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Brain-machine interface techniques have been applied in a number of studies to control neuromotor prostheses and for
neurorehabilitation in the hopes of providing a means to restore lost motor function. Electrocorticography (ECoG) has seen
recent use in this regard because it offers a higher spatiotemporal resolution than non-invasive EEG and is less invasive than
intracortical microelectrodes. Although several studies have already succeeded in the inference of computer cursor
trajectories and finger flexions using human ECoG signals, precise three-dimensional (3D) trajectory reconstruction for a
human limb from ECoG has not yet been achieved. In this study, we predicted 3D arm trajectories in time series from ECoG
signals in humans using a novel preprocessing method and a sparse linear regression. Average Pearson’s correlation
coefficients and normalized root-mean-square errors between predicted and actual trajectories were 0.44~0.73 and
0.18~0.42, respectively, confirming the feasibility of predicting 3D arm trajectories from ECoG. We foresee this method
contributing to future advancements in neuroprosthesis and neurorehabilitation technology.
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Introduction

A number of prominent brain-machine interface studies have
arisen, in which electroencephalography (EEG), magnetoenceph-
alography (MEG), electrocorticography (ECoG), and intracortical
microelectrode have been applied to neuroprosthesis control,
neurorehabilitation and novel communication tools for paralyzed
or “locked-in” patients suffering from neuromuscular disorders.
Since EEG and MEG are non-invasive and have high temporal
resolution, they have been used in various paradigms, such as
online control of a computer cursor [1-2], direction inference of
hand movements [3-5], operation of a spelling device [6], and
neurofeedback for rehabilitation [7-13]. Although a large
proportion of these non-invasive methods succeeded in classifica-
tion of movement direction or intention, prediction of time-
varying trajectories is likely difficult due to insufficient spatial
resolution and low signal-to-noise ratio in such methods.

Signal recording with intracortical microelectrodes is a powerful
tool to realize precise trajectory prediction or accurate device
control. Using motor cortical signals in animals, studies have
shown successful prediction of hand trajectories [14-16] and grasp
types and velocity [17], control of a computer cursor [18] or a
robot arm [19-22], and controlled stimulation to a paralyzed arm
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[23]. These techniques have also been applied in humans to
control a cursor [24] and a virtual keyboard and virtual hand [25].
However, though intracortical electrodes can provide rich
information for BMI control, they face limitations such as signal
degradation due to glial scarring [26]and potential displacement
from the recording site [27].

Conversely, ECoG is less invasive than microelectrodes and can
offer higher spatial resolutions than EEG and MEG. Researchers
have been applying ECoG in humans for several years now and in
numerous applications. The classification of hand movement
directions or grasp types [28-33], one-, two-, or three-dimensional
cursor control [27,34-40], and prediction of finger flexion [41] are
just some examples of ECoG applications in human patients.
Studies concerning the prediction of three-dimensional (3D)
trajectory or muscle activities from primate ECoG have shown
outstanding results [42—45]. Investigations on the prediction of 3D
arm trajectory using ECoG in humans, however, are lacking,
despite the potential to provide significant improvement in
neuroprosthesis and neurorehabilitation technology. The inade-
quate quality of ECoG signals recorded from patients is one
potential obstacle in predicting 3D trajectories. Specifically, (1)
paralyzed or elderly patients may find it difficult to perform a long
series of repeating trials and stably replicate the same motion for

August 2013 | Volume 8 | Issue 8 | 72085
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Table 1. Clinical profiles in patients who participated in this study.

No. Age Sex Diagnosis {Left/Right) Duration of disease Paresis (MMT) Sensation
1o 64 yr. Male.  Thalamic hemorrhage (R) ; , 7y ' Spastic (4) Hypoesthesia =~
2 65 yr. Male Ruptured spinal dural arteriovenous fistula 8 yr. Spastic (4) Hypoesthesia
3 14yr  Male Intractable epilepsy R) 7y - None . Normal @

doi:10.1371/journal.pone.0072085.t001

each trial, (2) ECoG signals in patients can include pathological
activity, depending on the condition, and (3) the electrode sites on
the cortex and the recording lengths can differ, depending on the
treatment.

