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Boron neutron capture therapy with bevacizumab
may prolong the survival of recurrent malignant
glioma patients: four cases

Shin-Ichi Miyatake'", Shinji Kawabata', Ryo Hiramatsu', Motomasa Furuse', Toshihiko Kuroiwa' and Minoru Suzuki®

Abstract

Background and importance: Recurrent malignant gliomas (RMGs} are very difficult to control, and no standard
treatments have been established for them. We performed boron neutron capture therapy (BNCT) for patients with RMG.
BNCT enables high-dose particle radiation to be applied selectively to tumor cells. However, RMG cases generally receive
nearly 60 Gy X-ray irradiation prior to re-irradiation by BNCT. Therefore, even with tumor-selective particle radiation BNCT,
radiation necrosis in the brain and symptomatic pseudoprogression may develop. In four of our recent patients with RMG
after BNCT, we applied the anti-VEGF antibody bevacizurnab to treat two pathological entities. This approach appeared to
prolong survival. Here we present the case reports of these four consecutive patients with RMG and discuss the novel use
of bevacizumab in this context.

Clinical presentation: Four patients with RMGs were treated with BNCT at our institutes. Upon the referral for BNCT, they

were assessed as belonging to the recursive partitioning analysis (RPA) class 3 (n = 3 patients) or RPA class 4

(n="1 patient) (the RPA dassification for RMG was advocated by Carson et al. in 2007). The estimated median survival
times for RPA dasses 3 and 4 were 3.8 and 10.8 months, respectively, after some treatment at the recurrence. We applied
BNCT for these four patients and administered bevacizumab when the lesions were considered radiation necrosis or
symptomatic pseudopragression. The class 3 patients survived after the BNCT for 14, 165 and > 23 months, and the dass
4 patient survived > 26 months, with favorable improvements in dinical symptoms.

Condlusion: BNCT with the addition of bevacizumab for radiation necrosis or symptomatic pseudoprogression improved
the clinical symptoms and prolonged the survival in RMG patients.

Keywords: Bevacizumab, Boron neutron capture therapy, Recurrent malignant glioma
\,

Background

The prognosis of recurrent malignant gliomas (RMGs) is
poor, and no standard treatment has been established [1].
Since 2002 at our institute, we have been applying a form
of tumor-selective particle radiation, boron neutron capture
therapy (BNCT), for RMGs and observed favorable survival
outcomes [2,3]. BNCT is a biochemically targeted radio-
therapy based on the nuclear capture and fission reactions
that occur when non-radicactive boron-10, which is a con-
stituent of natural elemental boron, is irradiated with low-
energy thermal neutrons to yield high-linear-energy transfer
alpha particles and recoiling lithium-7 nuclei. These

* Correspondence: neu070@poh.osaka-med.acjp
'Department of Neurosurgery, Osaka Medical College, Osaka, Japan
Full list of author information is available at the end of the article
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particles are released within a very short range such as
9 um, and therefore the cytotoxic effects are confined
within boron-10-containing cells [4].

Boron-10-containing compounds can be accumulated se-
lectively in tumor cells by several mechanisms. For ex-
ample, boronophenylalanine (BPA) is selectively and
preferentially accumulated in tumor cells via the aug-
mented metabolism of amino acids compared to normal
cells. Even with this novel and selective particle radiation
technique, radiation damage — chiefly radiation necrosis
(RN) and symptomatic pseudoprogression (psPD) — often
occurs [5,6]. The radiation damage is especially likely in
RMG cases, because full-dose X-ray treatment (XRT) is
generally part of the treatment history in such cases.

