the new approaches to brain tumor
therapy CNS consortium phase 1 and II clinical trials. J
Clin Oncol 25 2601-2606, 2007.

3) Coderre JA, Morris GM: Review: The radiation biology
of boron neutron capture therapy. Radiation Res 151 1~
18, 1999.

4) Furuse M, Kawabata S, Kuroiwa T, Miyatake S : Repeated
treatments with bevacizumab for recurrent radiation necro-
sis in patients with malignant brain tumors: a report of 2
cases, J Neurooncol 102 471-475, 2011.

5) Iuchi T, Hatano K, Narita Y, Kodama T, Yamaki T, Osato
K Hypofractionated high—dose irradiation for the treat-
ment of malignant astrocytomas using simultaneous inte-
grated boost technique by IMRT. Int J Radiat Oncol Biol
Phys 64: 1317-1324, 2006.

6) Jaaskelainen ], Haltia M, Servo A Atypical and anaplastic
meningiomas: radiology, surgery, radiotherapy, and
outcome. Surg Neurol 25 233-242, 1986.

7)

8)

9)

10)

11)

12

~—

13)

14)

15)

16)

17)

18)

Kawabata S, Miyatake S, Kajimoto Y, Kuroda Y, Kuroiwa
T, Imahori Y, Kirithata M, Sakurai Y, Kobayashi T, Ono X

The successful treatment of glioblastoma patients with
modified boron neutron capture therapy. Report of two
cases. J Neuroonecol 65: 159-165, 2003.

Kawabata S, Miyatake S, Kuroiwa T, Yokoyama K, Doi A,
Tida K, Miyata S, Nonoguchi N, Michiue H, Takahashi M,
Inomata T, Imahori Y, Kirihata M, Sakurai Y, Maruhashi A,
Kumada H, Ono K: Boron neutron capture therapy for
newly diagnosed glioblastoma. J Radiat Res {Tokyo) 50

51-60, 2009.

Miyashita M, Miyatake S, Imahori Y, Yokoyama K, Kawa-
bata S, Kajimoto Y, Shibata MA, Otsuki Y, Kirihata M, Ono
K, Kuroiwa T : Evaluation of fluoride-labeled boronophen-
ylalanine-PET imaging for the study of radiation effects
in patients with glioblastomas. J Neurooncol 89: 239-
246, 2008.

Miyatake S, Kawabata S, Kajimoto Y, Acki A, Yokoyama K,
Yamada M, Kuroiwa T, Tsuji M, Imahori Y, Kirihata M,
Sakurai Y, Masunaga S, Nagata K, Maruhashi A, Ono K:

Modified boron neutron capture therapy for malignant glio-
mas performed using epithermal neutron and two boron
compounds with different accumulation mechanisms ® an
efficacy study based on findings on neurcimages. j Newro-
surg 103: 1000-1009, 2005.

Miyatake S, Tamura Y, Kawabata S, lida K, Kuroiwa T,
Ono X: Boron neutron capture therapy for malignant
tumors related to meningiomas. Newrosurgery 61: 82—
91, 2007.

Miyatake S, Kawabata S, Nonoguchi N, Yokoyama X,
Kuroiwa T, Matsui H, Ono K Pseudoprogression in boron
neutron capture therapy for malignant gliomas and
meningiomas. Neuro Oncol 11 430-436, 2009.

Miyatake S, Kawabata S, Yokoyama K, Kuroiwa T, Michive
H, Sakurai Y, Kumada H, Suzuki M, Maruhashi A, Kirihata
M, Ono K : Survival benefit of Boron neutron capture ther-
apy for recurrent malignant gliomas. J Newrgoncol 91:

199-206, 2009.

B, EMTOHE B ERTED IR & R —
e (55 3 THSBEIESE) D il—, JiskeE 21+ 472-479,
2012,

Miyatake S, Furuse M, Kawabata S, Maruyama T, Kumabe
T, Kuroiwa T, Ono K : Bevacizumab treatment of sympto-
matic pseudoprogression after boron neutron capture ther-
apy for recurrent malignant gliomas. Report of 2 cases.
Neuro Oncol 15 650-655, 2013.