The aim of this study was to predict 3D arm trajectories from
ECoG time series in human patients as a basis for a neuroprosth-
esis. Patients diagnosed with thalamic hemorrhage, ruptured
spinal dural arteriovenous fistula (dAVF) and intractable epilepsy
executed rotating tasks with three objects on a table. We
simultaneously recorded arm trajectories and ECoG signals from
15~60 electrodes on the sensorimotor cortex. Using a novel
method, we predicted four joint angles for the shoulder and elbow
joints and six coordinates for the elbow and wrist joints in patients
with different pathology.

Materials and Methods

Ethics Statement

The study was approved by the ethics committee of Osaka
University Hospital (Approval No.08061) and conducted in
accordance with the Declaration of Helsinki. ECoG electrodes
were embedded not for our experiments but for patients’ medical
treatments. Written informed consent was obtained before
initiating any research procedures. All patients or their guardians
gave written informed consent for the use of their data in the
academic study.

Participants

Three patients (males; 14-64 years) participated in our study
(Table 1). Patients 1 and 2 had spastic paresis and weakness in the
left arm due to stroke. Their sensorimotor cortices were
undamaged, though moderate motor dysfunction was observed.
The youngest participant, patient 3, was diagnosed with intrac-
table epilepsy but did not show motor dysfunction. As part of their
treatments, all participants were implanted with subdural
electrode arrays (Unique Medical Co., Tokyo, Japan) covering
the sensorimotor cortex, including the central sulcus. The arrays
remained implanted in the intracranium for two weeks to
determine the optimum site for effective pain reduction (patients
1 and 2) or epileptic foci localization (patient 3).

Behavioral Tasks

Patients executed the tasks in an electromagnetically shield
room approximately one week after electrode implantation. All
patients were seated upright on a chair at a table and were asked
to perform the tasks using their left hands. Patient 1 repositioned
three blocks around a 25 cm X 25 ¢cm square one by one and in a
clockwise fashion (green arrows in Figure 1). He moved his hand to
the first block (a rectangular parallelepiped in Figure 1), grasped it,
carried it to the vacant corner of the square, and released it. Next,

PLOS ONE | www.plosone.org

he moved the second block (a cube) to the corner vacated by the
rectangular parallelepiped. Finally, he moved the third block (a
cylinder) to the corner vacated by the cube. When all objects had
been moved to the next corner once, a cycle of hand motion was
completed. Patient 1 regularly repeated nine cycles in session 1
and eleven cycles in session 2. Patient 2 also carried the three
blocks to vacant corners of the square, but he randomly chose one
block among the three to move. Patient 2 performed similar arm
movements 19 and 20 times for sessions 1 and 2, respectively.
Patient 3 chose one of three blocks and placed it at an arbitrary
position on the table. He performed 18, 31, and 24 movements in
sessions 1, 2 and 3, respectively. We instructed patients to perform
the tasks at their own pace. Each session started just after an audio
cue, delivered through a speaker controlled with a MATLAB
R2007b (Mathworks, Inc., Natick, MA, USA) script, and

ECoGs S,

x O 3D marker

Figure 1. Behavioral tasks. Patient 1 repositioned three blocks
one by one and clockwise (green arrows ) at the corners of a
25 cm x 25 cm square. ECoG signals were obtained with planar-
surface platinum grid electrodes placed on the right sensorimotor
cortex. Half-closed circles on the left shoulder, elbow, and wrist joints
represent three-dimensional markers for the motion capture system.
The angles q1, g2, g3, and g4 are defined as an abduction/adduction
angle, a flexion/extension angle, an external/internal rotation at the left
shoulder joint, and a flexion/extension angle at the left elbow joint,
respectively. When he lowered his arm toward the -z direction and
turned his palm to the y direction with the elbow extended, q1, g2, and
g3 were all zero, and g4 was = radians.

