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Figure W2. The human cycelin G2 promoter region contains putative HREs. The human eyelin G2 promater region (—1600~0) containg
some putative HREs (-CGTG-; red) and a FoxO3a-binding site (blue). The transcription starting site (underlined in shaded sequence) and
the translation initiating ATG {boxed) were determined according to NCBI {Accession Ne. NM 004354.2).
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Use of 5-Aminolevulinic Acid to Detect Residual Meningioma and Ensure
Total Removal while Avoiding Neurological Deficits

Shusuke Moriuchi®, Kimito Yamada', Makoto Dehara', Yoshifumi Teramoto!, Takao Soda?, Masami Imakita’, Mamoru Taneda'

'Departments of Neurosurgery, Rinnku General Medical Center, lzumisano, Osaka, Japan
2Departments of Neurology, Rinnku General Medical Center, izumisano, Osaka, Japan
3Departments of 3Pathology, Rinnku General Medical Center, lzumisano, Osaka, Japan

Abstract

5-Aminolevulinic acid (5-ALA) has been used successfully to resect meningioma without leaving a residual mass.
The authors report their experience resecting meningiomas in 17 patients using 5-ALA. Except for one case, all
meningiomas fluoresced intra-operatively under the microscope. Invasion to the dura mater, brain parenchyma, or
skull showed fluorescence, allowing for confirmation of residual tumor; total removal of the meningioma could be
performed more easily, and unexpected neurological deficits could be prevented by precise removal of the tumor
under the microscope. With invasion o the dura mater or skull in one case, the extent of dural removal was decided
by 5-ALA fluorescence with 1- to 2-cm safety margins. In another case with parenchymal invasion, close removal of
the tumor without leaving residual tumor could be performed with 5-ALA fluorescence. With the above methods, no
serious side effects or complications occurred in this study. Not all meningiomas fluoresced with 5-ALA, and 5-ALA
is available for about 95% of meningiomas. 5-ALA appears easy to use and helpful for finding residual tumor and

preventing recurrences by total removal of meningiomas.

Keywords: 5-ALA; Meningioma; Total resection

Introduction

Complete resection of meningiomas provides patients with the
best chance for a cure; however, surgery is frequently difficult given the
proximity of lesions to vital structures, such as cranial nerves, major
vessels, and venous sinuses [1]. Accurate discrimination between
tumor and normal tissue is crucial for optimal tumor resection. With
the use of 5-aminolevulinic acid (ALA), meningiomas can be seen to
fluoresce intra-operatively under the microscope [2]. Invasion to the
dura mater, brain parenchyma, or skull shows fluorescence, allowing for
confirmation of residual tumor, and total removal of the meningioma
could be performed more easily, while unexpected neurological
deficits could be prevented by precise removal of the tumor under the
microscope. In the past 2 years, 17 total resections of meningiomas were
performed using 5-ALA without recurrences and major complications,
and it was found that fluorescence-guided resection may be beneficial
for removal of complicated meningiomas that have a high risk of
recurrence.

Methods
Patients’ characteristics

A total of 17 consecutive patients (16 females, 1 male; average age,
65.5 years) undergoing resection of intracranial meningiomas from
January 2011 to December 2012 were included in this study (Table
1). All of the meningiomas were histologically Grade I meningiomas.
Tamor locations varied and included parasagittal, falx, sphenoid ridge,
convexity, planum sphenoidale, and petroclival tumors. The sizes of
the meningiomas ranged from more than 21 mm in diameter (Case
7) to a maximum of 76 mm in diameter (Case 2). In 4 of 17 cases,
the middle meningeal artery feeding the meningioma was embolized
preoperatively.

Preoperative and intraoperative procedures

After confirmation of normal liver function, patients were given 20
mg/kg of 5-ALA (Cosmo QOil Co., Ltd,, Japan) 4 hours preoperatively
[2,3]. Craniotomies were performed under general anesthesia. The

meningiomas were confirmed using a 440-nm ultraviolet light
source (violet-blue light), an optical component of the OPMI Pentero
microscope (Catl Zeiss AG, Germany). Under the violet-blue light,
the meningiomas showed charcoal-red fluorescence. Total removal
of the meningiomas could be performed by resecting the tumor until
the charcoal-red fluorescence could no longer be detected. In cases of
proximity to vital organs, it is important to prevent damage to these
organs and carefully remove the charcoal-red residual tumors.