Nonoguchi N, Miyatake SI, Fukumoto M, Furuse M, Hira-
matsu R, Kawabata S, Kuroiwa T, Tsuji M, Fukumoto M,
Ono K: The distribution of vascular endothelial growth
factor—producing cells in clinical radiation necrosis of the
brain : pathological consideration of their potential roles. J
Newrooncol 105 423-431, 2011.

Ohguri T, Imada H, Kohshi K, Kakeda S, Ohnari N,
Morioka T, Nakano K, Konda N, Korogi Y : Effect of pro-
phylactic hyperbaric oxygen treatment for radiation-
induced brain injury after stereotactic radiosurgery of
brain metastases. /nt J Radiat Oncol Biol Phys 67: 248-
255, 2007.

Palma L, Celli B, Franco C, Cervoni L, Cantore G: Long-
term prognosis for atypical and malignant meningiomas ® a
study of 71 surgical cases. J Neurosurg 86: 793-800,
1997.

Jpn J Neurosurg  VOL.22 NO.8 2013.8 611



19) Tamura Y, Miyatake S, Nonoguchi N, Miyata S, Yokoyama 20) Tanaka M, Ino Y, Nakagawa K, Tago M, Todo T: High-

K, Doi A, Kuroiwa T, Asada M, Tanabe H, Ono K: Boron dose conformal radiotherapy for supratentorial malignant
neutron capture therapy for recurrent malignant glioma® a historical comparison. Lancet Oncol 6: 953~
meningioma. Case report. J Neurosurg 105: 898-903, 960, 2005,
20086.

g B

[BEMIRIRAN THOART [TROREFRIEEE] &
MERERIC K DERENKETHRRTE DS

ER fh—

EMEBICH T IRREHE RIFR) BFEEE UT, RSP HEFHIEEE (boron neutron cap-
ture therapy : BNCT) BHRISENTWND. bk 2002 £ XD AAFTELE DN 133 FICRIEN
MRS BUREECEG U CEr. T, ERERMNSEERCH T AN mERETEAER
BHICEBALTWLSD. FRX TR, 532 BEFMEEAR O T E [TUA—7 UL
DFES CBVTERRLUCIEABICETOMERTL, TTIicHRLE.

sEE 22 1 605-612, 2013

612 l4ohit 22748 % 2013428 H

149



Hiramatsu et al. Radiation Oncology 2013, 8:192
http://www.rojournal.com/content/8/1/192

Identification of early and distinct glioblastoma
response patterns treated by boron neutron
capture therapy not predicted by standard
radiographic assessment using functional
diffusion map

Ryo Hiramatsu, Shinji Kawabata®, Motomasa Furuse, Shin-lchi Miyatake and Toshihiko Kuroiwa

Abstract

Keywords: ADC, BNCT, Diffusion MR, fDM, GB

Background: Radiologic response of brain tumors is traditionally assessed according to the Macdonald criteria 10
weeks from the start of therapy. Because glioblastoma (GB) responds in days rather than weeks after boron neutron
capture therapy (BNCT) that is a form of tumor-selective particle radiation, it is inconvenient to use the Macdonald
criteria to assess the therapeutic efficacy of BNCT by gadolinium-magnetic resonance imaging (Gd-MRI). Our study
assessed the utility of functional diffusion map (fDM) for evaluating response patterns in GB treated by BNCT.
Methads: The fDM is an image assessment using time-dependent changes of apparent diffusion coefficient (ADC)
in tumors on a voxel-by-voxel approach. Other than time-dependent changes of ADC, fDM can automatically assess
minimum/maximum ADC, Response Evaluation Criteria In Solid Tumors (RECIST), and the volume of enhanced
lesions on Gd-MRI over time. We assessed 17 GB patients treated by BNCT using fDM. Additionally, in order to verify
our results, we performed a histopathological examination using F38 rat glioma madels.