doi:10.1371/journal.pone.0072085.g001
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Figure 3. ECoG signal processing and decoding method. (A) Raw ECoG signals from channels 1, 2, and 27 are shown as typical examples. (B) The ECoG signal
of channel 27 was divided into seven frequency components (5,0, ..., y 2) with bandpass filters (black lines). These seven filtered signals were digitally rectified,
smoothed with a low-pass filter, and down-sampled to 100 Hz. The band-passed ECoG signals were then z-score normalized (red lines). The linear relationship
between the past 1 s of normalized ECoG (light-blue area; t ~ tjAt, j=1, 2, ..., 100, At=001 s, i.e, 100 sampling points) and a coordinate x, y, or z at the present  (tiny
yellow boxes) was determined using sparse linear regression. Once weight coefficients were obtained through training, construction of the decoder was complete.
doi:10.1371/journal.pone.0072085.g003

PLOS ONE | www.plosone.org 3 August 2013 | Volume 8 | Issue 8 | 72085



3 4 5 6

Trial No.1 2
¥2 i
71§

Ch30-0 §
: 05 8o

g NS | N
S Y M | TN
g P A A

Fig. 3

Figure 4. Color-map of the normalized ECoG signals and
coordinates at the left wrist joint. Signals were obtained from
channels 1~30 in session 2 of patient 1(channels 31~60 are not
shown). This session includes 11 cycles. We treated each cycle as an
independent trial.Start and end points were respectively defined as the
instances where tangential velocity of the arm exceeded or fell below
5% of maximum velocity. Unused sampling points are colored yellow
(yellow vertical lines). Precise wave forms of z-score on channel 27
inside of a red rectangle were already displayed in detail in Figure 3.
doi:10.1371/journal.pone.0072085.9g004

continued for 180 seconds. We excluded 20 trials in which patient
9 moved more than 20 cm sagittally because his torso swung
forward and backward during the tasks. The abovementioned
tasks included several actions, i.e., reaching, grasping, carrying and
releasing, which are basic and indispensable actions for daily life.

ECoG Signals and Motion Recordings

Patients 1 and 2 were implanted with two 5x6 electrode arrays,
and patient 3 was implanted with a 3 x5 array. The planar-surface
platinum grid electrodes had a diameter of 3 mm and an inter-
electrode distance of 7 mm, as shown in Figure 2. The number of
electrodes was 60 for patients 1 and 2, and 15 for patient 3. EGoG
signals were recorded inside an clectromagnetically shielded room
with a 128-channel digital EEG system (EEG 2000; Nihon Koden
Corporation, Tokyo, Japan) set at a sampling rate of 1000 Hz. All
electrodes were referenced to a scalp clectrode on the nasion of
cach patient. Figure 2A shows electrodes placed on the cortex of
patient 1.

3D arm motions were recorded at a sampling rate of 100 Hz
with an optical motion capture system (Eagle Digital System;
Motion Analysis Corporation, Santa Rosa, CA) using reflecting
3D markers shaped in 6 mm-diameter spheroids to identify the left
shoulder, left elbow, and left wrist joint positions (Figure 1). The
frame lengths of images available for leave-one-out cross-
validation (LOO-CV) were as follows: 180 seconds for each
session by patient 1, 120 seconds for each session by patient 2, and
90, 180 and 120 seconds for sessions 1, 2, and 3 by patient 3,
respectively. Frame lengths differed between patients and sessions
since the 3D markers occasionally went out of the field of view or
were occluded by the patient’s body. The start of ECoG and
motion capture recordings was time-locked to the cue signal.

PLOS ONE | www.plosone.org
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ECoG Signal Processing

ECoG signals were pre-processed with our previously proposed
method [44]. Firstly, the signal data sampled at 1000 Hz were re-
referenced with a common average reference (CAR) and divided
into seven frequency bands (5 : ~4 Hz, 0 : 4~8 Hz, o: 8~14 Hz,
p 1:14~20 Hz, B 2:20~30 Hz, y 1:30~50 Hz, and vy
2:50~90 Hz) using fourth-order bandpass Butterworth filters
(Figure 3). Secondly, these band-passed signals were digitally
rectified and smoothed with a second-order low-pass filter (cut-off
frequency: 2.2 Hz), which changed high oscillations into low
frequency features. Thirdly, the signals were down sampled to
100 Hz, i.e., the sampling rate of the motion capture recordings.
Finally, the obtained signals x{) (=1, 2, ..., n 7) at time { were
normalized to the standard z-score z{#) as follows (red lines in
Figure 3B).

xit) = (i=12

agi

z() = venxT) (1)

where |, 6; and 7 denote the mean value of x{f), the standard
deviation of (), and the number of ECoG channels, respectively.
These z-scores calculated from ECoG signals were utilized as
training data to construct a decoder.