Results
Tumor ﬂllOI‘ escence

All 17 tumors were totally resected using 5-ALA fluorescence.
No major neurological deficits were observed after surgery. The
histopathological diagnosis of these 17 meningiomas was WHO grade
1 meningioma; the tumors’ MIB-1 indices did not reach 5%. At the
latest follow-up examination, 2 years after surgery, no patients showed
evidence of recurrence. In 4 cases, the middle meningeal artery was
embolized preoperatively. Even when the main feedingartery, the middle
meningeal artery, was embolized, tumor fluorescence was strong in all
cases. No correlation between preoperative embolization and tumor
fluorescence was observed. Two cases (Case 4 and Case 5) showed weak
tumor fluorescence. In Case 4, the tumor had intratumoral hemorrhage.
The histopathological diagnoses were meningothelial meningioma with
a MIB-1 index of 2% in Case 4 and transitional meningioma with a
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MIB- i index of 1% in Case 5. No correlation between size and tumor
fluorescence was observed.

Representative cases

Case 3: A 37-year-old woman presented with headache and mild
right hemiparesis. MR imaging showed a large meningioma (maximum
diameter 59 mm) at the left parasagittal area, extending to the skull and
causing the skull to bulge (Pigure 1A). After craniotomy, it was found
that the meningioma invaded into the inner layer of the skull and
fluoresced charcoal-red (Figure 1B). The invasion of meningioma into
the inner layer was drilled out until the charcoal-red light disappeared,
and the skull was returned at closure. The parasagittal meningioma
fluoresced strongly and was removed totally, and the attachment to
the lateral wall of the superior sagittal sinus was coagulated (Figures
1C and 1D). The patient had no neurological deficit at discharge. The
histopathological diagnosis was transitional meningioma with a MIB-1
index of 2%.

Figure 1: Case 3 of a 37-year-old woman with parasagittal meningioma. A:
Preoperative T2-weighted MR image showing the large tumor with peritumoral
edema that reached the superior sagittal sinus. B: Intraoperative photograph in
the fluorescence mode of skull from intracranial side showing skull invasion of
the tumor. C and D: Intraoperative photograph in the white-light mode of the
surface of the main tumor mass after opening the dura mater (C), and the main
tumor mass showed bright fluorescence in the fluorescence mode (D).

Figure 2: Case 4 of a 67-year-old woman with left sphenoid ridge meningioma.
A: Preoperative gadolinium-enhanced T1-weighted MR image showing the
main tumor with peritumoral edema. B: Intraoperative photograph in the
fiuorescence mode of the resected tumor showing some fluorescences. C and
D: Intraoperative photograph in fluorescence mode of the tumor encased the
left middle cerebral artery and invaded into the brain parenchyma showing
fluorescence.

Figure 3: Case 10 of a 58-year-old woman of a right falx meningioma. A:
Preoperative gadolinium-enhanced T1-weighted MR image showing the main
tumor of right falx. B and C: Intraoperative photograph in fluorescence mode
of the tumor showing bright fluorescence. D: The resected tumor (right) and
the opposite side of the attachment of the resected faix (left) showed bright
fluorescence. E and F: Intraoperative photograph in fluorescence mode ofthe
falx coagulated showing no fluorescence.

Case 4: A 67-year-old woman presented with diplopia and
headache. MR imaging showed a left sphenoid ridge meningioma with
intratumoral hemorrhage and parenchymal edema adjacent to the
tumor (maximum diameter 44 mm) (Figure 2A). The tumor encased
the left middle cerebral artery and invaded into the brain parenchyma
with charcoal-red fluorescence (Figures 2B and 2D). The tumor was
resected totally until no fluorescence was observed. The patient had
no neurological deficit and no epileptic seizures after operation. The
histopathological diagnosis was meningothelial meningioma with a
MIB-1 index of 2%.