Results: Only the volume of tumor with decreased ADC by fDM at 2 days after BNCT was a good predictor for GB
patients treated by BNCT (P value = 0.022 by log-rank test and 0.033 by wilcoxon test). In a histopathological
examination, brain sections of F98 rat glioma models treated by BNCT showed cell swelling of both the nuclei and
the cytoplasm compared with untreated rat glioma models.

Conclusions: The fDM could identify response patterns in BNCT-treated GB earlier than a standard radiographic
assessment. Farly detection of treatment failure can allow a change or supplementation before tumor progression
and might lead to an improvement of GB patients’ prognosis.

Background

Surgery followed by radiation therapy is still the stand-
ard treatment for glioblastoma (GB). The addition of
temozolomide (TMZ) chemotherapy to the standard
treatment has significantly increased the proportion of
patients who survive longer than 2 years [1]. However,
additional progress is needed, as almost half of GB pa-
tients do not survive the first year after diagnosis.

* Correspondence: neu046@poh.osaka-med.acjp
Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi,
Takatsuki City, Osaka 569-8686, Japan

@ Ried Central

Boron neutron capture therapy (BNCT) has been de-
veloped in the hope of achieving a breakthrough in GB
treatment [2,3]. BNCT is a form of tumor-selective par-
ticle radiation therapy. We have applied BNCT to over
80 GB patients and have reported its survival benefit [4].
Additionally, a phase II multicenter clinical trial of
BNCT is currently underway in Japan. In our substantial
experience of clinical BNCT, we have frequently experi-
enced dramatic reductions in enhanced lesion size
on gadolinium-magnetic resonance imaging (Gd-MRI)
obtained 2 to 7 days after BNCT [2,3]. Assessment of

© 2013 Hirarmatsu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (httpy/creativecommons.org/licenses/by/2.0), which permits urvestricted use, distribution, and
reproduction in ary medium, provided the original work is properly dited.
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radiation and chemotherapy efficacy for GB patients is
traditionally accomplished by measuring changes in con-
trast enhancement of tumors at 10 weeks from the start
of therapy using Gd-MRI, using the so-called Macdonald
criteria [5]. The Macdonald criteria guide standard
radiographic assessments, and have been correlated
with survival [5-7]. However, because GB responds in
days rather than weeks after BNCT, it is inconvenient
to use the Macdonald criteria (including the conven-
tional timing) to assess the therapeutic efficacy of
BNCT by Gd-MRI

On the other hand, the current standard treatment for
GB patients, combined chemo-irradiation with TMZ,
may induce pseudoprogression in 20-30% of cases [8],
defined as an increase of contrast enhancement and/or
edema on MRI] without true tumor progression [9]. Also,
full-blown radiation necrosis may be more frequent after
combined chemo-irradiation. Pseudoresponse - namely,
a decrease in contrast enhancement of brain tumers on
MRI without a decrease of tumor activity - is frequent
after treatment with vascular endothelial growth factor
receptor signalling pathway inhibitors. Just as it is diffi-
cult to evaluate response patterns of GB treated by
BNCT, so also cases with pseudoprogression, radiation
necrosis, or pseudoresponse are difficult to assess using
standard radiography because of changes in contrast en-
hancement that do not reflect tumor activity.

Diffusion MRI, which measures the random (Brown-
ian) motion of water, has been proposed as an early bio-
marker for tumor response that does not rely on the
measurement of contrast enhancement [10], and has
been evaluated in preclinical {11,12] and clinical studies
[13-15]. Diffusion MRI measurements are sensitive and
can be used to detect and quantify tissue water diffusion
values, which have been proposed to be related to the
ratio of intracellular water to extracellular water; thus,
changes in apparent diffusion coefficient (ADC) are in-
versely correlated with changes in cellularity. In this sce-
nario, increases in ADC would reflect an increase in the
mobility of water, either through the loss of membrane
integrity or an increase in the proportion of total extra-
cellular fluid with a corresponding decrease in cellular
size or number, as seen with necrosis or apoptosis. In
contrast, decreases in ADC reflect a decrease in free
extracellular water, either through an increase in total
cellular size or number, as can be seen with tumor pro-
gression or tumor cell swelling [16].