Decoding Method
The value of an angle or a coordinate ¥}(/) at a present time ¢
was predicted with the following linear equation:

nx7 m

Y= wyzilt—jAn+wo 2)

i=1 j=1

where At and m denote time-step and the number of consecutive
sampling points before the present time ¢ used to predict ¥, at 4,
respectively. In this study, we assigned 100 points and 0.01 seconds
to m and Al respectively. wy and wy are, respectively, a bias term
and a weight coefficient to the i-th filtered ECoG signal z; at time &
JjAt (Figure 3B). We applied a Bayesian algorithm called sparse
linear regression [44,46-49] to determine values of the weights wj;

Each session was segmented into 9~31 trials. Figure 4 shows z-
scores and coordinates x, y and z at the wrist joint in session 2 of
patient 1. In this example, the session was divided into 11 trials.
We defined the starting point of each trial as the instance when
tangential velocity at the elbow joint exceeded 5% of the
maximum velocity in the trial. The end point of each trial was
decided in a similar manner, i.c., the instance when tangential
velocity decreased to less than 5% of maximum. In Figure 4,
unused data between the 4-th ending point and the &+1-th starting
point are colored over with yellow (yellow vertical lines).

We verified the validity of our method using LOO-CV. Firstly,
a decoder was constructed using filtered ECoG signals and actual
arm position or actual joint angle in all trials except the &-th trial,
which was used as test data. The weight coefficients w; were
obtained from this training. Iterations of the sparse linear
regression were terminated just before over-training. Secondly,
an arm trajectory ¥, in the A-th trial was predicted with the
decoder. Pearson’s correlation coefficient (CC) and the normalized
root-mean-square error (lRMSE) were obtained by comparing 1),
and ¥, of the k-th test trial. Thirdly, the abovementioned training
and testing phases were repeatedly executed using different trials
for k (Figure 4, k=1, 2, ..., 11). Finally the CC and nRMSE values

were averaged across all trials.
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Figure 5. Examples of the predicted (red lines) and actual 3D trajectories (blue lines). A part of the 10th trial (6 s) in session 2 of patient 1
is shown (see Video S1). Markers (circles, triangles, squares, and diamonds) represent 2 s time intervals. Circles and diamonds indicate the earliest and
the latest positions, respectively. The red trajectories were computed using predicted data q1~qg4 and patient 1's actual arm length. The timings
(positions of the markers) and trajectory curves of the predicted data were similar to those of the actual data.

doi:10.1371/journal.pone.0072085.9005

Results

Reconstruction of Angles and Positions

Movement duration average and standard deviations across 20
trials for patient 1 was 17.17%2.76 s, indicating that his motion in
each trial was non-uniform (see Fig. S1). Figure 5 is an example of
the comparison between predicted (red lines) and actual 3D
trajectories (blue lines) for six seconds in the 10th trial of session 2
by patient 1. The red lines were drawn using inferred joint angles
ql~ g4 and the patient’s arm length. Figure 6 shows predicted
Jjoint angles (red lines in the left column) and joint positions (red
lines in the center and right columns) in comparison with actual
measurements (blue lines) in the 10th trial of session 2 as typical
plots by patient 1 (Figure 4). In this trial, it took 15.1 s to move all
three blocks to the next open corners of the square. Most blue lines
have curvatures with three peaks representing the three block
moving tasks. The timings of the peaks differed between q2 and q3

PLOS ONE | www.plosone.org

indicated by green arrows. The predicted red lines fit the peaks at
various timings, even though the ECoG signals utilized for the
prediction were common between q2 and q3. The traces for ql, z
at the elbow, and z at the wrist have narrow variation ranges and
many peaks, in contrast to those of the other joint angles/
coordinates. The ranges of CC and nRMSE for joint angles (left
column in Figure 6) were 0.57~0.88 and 0.13~0.40, respectively.
The flexion/extension angle g2 at the left shoulder showed the
best result. CC and nRMSE for joint coordinates (middle and
right columns) were 0.48~0.82 and 0.16~0.30, respectively. The y
coordinate values at the elbow were relatively greater than those of
the other coordinates. Both q2 and y at elbow showed wider ranges
of variation than the others.