Bevacizumab (BV), an anti-vascular endothelial growth
factor (VEGF) antibody, has recently been used for the

© 2014 Miyatake et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (httpy//creativecommons.org/licenses/by/2.0), which permits urvestricted use, distribution, and
reproduction in ary medium, provided the original work is properly cited. The Creative Commons Public Dormain Dedication

waiver (http//creativecornmons.org/publicdomain/zero/1.0/) applies to the data rmade available in this article, unless otherwise

stated.
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treatment of symptomatic RN [7,8]. Based on our ana-
lysis of human RN surgical specimens, we previously
demonstrated that the edema in RN is caused by the
overexpression of VEGF in reactive astrocytes [9]. Fol-
lowing this determination, we used BV in an attempt to
control the symptomatic RN and the symptomatic psPD
encountered after BNCT for RMGs [5,7]. Here we
present a case series report of our last four consecutive
cases of RMG treated with BNCT and BV, with >18-
month. observation periods. All four patients had RMGs
after primary treatment with XRT and chemotherapy
consisting chiefly of temozolomide (TMZ). The patients’
profiles and survival data are listed in Table 1. Three of
the patients were classified as recursive partitioning ana-
lysis (RPA) (advocated by Carson et al. in 2007 [1]) class
3 and one was classified as RPA. class 4.

Case presentation

Case 1

A 44-year-old male’s craniotomy showed anaplastic as-
trocytoma. He received standard chemoradiotherapy
(XRT 60 Gy with TMZ). Unfortunately the lesion re-
curred with aggravation of aphasia and right hemipar-
esis, which forced him to retire from his job. The
Karnofsky performance status (KPS) was 70%, and he
was classified as RPA class 3. The patient was then re-
ferred to our institute for BNCT. Upon referral, MRI
showed a slightly enhanced lesion with mild perifocal
edema (Pigure 1). A simultaneous fluorine-18-labeled
BPA positron emission tomography (F-BPA-PET) image
showed marked tracer uptake in the left parietofrontal
region (Figure 1), with a 6.0 lesion/normal (L/N) brain
ratio of the tracer, indicating that the lesion was a highly
malignant tumor. BNCT was applied for this patient ac-
cording to our recent protocol for RMGs and meningi-
omas [10]. Briefly, only BPA was administered over a 2-
hr period (200 mg/kg/hr) just prior to and during the
neutron irradiation (100 mg/kg/hr). The neutron irradi-
ation time was decided based on a simulation not to ex-
ceed 12.0 Gy-Eq (Gray-equivalent) for the peak brain
dose. The 10-B concentration in the blood during the
neutron irradiation was 23.0 parts per million (ppm). By
BNCT, the maximum brain dose, maximum tumor dose,
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and minimum tumor dose were estimated as 11.4, 118,
and 36.1 Gy-Eq, respectively. Here, “Gy-Eq” corresponds
to the biologically equivalent X-ray dose that would have
equivalent effects on tumors and on the normal brain.
The dose estimation was performed by the measurement
of blood boron concentration and F-BPA-PET data prior
to neutron irradiation as described elsewhere [2,6,10].

After the BNCT, an MRI showed gradual enlargement
of both perifocal edema and contrast enhancement,
whereas sequential F-BPA-PET showed a favorable de-
crease of tracer uptake (Figure 1, lower panel). F-BPA-
PET was originally developed to estimate the absorbed
dose in BNCT, as described above [2,11,12]. The back-
ground uptake of the tracer F-BPA is very low compared
to that of fluorodeoxy-glucose and even compared to
that of methionine as a tracer. Thereafter, RN and psPD
have been differentially diagnosed from tumor progres-
sion by F-BPA-PET [6,13]. Ten months after the BNCT,
the patient’s KPS worsened to 60%, and so we adminis-
tered BV 5 mg/kg biweekly, three times. Just prior to the
BV administration, F-BPA-PET showed a more de-
creased L/N ratio, which indicated that the aggravation
shown by MRI was RN and not a recurrence of the
tumor. After the BV treatment, MRI showed improve-
ment of the perilesional edema and a decrease in con-
trast enhancement. The BV treatment stabilized the
patient’s symptoms for 6 months but then his symptoms
recurred, prompting us to perform a re-challenge with
BV another three times. The patient is now stable and
doing well, 23 months after the BNCT (Table 1).