Functional diffusion map (fDM) was developed to take
advantage of these principles on a voxel-by-voxel ap-
proach, and have proven to be a powerful tool for
predicting the effect of chemotherapy and radiotherapy
[10,15,17]. An increased ADC has been shown to correl-
ate with a decrease in cellularity as a result of successful
treatment [11,18] and/or radiation necrosis [18]. Other
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than time-dependent changes of ADC, fDM could auto-
matically assess minimum (Min)/maximum (Max} ADC,
Response Evaluation Criteria In Solid Tumors (RECIST),
and the volume of enhanced lesions in response to
BNCT over time.

In the current study, the usefulness of fDM as a pre-
dictive biomarker for GB patients treated with radioche-
motherapy was reported [14,15]. There are no reports
about the usefulness of fDM for GB treated by BNCT.
In order to verify the usefulness of fDM for GB patients
treated by BNCT, we assessed 17 GB patients treated by
BNCT with fDM at 2 days after BNCT and examined a
relationship between all the above factors analyzed by
DM (time-dependent changes of ADC, Min/Max ADC,
RECIST, and the volume of enhanced lesions) and prog-
nosis of GB patients treated by BNCT. Additionally, we
treated F98 rat glioma models with BNCT and compared
brain sections of the BNCT group with the untreated
group using hematoxylin-ecsin (H & E) staining.

Methods

Patient population

We performed a retrospective investigation of clinical
BNCT to evaluate the effects of therapy and adverse
events. From June 2003 to December 2007, we treated a
total of 61 GB patients using BNCT. Because 17 of these
61 GB patients (8 females; ¢ males) had diffusion MRI at
pre- and post-BNCT and had contrast enhancement vol-
umes over 0.7 cm® on Gd-MRI, we were able to assess
them using fDM. Ten patients were newly diagnosed
with GB and 7 patients were recurrent GB cases. The
average age was 56.7 years (36-74 years). The average
survival time from BNCT was 14.5 months (7.2 - 45.9
months). The average volume of contrast enhancement
on Gd-MRIs was 18.8 em® (0.7 - 51.4 cm®).

Our treatment for GB patients and boron neutron capture
therapy protocol

Our treatment for GB patients was surgical resection as
much of the tumor as possible, followed by BNCT. Qur
BNCT protocol was as follows:

Twelve hours before the neutron irradiation, the pa-
tients were administered 100 mg/kg or none of sodium
borocaptate intravenously for 1 hour. Boronophenylalanine
(BPA} of 250 mg/kg was infused continuously to the pa-
tients for 1 hours or 700 mg/kg was infused continuously
to the patients for 6 hours before the irradiation, and they
were positioned for neuntron irradiation in the atomic re-
actor (Kyoto University Research Reactor [KUR] or Japan
Atomic Energy Agency Research Reactor 4). Just after ter-
mination of continuous BPA infusion for 6 hours, neutrons
were irradiated. Between June 2003 and December 2006,
no chemotherapy was applied for any of the patients until
the tumor progression was confirmed histologically or by
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5E_BPA-positron emission tomography [19]. This protocol
was approved by the Ethical Committee of Osaka Medical
College and also by the Committee for Reactor Medicine in
KUR. The indication of BNCT for each candidate was
discussed by the latter committee.