Case 10: A 59-year-old woman presented with headache and
mild weakness of the right lower extremity. MR imaging showed a
right falx meningioma (maximum diameter 30 mm) (Figure 3A).
The tumor showed strong charcoal-red fluorescence (Figure 3B-D).
The falx attached to the tumor was coagulated, and the fluorescence
disappeared (Figures 3E and 3F). After the attached falx was resected,
the resected tumor and the opposite side of the falx to which the tumor
was attached showed strong charcoal-red fluorescence (Figure 3D),
showing that the meningioma invaded through the falx. The headache
and weakness of the lower extremity disappeared after total resection.
The histopathological diagnosis was transitional meningioma with a
MIB-1 index of 2%.

Discussion

In this study, 5-ALA administration resulted in bright and diffuse
tumor fluorescence in 15 (88%) of 17 cases, including the cases in
which pre-operative embolization had been performed (Table 1).
Protoporphyrin IX (PPIX) fluorescence was seen only in the main mass
and areas of tumor invasion. Inthis series, the sensitivity and specificity
of PPIX fluorescence of the main tumor mass were 88% (15 of 17
cases) and 100% (17 of 17 cases), respectively (Table 1). Fluorescence
guidance allowed us to identify the extent of the tumor and helped us
avoid leaving residual tumor tissue that was difficult to identify in the
white-light mode. If we had not used fluorescence guidance, we might
not have noticed several small areas of residual tumor showing 5-ALA
fluorescence under violet-blue light with an operative microscope in
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the operating room. In this study, numerous factors affected tumor
recurrence: the tumor’s soft consistency, lobular shape, encasement of
the artery, invasion into the brain parenchyma, and dural attachment
very close to the venous sinus, as well as bone invasion. Because of these
factors, the risk of recurrence was considered very high [4-7]. It is worth
noting that tumor remnants were identified by fluorescence in multiple
regions. deVries and Wakhloo [8] reported that recurrent tumor is
often found at multiple sites. Meningioma has a high risk of recurrence,
and during excision, meningioma tissue can be left at any attachment
to surrounding tissues, especially at attachments to the gliotic brain,
major sinuses, the anterior visual pathway [9], and marginal dura
mater. Aggressive excision of the dura and gliotic brain has been
recommended to reduce this risk [7,10], but the optimal extent of dural
resection has been controversial. Kinjyo et al. proposed a margin of 2
cm. Nakasu et al. reported that a 1-cm dural margin is insufficient to
prevent recurrence [11,7]. The most suitable margin for dural excision
will necessarily differ from case to case, because of differences in tumor
growth rates and invasiveness. In light of these factors, photodynamic
diagnosis may become a promising method of determining the extent
of dural resection.

Figure 4: Schematic drawing showing areas most likely to harbor tumor
remnants. A: Intradural invasion. B: Bone invasion. C: Dural extension. D:
Tumor tissue behind vessels in the sulcus or parenchymal invasion. The gray
zone shows the extent of the tumor. The texture close to the tumor shows the
extent of brain edema.

Ontheotherhand, indiscriminate excisioncanlead to complications
related to brain and vascular injury. Therefore, if a tumor islocated close
to a major sinus, the skull base, or an eloquent area, then the excision
of dura mater and brain tissue should be restricted to safe areas, and
unresectable dura must be coagulated. Fluorescence guidance may help
avoid unnecessary excision. The reasons why tumor remnants may be
overlooked can be classified into three categories. 1) The tumor cells
invade surrounding tissue, attached dura mater, bone, and brain, after
which the invaded area is difficult to distinguish from the noninvaded
area (Figure 4). 2) The tumor remnants may be hidden behind large
vessels or the sinus, dural fold, or sulcus (Figure 4). 3) Daughter lesions
may develop apart from the main mass. All three reasons can make
tumor remnants difficult to identify with the naked eye or with the aid
of a surgical microscope. The use of 5-ALA-induced fluorescence can
help surgeons identify tumor remnants, because an area of strong red
fluorescence will appear if even a small part of a remnant is present at
the tissue surface. Fluorescence can make it easy to distinguish the one
from the other and determine the extent of a given tumor.