Average CC and average nRMSE of the three patients are
summarized in Figure 7. The best average CC and nRMSE
among joint angles were 0.71+0.026 and 0.23%0.010 (mean =
SEM), respectively, corresponding to angle g2 for patient 1. The
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Figure 6. Examples of predicted joint angles and positions in time series. Blue lines are actual recoded joint angles (left column), and actual
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doi:10.1371/journal.pone.0072085.g006

best average CC and nRMSE among joint coordinates were
0.73%+0.022 and 0.18%0.0071, respectively, corresponding to the
z coordinate of the left wrist for patient 1.

To judge whether performance of the proposed method differed
significantly between patients, a two-way ANOVA with Tukey’s
multiple-comparison test was conducted to analyze the effects of
two factors (patients and joint angles; patients and joint
coordination). The 2-way interaction did not show any signifi-
cance. Significant differences were observed among the patients
(oint  angle:  Fy  434=82.46, p<0.00l; coordination:
Fy 654 =117.56, p<<0.001), whereas significant differences were
not observed among joint angles and joint coordination. The CC
values of both patients 1 and 2 were significantly higher than those
of patient 3. The nRMSE values for patient 3 were also
significantly higher than those of the other patients (joint angle:
Fy 436=10.42, p<<0.05; coordination: Fy ¢s4=41.14, p<<0.01).
This may be interpreted such that the proposed method is more
suitable for patients 1 and 2 than for patient 3.

PLOS ONE | www.plosone.org

Frequency Components Contributing to Reconstruction

of Arm Trajectory

3D hand trajectories were predicted using each sensorimotor
rhythm, one by one. The results averaged across 20 trials for
patient 1 are shown in Figure 8. A two-way ANOVA was
employed to judge two effects (seven sensorimotor frequency
bands and four joint angles or six coordinations). Among the 2-
way interactions, only elbow coordination showed significance
(joint angle: Fig 539=1.07, p=0.38; elbow coordination:
F|2) 399 — 186, pZOO‘l’, wrist coordination: F]Q) 399 — 14',
p=0.16). Significant differences were observed among the
sensorimotor frequency bands (joint angle: [ 530 = 27.26,
£<0.001; elbow coordination: Fg 399=33.67, p<<0.001; wrist
coordination: Fg 399 =43.58, $#<<0.001), as shown in figure 8. The
CC values of the § and Y2 bands were significantly higher than
those of the other bands.
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Discussion

We predicted 3D arm trajectory in humans based on ECoG
signals divided into seven frequency bands using a sparse linear
regression method. Although two-dimensional (2D) cursor trajec-
tories on a display have been precisely predicted using ECoG
signals obtained from patients in several studies [35,37-38], to the
best of our knowledge, inference of 3D trajectory for the human
arm using ECoG has not been previously presented.

We inferred both joint angles (q1~ q4) and joint positions (x, ¥
and 2) to reconstruct 3D trajectory and obtained acceptable
prediction accuracies in both cases. Our average CC and nRMSE
were 0.44~0.73 and 0.18~0.42, respectively, excluding patient 3.
In the previous studies on 2D cursor trajectories with humans,
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average CC were approximately 0.22~0.71 for Schalk et al.
(2007) (with the average across positions and velocities for the best
participant being 0.62) [35], 0.3~0.6 for Pistohl et al. (2008) [37],
and 0.52~0.87 for Gunduz et al. (2009) [38]. Kubanek et al.
(2009), who predicted individual finger flexions, showed an
average CC of 0.23 (little finger) ~ 0.75 (thumb) (CC averaged
across all fingers and participants was 0.52) [41]. Our results were
not inferior to the aforementioned studies, especially considering
the higher dimensionality of trajectory data.