MRI examinations

All patients underwent pre-BNCT MRI within 20 days
before BNCT and underwent post-BNCT MRI at 2 days
after BNCT. MRI examinations were composed of

T1-weighted images MRI, T2-weighted images, fluid at- -

tenuation inversion recovery (FLAIR} images, Gd-T1-
weighted images and diffusion images. MRI was
performed on a 1.5-T MRI system (GE; Wisconsin,
Milwaukee, USA). MRI sequences included T1-weighted
images (TE/TR =9 ms/2500 ms, slice thickness =5 mm
with 25 mm interslice distance, number of excita-
tions [NEX]=1, matrix size=256 x 224, and field of
view [FOV] =24 cm), T2-weighted images (TE/TR =103
ms/2500 ms, slice thickness=5 mm with 25 mm
interslice distance, NEX =1, matrix size =320 x 192, and
FOV =24 c¢my), and FLAIR images (inversion time = 2200
ms, TE/TR=116.7 ms/8800 ms, slice thickness=5 mm
with 2.5 mm interslice distance, NEX =1, matrix size =
256 % 192, and FOV = 24 c¢m). In addition, Gd-T1-weighted
images (axial: TE/TR = 9 ms/400 ms, slice thickness 5 mm
with 2.5 mm interslice distance, NEX =1, a matrix size of
256 x 224, and FOV = 24 cm) were acquired after contrast
injection (Magnevist; Berlex; 0.1 mmol/kg) (Table 1).

Diffusion MRI

Diffusion MRI was collected with TE/TR = 79.3 ms/6400
ms, NEX =1, slice thickness=5 mm with 0 mm
interslice distance, matrix size = 128 x 192 and a FOV =
24 cm. ADC images were calculated from acquired
DWIs with b=1000 s/mm® and b=0 s/mm’ images
(Table 1). Diffusion images for the three orthogonal di-
rections were combined to calculate an ADC map [20].

Table 1 Summarizing the details of MR| sequences

MRI Sequences T1 T2 FLAIR DWI Gd-T1
TR {ms) 2500 4000 8800 4500 400
TE (ms) 9 103 1167 67.7 9
inversion time (ms) 2200

FOV* {cm) 24 24 24 24 24
slice thickness (mm) 5 5 5 5 5
intersfice distance {mm) 25 25 25 0 25
frequency matrix 256 320 256 128 256
phase matrix 224 192 192 192 224
NEX* 1 1 1 2 1
scan time (s) 107 144 121 64 94

*FOV =field of view **NEX =number of excitations.
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fDM analysis

All MRIs were spatially co-registered using the pre-BNCT
Gd-MRI as the reference dataset. This step allowed all im-
ages of a given patient to be viewed and analyzed from a
fixed frame of reference. The co-registration was performed
using a “mutual information for automatic multimodality
image fusion” (MIAMI FUSE) algorithm [21]. After this co-
registration, brain tumors were manually segmented on the
Gd-MRIs by a neurosurgeon (R. H.). These segmentations
were copied into the contemporary diffusion MRIs and
were analyzed using a voxel-by-voxel approach [17,22]. A
minimum of 0.7 em® of tumor on Gd-MRI was necessary
for eligibility. If a resection cavity was present, it wasn’t in-
cluded within the regions of interest i circumscribed by
contrast enhancement. Only voxels present in both the
pre-BNCT and post-BNCT tumor volumes were included
for DM analysis. Individual voxels were stratified into three
categories based on the change in ADC from the pre-
BNCT scan to each time point. Red voxels represent areas
within the tumor where ADC increased (> 55 x 10 mm?/
sec); blue voxels represent decreased ADC (< 55 x 107
mm?/sec), and green voxels represent no change (Figure 1).
These thresholds represent the 95% confidence intervals for
change in ADC for the uninveolved cerebral hemisphere
[17]. The percentages of the tumor within these three cat-
egories were calculated as V, Vp, and Ve, respectively.
Other than time-dependent changes of ADC, fDM could
automatically assess Min/Max ADC, RECIST, and the vol-
ume of enhanced lesions in response to BNCT over time.
These analyses were performed using DM analysis soft-
ware (I-Response™-1.0, Cedara software; Ontario Canada).