In the present study, tumor invasion into the skull was also
visualized by charcoal-red fluorescence. In most cases, hyperostosis in
association with meningioma is related to tumor invasion. However,
the extent of tumor invasion is difficult to judge from the appearance
alone. Although it is relatively easy to treat bone invasion in cases
of convexity meningioma, invasion at the skull base is hard to treat
because it involves the cranial nerves, major blood vessels, and air
sinuses. Therefore, the detection of bone invasion using photodynamic
diagnostic methods would seem to be valuable, especially in surgery for
skull-base meningiomas.

Many recent reports have described the usefulness of 5-ALA
to identify the margin of a malignant tumor or glioma for maximal
cytoreduction [6,12-16]. 5-ALA is an endogenous body metabolite
central to heme biosynthesis that is readily absorbed and metabolized
into porphyrins by malignant tumor cells (5). This phenomenon can
aid in tumor resection to identify the residual tumor in tumor margins,
when gross total resection is possible and desirable, with malignant
cells fluorescing, allowing discrimination between tumor and normal
functional brain tissue [6,12,13]. The side effects of 5-ALA are mild.
Skin irritation, nausea, and transient elevation in liver function test

Case No. Age, Sex Tumor Location Tumor Diameter(rﬁm) * Tumor Fluorescence Preoperative Embolization
1 62, F tt PO parasagittal 44x40%46 "~ Strong T T No o
2 eF  tFfax 76x49%67 Strong Yes
‘ 3 37, F It FP parasagittal 59x58x60 Strong Yes
] 4 67, F qlt'sphenoid ridge 44x38x40 Weak No
5 45, F it petroclival 28x14x24 Weak No
j 6 65, M t P convexity 25x19x26 Strong No
7 75, F rt sphenoid ridge 21x21x20 Strong No )
) 8 65, F It sphenaid ridge 63x46x59 Strong Yes
9 74, F It P convexity 40x40%46 Strong No
10 89, F ~ rPfak 30x25x21 Strong Yes
1 75, F planum sphencidale © 37x35x31 Strong “No
N 12 81 ,F o It F convexity 41x29x%28 Strong No
13 60, F rt petroclival 26x24x27 Strong No
) 14 48 F " planum sphenoidale 2219x20 * Strong " No
15 60, F it F convexity 26x18x23 Strong No
16 84, F 1t sphenoid ridge 32x26x26 Strong | No
17 49, F It FF"parasagittal ‘42x32x26 i Strong ' s No

Table 1: Characteristics of patients with meningioma. Abbreviations used in this table: M, male; F, female; PO, parieto-occipital; F, frontal; FP, fronto-parietal; P, parietal;

rt, right; It, left.
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results have occurred in some adult patients given higher doses of
5-ALA [4,8,17,18]. Apart from transient nausea after dye ingestion, the
present patients had no side effects, and their liver function tests were
unchanged.

Accumulation in the normal central nervous system is restricted
except in the subependymal zone and choroid plexus [18,19]. Many
possible mechanisms have been posited to explain the selective
accumulation of PPIX in neoplasms: (1) enhanced penetration of
5-ALA through the blood-brain barrier; (2) reduced transporter
activity that drains PPIX outside of cells; and (3) reduced activity of
ferrochelatase, which converts PPIX to heme [20]. At least one of these
factors is probably involved in the strong 5-ALA-derived fluorescence
in meningiomas. In general, there is no strict correlation between cell
proliferationand PPIX accumulation. In meningiomas, the proliferation
rate is relatively low [12].

In conclusion, applying this method to meningiomas that have a
high risk of recurrence should be of value not only in ensuring that
tumor remnants are not overlooked during resection but also in helping
to avoid unnecessarily radical resection and the associated risk of
morbidity. To confirm the usefulness of fluorescence-guided surgery
for meningioma, further studies on its sensitivity, specificity, and effect
on recurrence rates are needed.
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