The prediction accuracy for patient 3 was significantly worse
than that of the other patients. His average CC and nRMSE were
0.13~0.38 and 0.28~0.52, respectively. We suggest the following
as possible causes for this result: (1) ECoG signal quality; There
were obvious disturbances or noise in his ECoG signals which
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could be discerned through visual inspection. The baselines of his
ECoG signals also randomly and widely fluctuated. (2) Electrode
number; Patient 3 had only 15 electrodes placed around his
central sulcus, whereas the other patients had 60 electrodes. (3)
Pathology; Patient 3 had epilepsy while the others did not. (4) Task
properties; He was allowed to place the blocks at arbitrary places
on the table. He decided their positions impromptu, in contrast to
the other participants who placed their blocks at fixed positions.
We suggest that much more training data are necessary for the
prediction of motions involving various postures such as those in
the data of patient 3.

Joint angle ql could not be predicted precisely, in contrast to
q2~q4 (Figure 7A and 6C). The range of abduction/adduction for
ql was the narrowest among all angles, as shown in the left column
of Figure 6. We presume that it was difficult to extract the faint
component correlating with this small fluctuation from ECoG as a
summation of various signals.

The high frequency band y2 (50~90 Hz) had relatively high
CC values (Figure 8). Several papers also reported that high
frequency bands of ECoG were important for prediction, such as
40~80 Hz for cursor trajectory prediction in humans [37],
80~150 Hz for the classification of human hand movements
[31], 40~90 Hz for 3D hand trajectory prediction in monkeys
[43], and 50~90 Hz for EMG prediction in monkeys [44]. The
low frequency band 6 (~4 Hz) had the highest values among the
seven bands in this study. This was also supported by previous
works [32,37] which reported that the low frequency band ECoG
(2~6 Hz; with band-pass filter) and low frequency component
(LFC) (<5 Hz; with Savitzky-Golay smoothing filter) were
important for classifying different grasp types [32].

We verified that 3D arm trajectories in patients of different
pathology could be predicted with our proposed method using a
sparse linear regression. We foresee this method contributing to
further studies and further improvements in neuroprostheses and
neurorehabilitation.

Supporting Information

Figure S1 Actual position at the wrist joint for patient 1.
Coordinates x, », and z of all 20 trials are shown. Motion of patient
1 was non-uniform, with duration and timing differing between
trials.
(EPS)

Video S1 Examples of the predicted arm positions of patient 1.
Blue and red lines are actual and predicted arm positions in the
10th trial of session 2, respectively.
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Development of an Implantable Wireless ECoG 128ch Recording
Device for Clinical Brain Machine Interface

Kojiro Matsushita, Masayuki Hirata, Takafumi Suzuki, Hiroshi Ando, Yuki Ota, Fumihiro Sato,
Shyne Morris, Takeshi Yoshida, Hidetoshi Matsuki, Toshiki Yoshimine

Abstract— Brain Machine Interface (BMI) is a system that
assumes user’s intention by analyzing user’s brain activities and
control devices with the assumed intention. It is considered as
one of prospective tools to enhance paralyzed patients’ quality of
life. In our group, we especially focus on ECoG
(electro-corti-gram)-BMI, which requires surgery to place
electrodes on the cortex. We try to implant all the devices within
the patient’s head and abdomen and to transmit the data and
power wirelessly. Our device consists of 5 parts: (1) High-density
multi-electrodes with a 3D shaped sheet fitting to the individual
brain surface to effectively record the ECoG signals; (2) A small
circuit board with two integrated circuit chips functioning 128
[ch] analogue amplifiers and A/D converters for ECoG signals;
(3) A Wifi data communication & control circuit with the target
PC; (4) A non-contact power supply transmitting electrical
power minimum 400[mW] to the device 20[mm] away. We
developed those devices, integrated them, and, investigated the
performance.

I. INTRODUCTION

Electrocorticogram (ECoG) indicates a biological
electrical activity, which is recorded with the electrodes
directly placed on brain surface. It characterizes higher spatial
resolution (better signal-to-noise ratio) compared to
electroencephalograms (EEG) [1], and provide lower risk due
to a less-invasive method and more stable measurement
compared to needle electrode arrays [2]. Thus, ECoGs have
been used to identify epileptic foci for clinical purpose, and
have been known as a promising tool for controlling a brain
machine interface (BMI) / brain computer interface (BCI) for
medical and welfare applications [3]. However, the electrodes
on the brain surface are directly wired to a recording PC
outside of body, and the recording is limited generally within
2 weeks due to its infection risk. So, for further improvement
of ECoG-based BMI, it is indispensable to implant all the
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devices within the patient’s head and abdomen. Therefore, we
are developing a fully-implantable wireless system to record
ECoGs for clinical BMI.