Representative case

This patient was newly diagnosed GB with 23.2 months of
patients’ survival time after BNCT. Depicted images are sin-
gle slices of Gd-MRI scans at 2 days after BNCT with a
pseudecolor overlay of the fDM. Red voxels indicate re-
gions with a significant rise in ADC at 2 days after BNCT
compared with pre-BNCT, green regions had no changed
ADC, and blue voxels indicate areas of significant decline
in ADC (Figure 1A). The scatter plots display data for the
entire tumor volume and not just for the depicted slice at 2
days after BNCT, with ADC of the pre-BNCT on the x-axis
and ADC at 2 days after BNCT on the y-axis. The central
red line represents unity, and the flanking blue lines repre-
sent the 95% confidence interval (CI) (Figure 1B). Other
than time-dependent changes of ADC, DM can automatic-
ally assess maximum/minimum ADC, RECIST, and the vol-
ume of enhanced lesions on Gd-MRI over time (Figure 1C).

Correlation with all factors assessed by fDM and survival
time after BNCT

All factors assessed by fDM are composed of Vi, Vp,
Ve, MinfMax ADC, RECIST, and the volume reduction
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Histopathological examination

At 2 wecks after implantation, the BNCT group was
administered 250 mg/kg body weight of BPA intraven-
ously. An hour and a half after BPA injection, only
‘the BNCT group was irradiated with nentrons at KUR
during 1 hour. All rats of both the BNCT group and the
untreated group were euthanized by isoflurane 16 days
-after lmpiantatmn e, 2 da}m after. BNCT for the BNCT
group). The rats were kpe:fus,,ed; and fixed by 10% forma-
Jin then the brains were dehydrated and ‘embedded
in paraffin. The 4-pm sections were stained with
“hematoxylin and cosin (H & E} for histopathological in-
‘vestigation. We compared sections of the BNCT group

iith' the untreated group using = light microscope

(ECLIPSES0S, Nikon, Japan).

Results

MRexamination:

In our study, pre-BNCT MRI was performed at 7.9 250
{1-20) days before BNCT, and post-BNCT MRI was
performed at 2.5 = 1.6 (1~8) days after BNCT.

Table 2 Survival analysis of all factors assessed by DM
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was 11:2 months (95% CL 7.8 - 15.3 months) (Figure 3).

Carrelation with ail factors assessed by fDM and survival
tirne after BNCT

> days after BNCT showed a sig-
nificant difference using Iog-mnk test and wilcoxon test.

‘However, Min: ADC showed over-lap-in %‘% CL On the
other hand, Vo showed ne over-lap in. 95% CI (Table ?}
Vs greater than 124% at 2 days after BNCT was good
‘response for BNCT (median survival =232 mionths;
95% Cl= 134 - 45.9 months) dnd Vi, 12:4% orless 4t 2

days after BNCT was nonresponsé for BNCT (miedian

survival =10.3 months; 95% CI=7.8 - 134 months)
{Figure 4). Survival analysis of Vi, showed a3 :
difference (P value = 0.022 by log-rank test and 0.033 by
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Histopathological examination

Tumor cells in the BNCT group showed swelling of both
‘the nuclet and the Lytopia.sm ‘compared with the un-
treated group at 16 days after implantation (e, 2 days
after BNCT for the BNC “;group} {Figure 6).

Discussion

“In 1990, Macdonald-et'al. reported eriteria for response as-
“sessment in glioma [5}. Although these ¢riteria have Hmita-
“tions, they have become widely accepted. However, recent
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‘obscrvatmns have revealed the;«:fundamentsi h:mtattons of
:t’he M’tcdonald criteria {26,27]. One Iimitation of the Mac--
criteria is the extended time required to detect
change IS,Q ,29} about 8 to 10 weeks. Another is the dis-
l"cre:pahcy between ‘contrast enhancement and tumor

vity At the core of Macdonald criteria are changes:
‘in-contrast enhancément, and all too. often; the contrast
enhancement of hxgh—grade tumors is perceived as a meas-
ure of tumor activity. i{tchwr, contrast thancsmmt
is nonspemﬁcv and primarily reflects a dxsrupted bloodw
or. Contrast enhancement be influenced by
-ehan&m in ‘corticosteroid dose and fadiologic tech.mqm.j
-19,30). Contrast enhancement can also be induced: by avar-
fety of nontumoral processes: inflammation, seizure activity,
postsurgical changes, pseudoprogression, radiation necrosis,
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gmup)« (A and C v a