Case 2

A 41-year-old man underwent surgery for his right par-
ietal glioblastoma (GBM) with subtotal excision. Stand-
ard treatment with XRT and TMZ was performed, but
the tumor recurred 5 months after the surgery. Upon re-
ferral for BNCT, the patient’s KPS was assessed as 90%
and he was classified as RPA class 4. MRI showed a de-
finitively enhanced lesion with moderate perifocal edema
(Figure 2). A simultaneous F-BPA-PET image showed
marked tracer uptake in the right parietal region with a
3.8 L/N ratio of the tracer, indicating that the lesion was
a recurrent malignant tumor and not psPD (Figure 2,

Table 1 The background of the four patients with recurrent malignant glioma (RMG)

Case No. Age Sex Hist. RPA class Imadiated dose {Gy-Eq) BV cycles PsPD or RN Survival {(Months
from BNCT)
Brain {(Max) Tumor (Max) Tumor {Mini) {Months from BNCT)
1 43 M AA 3 14 18 36.1 3 Mm RN 23 M, alive
2 41 M GBM 4 12.1 885 366 404M RN 26 M, alive
3 60 M  AA 3 10.8 110 823 6@ M PsPD 165 M
4 4 F ACA 3 1.5 76 301 602 M PsPD 14 M

Hist, histology; RPA, recursive portioning analysis; BV, Bevacizumab; PsPD, pseudoprogression; RN, radiation necrosis; BNCT, boron neutron capture therapy.
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gradual enlargement of both the enhanced lesion and
perifocal edema, whereas F-BPA-PET showed a gradual
decrease of the tracer uptake. The final L/N ratio, 1 year
after BNCT, was 2.3. This L/N ratio and the MRI 13
months after the BNCT suggested that the lesion was
RN.

The patient was not able to continue his work as a
cook, and we decided to begin intravencus BV treatment
biweekly (5 mg/kg). After four treatments, MRI showed
marked improvement in the perifocal edema and left
hemiparesis. The patient is now deoing well and has re-
sumed his work as a cook, 26 months after the BNCT,
without tumeor progression or recurrence of the RN.

Case 3

A 56-year-old male experienced speech disturbance and
mild right hemiparesis. First he received a craniotomy with
a diagnosis of gemistocytic astrocytoma, followed by frac-
tionated XRT (total 50 Gy) and repetitive chemotherapy
with nitrosourea. Three years later, a recurrent lesion ap-
peared with Gd enhancement on MRI. Re-craniotomy re-
vealed GBM histologically. After surgery, the enhanced
lesion gradually grew and the patients sensory aphasia
worsened despite the repeated administration of TMZ. He
was referred to our institute for BNCT. Upon his referral,
he was assessed as RPA class 3. The boron-10 concentra-
tion in the blood during the neutron irradiation was
300 ppm. Using BNCT, the maximum brain dose, max-
imum tumeor dose, and minimum tumor dose were esti-
mated as 10.8, 110, and 82.3 Gy-Eq, respectively, as shown
in Table 1. His right hemiparesis and aphasia gradually
worsened after the BNCT, even with an escalating dose of
corticosteroids. Four months after the BNCT, a follow-up
MRI and F-BPA-PET suggested that the lesion was symp-
tomatic psPD, not tumor progression. The patient was suc-
cessfolly treated with BV, as we recently reported, along
with the periodic changes of the neuroimages and the de-
tailed clinical course [5]. We lost this patient to local tumor
progression 16.5 months after the BNCT.