Rebot Hand

Figure 1.

Conceptual Diagram of Clincal BMI

II. 2" PROTO-TYPE

This is our second proto-type. The device is placed into
head, abdomen, and out of body, as shown in Fig.2 and Table
1. The reason that the wireless controller is located in
abdominal part is to prevent the user’s brain from wireless
effects. The head part and the abdominal part are connected
with 10 fine cables under the skin. The data communication
and power supply are wirelessly conducted so that the in-body
devices are fully implanted. The 2™ proto-type is shown in
Fig.3 and Fig.4.

The device consists of 5 components: the head part
contains 3D highly dense multiple-electrodes, ECoG
measuring circuits, and a titanium skull case; the abdominal
part contains a Wifi controller and the receiver of a wireless
power supply; the out-of-body parts contains the transmitter of
a wireless power supply. Table 2 lists those developers.

Figure 2. Conceptual Diagram of the Proposed Device

1867



TABLE L LOCATIONS OF DEVEICE PARTS

III. DETAIL OF DEVICE PARTS

A High-Density Multiple-Electrode Sheet Head A. 3D Highly-Dense Multiple Electrodes
B ECoG Measuring Circuit in  Titanium Case The proposed electrodes are designed for higher spatial
. Wireless Controller Abdomen resolution and better signal-to-noise ratio compared to the

with Wireless Power Supply (Receiver) . . . .
- conventional electrodes (i.e., the conventional electrode is 3.0
Wireless Power Supply .. X

(Transmitter) Out of the Body [mm] in diameter, and the array is made of the electrodes at 10
E PC with a Wifi Access Point [mm] intervals as shown in Fig.5 (left). Therefore, we made a

grid electrode of 1.0 [mm] in diameter, and the array contains
approx. 100 electrodes at 2.5[mm] intervals. We confirmed
that it fits to human brain surface as shown in Fig.5 (right).

2.5mm

Figure 5. Appearance of the 3D Highly Dense Multiple Electrodes

Figure 3. Appearance of the 2™ Proto-type

TABLE II. LIST OF DEVELOPERS :;u %
MRI Data STL Data
3 ighly Dense Unique Medical Corporation ‘;’ Molding
Multiple Electrodes & Shyne Moriss (Osaka Univ.) . . )
A-R-Tec Corporation -
ECoG Measuring Circuit & Takeshi Yoshida (Hiroshima Univ.)
& Hiroshi Ando (NICT)

Asuka Denki Seisakujo Corporation

Titanium Skull Case & Masayuki Hirata (Osaka Univ.)

30 Prirter

Wifi Controller Hitachi Corporation e . — ”
. Yuki Ota, Fumihiro Sato, Hidetoshi Matsuki Molded Product Resin Mold
Wireless Power Supply S
(Tohoku University)
Assembling & Performance Takafumi Suzuki (NICT) Figure 6. Fabric Process of the 3D Highly Dense Multiple Electrodes
Investigation & Kojiro Matsushita (Osaka Univ.)
B. ECoG Measuring Circuit
pmrm— The ECoG measuring circuits are shown in Fig.7. One
: 4 riea A . . . . .

bk e Rl - circuit functions 64 [ch] analog amplifiers and 12 [bit] A/D
ECoG Measuring || 3D Highly-Dense converters at the maximum sampling rate of 1 [kHz]. Then, we

Cirouit : Electrodes . . . .
rreeed ‘ use two circuits at once, in order to deal with 128 [ch] ECoG
Wi Controller & Abdetaingl ban signals. The specification of the ECoG measuring circuit is

| listed in Fig.8 and Table 3.
FPGA(Data Conversion & WLAN Control} |

{0 ultra fine coaxial cables

- ——— Wireless LAN
Rechargeable Battery Acceess Point

i TUTIITTIIT - | UEEE802.1 Th/gn)
. I Charge Control Gircuit :

- Wireless Power Supply
(Power Receiving Circuit)

| WLANGEEEB02.11b/g/n) -;ﬁ_r\tenna ;

Power Circuit ]

. PG
Software

<UDP-Transmit>
Control Parameters

<UDP-Receive> . . N .
Wireless Power Supply ECoG Datla Figure 7. Appearance of the ECoG Meauring Circuits. The right figure
(Power Transmitting Circuit) e shows the location of the circuits inside of the skull case.