Figure & Histopathological examination: Tumor cells in the BNCT group showed the celt swelling of both the nudlel. and the cytoplasm
{C and D} compared with the untreated gmup (A and 8) at 16 days after the implantation.(i.e, at 2 days after BNCT for the BNCT

and pseéuddresponse [9,31] As a yestlt, changes i1 contrast
ephancement: cannot be equated with changes in tumor
“size-of tumor growth/activity. '

Recently; several novel imaging methodsmpoam(m»cmw
sion tomography, single-photon emission computerized
tomography, MR spectroscopy, and diffusion MRI—have
‘been evaluated for their ability to-assess (;ariy therapeutic re-
‘sponses independently of Eate changes. in enhanced tumor
“yolume: 532 3‘3} Diffusions MRI detection of cancer treat-
ment response was first suceessfully reported i a rodent
“brain tumor model treated with chemotherapy. Additionally,
‘Diffusion MRI has been evaluated inprcdiniéal [11,12,34]
: nci dmw&l stud;c.s EILS,B&;SS] In: 20(}8‘ Hamstra et al.
;assu;sed ’mg,hvg,rade glioma with ﬁmctmna} dxffuszon map.
“They reporteci that the volume of fumer wzth increased dif-
fision by fOM at 3 weeks after the start of radiation. therapy
was the strongest predictor of patient survival at 1 year [10}.

in our study, \:’1) at 2 days after BNCT was the strongest
fpradictor of GB. patients’ supvival time after BNCT.
Vi (= the volume of the voxels with decreased: ADC com-
vpared with pre-BNCT by fDM) indicates that extracellular
free water 15 relatively decreased for the hxg,h@st volumt. of
“tumor cells. So, this appearance is attnbuted totumor pro-
“gression or tumor cell sweiim{., ay pmvxqu;iy mentioned in
the Background. In our study, day 2 Vi, was a good predictor
“for GB patients treated by BNCT, We attributed: this higher
Vi to fumor cell swelling rather than tumor progression. Tn

fact, our histopathological study detected tumor cell swelling

in the BNCT group compared with the untreated group 3t 16°

days after the implantation (ie, at 2 days after BNCT for the-
"BI\IC’I‘ group) (Figures 5and 6): Others have reported tumor
«cell swelling in the acute stage after BNCT. Kato et al.

rcporteé the pathcﬁo@cai Lhang}es of otal squamous cell car-
cinoma at an carly stage after. BNCT using nade mouse sub-
cutancous models. They compazcé a BNCT group with an
untreated group using: patfwiaglcai analysis at 1,2, and 7 days
after BNCT: Compared to the untreated group, oral squa-
mous ¢ell carcinoma in the BNCT group at alt early stages
showed fumor: cell swelling on the H & E stained nude

mouse brain sections 36]. Nakagawa et al. reported “early
offects of BNCT on C6 rat glioma models, They compared
a BNCT group with an untreated group using. pamoiogxcal
analysis at 4days after BNCT. Compared to the untreated.

group, C6 rat gliona ¢ell in the BNCT group ‘showed cell

aswellmg on the H & E stained rat brain sections 1371

‘Conclusions

Our study proved that fDM was useful for evaluating the
therapeutic efficacy of BNCT in GB patients treated by
BNCT, Add;tmnall}f, DM c:ould identify response patterns

in BNCT-treated GB carlier than a standard radiographic

‘assessment. Early detection of treatment fallure can allowa:
‘change or supplementation before tumor: pmgressian and.
‘might lead to-an improvement of GB patients” prognosis.
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