Case 4

A 27-year-old female manifested left hemiparesis. A right
frontal enhanced mass was removed gross/totally, and the
histological diagnosis was anaplastic oligo-astrocytoma. She
received fractionated XRT (total 72 Gy) and repetitive
chemotherapy with nitrosourea. The lesion recurred and
re-craniotomy was performed 4 years later, with the same
pathological diagnosis. This was followed by TMZ chemo-
therapy. Unfortunately, a recurrence was confirmed by
MRI and she was referred to us for BNCT. The boren-10
concentration in the blood during the neutron irradiation
was 21.4 ppm. By BNCT, the maximum brain dose, max-
imum tumor dose, and minimum tumor dose were 115,
716, and 301 Gy-Eq, respectively (Table 1). After the
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BNCT, her hemiparesis gradually became aggravated des-
pite an increased dose of corticosteroids. MRI taken 2
months after the BNCT showed an enlarged enhanced le-
sion with increased perilesional edema. We judged this ag-
gravation as symptomatic psPD. We started BV treatment
for her. The patient was bedridden just prior to the BV
treatment, but after two BV treatments her hemiparesis im-
proved markedly and she could walk. Her neurcimages and
clinical symptoms showed marked improvement, as we re-
ported previously [5]. Unfortunately we lost her because of
tumor extension to the opposite hemisphere 14 months
after the BNCT.

The neuroimages, including F-BPA-PET scans of Cases
3 and 4, were published elsewhere [5] and thus are not
included in this brief report.

Discussion

In comparison with many Phase I and II trials for RMG
[1], BNCT showed a marked survival benefit for RMG in
our previous study, in which BV was not used [3].
Briefly, BNCT resulted in median survival times (MSTs)
(months and 95% confidence intervals) as follows: for all
RPA classes (Classes 1-7), 10.8 (7.3-12.8) (n =22), and
in the poor-prognosis group (RPA class 3 +7), 9.1(4.4~—
11.0) (n=11). In a meta-analysis reported in the Journal
of Clinical Oncology [1], the MSTs in all RPA classes
and in the poor-prognosis group (RPA class 3 +7) were
7.0 (6.2-8.0) (n=310) and 4.4 (3.6-54) (n=129), re-
spectively. These data showed the superiority of BNCT
for RMGs, especially in poor-prognosis groups. In com-
parison, our previous data showed MSTs of RPA class 3
and 4 as 7.3 and 12.0 months, respectively, although the
number of the patients was quite limited: 4 cases in class
3 and 3 cases in class 4 [3].

In our recent patients undergoing BNCT for RMGs,
we have begun to treat RN or symptomatic psPD aggres-
sively by administering BV. We applied intravenous BV
treatment for four recent RMG patients treated with
BNCT at our institute and in whom we encountered RN
or symptomatic psPD; these cases are reported here.
Three of these four patients were classified as RPA class
3 and one as class 4 (Table 1). The estimated survival
time of class 3 patients is 3.8 months and that of class 4
patients is 10.8 months [1]. Our three class 3 patients
survived for 14, 16.5, and > 23 months, and the class 4
patient has survived for over 26 months.

At a glance, BNCT with BV seemed to prolong the sur-
vival of RMGs strikingly in comparison not only with
Carson’s data set but also with our previous BNCT data.
Although of course no definitive conclusion can be drawn
from such a small number of cases.

In our limited experience, there is no obvious histological
difference between RN and psPD [6]. The center part of
each pathology is characterized as histological necrosis, and
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marked angiogenesis is observed in the boundary of the
necrotic core and normal brain tissue [9]. Clinically, most
psPD occurs at a relatively early stage after intensive treat-
ments and is self-limiting without severe sequelae [14]. In
most cases, psPD improves over time without intensive
treatments. On the other hand, RN often shows severe
symptoms and occurs at least a half year after radiotherapy.
Thereafter, symptomatic psPD is especially difficult to dis-
tinguish from RN. In Table 1, we distinguish them only
from the duration of the symptomatic onset after BNCT.

We have described herein the use of BV for RN or psPD
after BNCT. BV was approved for the treatment of RMGs
as an anticancer agent [15,16], and several trials of re-
irradiation using XRT or hypo-fractionated stereotactic
radiotherapy in combination with BV just before radiother-
apy for RMGs have recently been conducted, with favorable
preliminary safety and response results [17-19]. The au-
thors of those reports described the role of BV not only as
an anticancer agent but also for normalizing the perfusion
pressure and oxygenation effects during irradiation. BV
may also prevent RN and symptomatic psPD after re-
irradiation.

‘We are now planning a prospective clinical trial of BNCT
using BV immediately after neutron irradiation for RMG
patients with poor prognosis (class 3 + 7). We are also con-

ducting a clinical trial of BNCT for RMGs using a small ac- -

celerator in-hospital, instead of an atomic reactor. We hope
to determine whether accelerator-based BNCT with BV
could be used as a standard treatment for RMGs.

Conclusion

BNCT with the addition of BV for radiation necrosis or
symptomatic pseudoprogression improved the clinical
symptoms and might prolong the survival of RMG
patients.
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Tonizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radio-
therapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which
are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether
or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were
induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type
cells were confirmed using stem cell markers. These cells were irradiated with 0co gamma rays or reactor
neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic
scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the
DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem
cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2
and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresis-
tant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were signifi-
cantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their
parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET
radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET
radiation therapy might have the potential to overcome GBM’s resistance to X-rays in a clinical setting.

Keywords: glioblastoma multiforme; glioma stem cells; linear energy transfer; neutron beams; gamma rays

INTRODUCTION

Radiation therapy with surgery and chemotherapy is the
standard treatment for glioblastoma multiforme (GBM) [1].
However, the prognosis of patients with GBM has not
improved in recent decades, and almost half of GBM patients
do not survive the first year after diagnosis. Thus, another,
more promising therapy for GBM is needed. Recently, some
reports have shown the presence of glioma stem cells (GSCs)
in malignant gliomas [2-4]. These cells are highly resistant
to radiotherapy because of their enhanced checkpoint re-
sponse to radiation [3]. Other studies have shown that GSCs

express high levels of sirtuin family genes (especially the
SirT1 gene) and that these upregulations are relevant to
radiosensitivity because they modulate apoptotic activity in
response to irradiation to GSCs [6]. As a result, GSCs are
now known to play important roles in tumor progression and
relapse after radiotherapy and chemotherapy, and new thera-
peutic strategies targeting GSCs should be developed to treat
patients with GBM. In the previous reports, radioresistance
of GSCs was studied in a subpopulation with a specific
phenotype. In these studies, it was difficult to use appropriate
control cells for the GSCs. Therefore, we induced glioma
stem-like cells (GSLCs) in which the phenotypes of GSCs
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were enriched, and used the wild-type GBM cells as controls
in this study.

On the other hand, we have applied boron neutron capture
therapy (BNCT) for malignant brain tumors, including GBM
[7-9]. This is a unique tamor-selective particle radiotherapy
using neutron irradiation, especially thermal neutron irradi-
ation. Boron-10 (*°B) releases alpha (*He) and "Li particles
through °B (n,0)"Li reaction. The key players in the anti-
tumor effects of BNCT are these high linear-energy-transfer
(LET) particles. With BNCT, good results have already been
achieved for patients with newly diagnosed GBM and recur-
rent malignant glioma [9, 10], although the numbers of such
cases in clinical trials have been limited.

So far, the radioresistance of GSCs has been examined
mainly in terms of low-LET radiation such as X-rays or
gamma rays. Therefore, we hypothesized that high-LET
radiation could overcome the radioresistance of GSCs. In
fact, a previous study showed that high-LET radiation was
more effective than low-LET radiation for promoting DNA
damage [11]. Here, we employed a reactor neutron-beam
irradiation system that produces high-LET proton particles
through elastic scattering and nitrogen capture reaction. We
analyzed the usefulness of high-LET radiation for overcom-
ing the radioresistance to low-LET radiation in GSCs using
GSLCs, as well as the ability of these cells to recover from
radiation-induced DNA damage by a gamma-H2AX assay.

MATERIALS AND METHODS

Cell culture

The human GBM cell line A172 was purchased from
American Type Culture Collection (Manassas, VA) and cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM,;
Invitrogen, Carlsbad, CA) with 10% fetal bovine serum
(FBS) with penicillin and streptomycin at 37°C in an atmos-
phere of 5% CO,. GSLCs were induced from A172 cells
in serum-free medium (SFM) as described previo{lsly [12].
The SFM was composed of DMEM/F12 (Sigma-Aldrich,
St Louis, MO), 20ng/ml basic fibroblast growth factor
{Peprotech, Rocky Hill, NJ), 20 ng/ml epidermal growth
factor (Peprotech), 2 ug/ml heparin (Sigma-Aldrich), and
B27 supplement (50x; Life Technology/Invitrogen).

Western blot analysis

Cells were cultured for 7 d in each culture medium. Protein
samples were prepared with 10% sodium dodecy! sulfate-
polyacrylamide gel electrophoresis and transferred onto
nitrocellulose membranes. Immune complexes were formed
by incubation with the stem cell markers CD133 (Cell Signal
Technology, Danvers, MA), Sox2 (Cell Signal Technology),
and Musashi (Cell Signal Technology) overnight at 4°C.
As a control for the housekeeping gene products, Ku70
(Thermo Scientific, Waltham, MA) was employed. Blots
were washed and incubated for 1h with horseradish
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peroxidase-conjugated anti-mouse and anti-rabbit secondary
antibodies {Santa Cruz Biotechnology, Santa Cruz, CA).
Immunoreactive protein bands were detected by using an
enhanced chemoluminescence Advance Western Blotting
Detection Kit (GE Health Care, Buckinghamshire, UK), and
Image Reader LLAS-1000 Pro ver. 2.5 (Fuji Photo Film,
Tokyo, Japan).

Fluorescence-activated cell sorting analysis

Cells were cultured for 7-14 d in each culture medium. Cells
were collected and incubated with anti-CD133 antibody
(Bioss, Woburn, MA) for 1 h at 37°C. After washing, the
cells were incubated with Alexa Fluor 647-labeled anti-rabbit
secondary antibody for 30 min at 37°C, then analyzed by
fluorescence-activated cell sorting (FACS) using a BD FACS
Aria Cell Sorter (BD Bioscience, San Jose, CA).

Gamma-ray and neutron-beam irradiation

Two sets of A172 cells, one cultured with serum-containing
medium (DMEM + 10% FBS) and the other cultured with
SFM, were trypsinized, and single-cell suspensions were
placed into a Teflon tube and irradiated at room temperature
by neutron beams or gamma rays.

At the Heavy Water Column of the Kyoto University
Research Reactor (KUR), neutron-beam irradiation was per-
formed at a power of 1 MW. The neutron fluence was mea-
sured from the radioactivation of gold foil. Contaminating
gamma rays, including secondary gamma rays, were mea-
sured with thermoluminescence dosimeter (TLD) powder.
The TLD used was beryllium oxide (BeO) enclosed in a quartz
glass capsule. BeO itself is sensitive to thermal neutrons [13].
The average neutron fluxes were 1.0x 10° n/cm®s for the
thermal neutron range (less than 0.6 keV), 1.6 x 10% w/em?/s for
the epithermal neutron range (0.6-10 keV), and 9.4 x 10° n/
cm?/s for the fast neutron range (more than 10 keV). The total
absorbed doses resulting from fast, epithermal, and thermal
neutron-beam irradiation were calculated as the sum of the
absorbed doses attributed primarily to "H(n,n)'H, *N(n,p)**C,
and contaminating gamma rays. The dose-converting coeffi-
cients and details of the calculation method have been described
previously [14, 15].

Gamma-ray irradiation was applied using a %cCo gamma-
ray irradiator at a dose rate of 1.3 Gy/min.

Colony-forming assay

Cell survival was defined using a colony-forming assay. The
irradiated cells were seeded into 100 mm dishes at various
densities depending on the physical dose that cells received,
and cultured in a serum-containing medium. After 13-15 d,
the colonies were stained with methylene blue. A cell cluster
containing at least 50 cells was considered a single colony.
The surviving fraction was calculated as the number of col-
onies of treated cells divided by that for the control cells. The
Dig values were derived by linear quadratic model analysis