Figure 4. System Architecture of the 2™ Proto-type
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Figure 8. Target Range of the ECoG Measuring Circuit

TABLE IIL SPECIFICATION OF ECOG RECORDING CIRCUITS
Name Specifications
Number of Input Channel 128[ch] (64 [ch] / | chip)
Low Pass Filter 0.1/1/10[Hz]
High Pass Filter 240/ 500/ 1000 [Hz]
Amplifier Gain 40/50/60/70/80[dB]
Input Voltage Range 1[uV] to 1 [mV]
Sampling Rate 200 /500 / 1000 [Hz]
Power Consumption 10 [uW/ch]
Circuit Size 28.5mm*19.4mm*5Smm

C. Titanium Skull Case

We developed a titanium skull case, which contained a
128ch-ECoG measuring circuits. This case functioned as both
protecting the circuits and substituting an artificial skull bone.
The case is fabricated as follows: (1) We acquire the target
patient’s head MRI data; (2) We convert MRI data (DICOM
data) to 3D model data, extract one part of the skull, design a
circuit location; (3) Finally, the skull case is cut out from a
titanium block with the CAD data.

Seftwmre | §

Data

CT Scan Data

Machinimng

Metal Product

Figure 9. Fabric Process of the Titanium Skull Case

D. Wireless Controller

We adapted the Wifi for the second prototype. Our Wifi chip
achieves 16Mbps as the maximum data transmission rate,

which allowed the transfer of 128-ch * 12-bit ECoG data *
1kHz in real time. Max power consumption was
approximately 200 mW, which meant that most of the system
power was consumed by the wireless data transfer. The size
was 40 mm * 40 mm * 5 mm, as shown in Fig.10.

The abdominal device is based on the wireless controller as
shown in Fig.11.

Figure 10. Appearance of the Wireless Controller

Lithium Polymer Battery
(3.7v430mA, 30%25%5mm)

Wireless Controller
(16Mbps, 40*40*5mm)
Ferrite Sheet
(40401 mm)
Coil
(O 40*1 5mm)

Figure 11. Abdomenal Device, which consists of a wireless controller, a
lithium polymer battery, a fferrite sheet, a coil.

E. Wireless Power Supply

The wireless power supply consists of two parts. One is a
transmitter positioned outside of the human body (Fig.12 left),
and the other is a receiver located inside the human body
(Fig.12 right). The specification is listed in Table 4. We
achieved a wireless power supply of 400 [mW] at a distance of
20 [mm], which was sufficient to run the entire implantable
device.

Figure 12. Table 4 Specification of a Wireless Power Supply.
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TABLE IV. SPECIFICATION OF THE WIRELESS POWER SUPPLY

Target Dlstapce between 20mm
coils
Transmitter Power 400mwW
Receiver Coil Size 40mm*40mm*2mm
Transmitter Coil Size 100mm*100mm*5Smm
Max. Temperature of 38 degree
Receiver

E. Recharging Battery

At the second proto-type, we use the lithium polymer battery
(3.7V430mA).We have proved that the battery lasts approx.6
hours to record ECoG signals. We also exchange to bigger
battery if ignoring the size.

However, the lithium polymer battery is not proved as its
bio-compatibility so that we need to look for implantable
batteries and substitute for it.

TABLE V. SPECIFICATION OF THE RECHARGING BATTERY
Battery capacity 3.7V430mA
Estimated power consumption Average 830mW

of the whole system (Max. 200mW)

Estimated working time Approx. 6 hours

IV. PERFORMANCE TEST

We are now conducting animal experiments with the device
shown in Fig.13. It is designed for monkeys so that it functions
only 64ch: in short, it consists of a 64ch flat highly-dence
multiple electrodes, a titanium skull case, and one ECoG
measuring circuit.

Figure 13. Appearance of the Implantable Device for a Monkey

Fig.14 shows the battery condition when we wirelessly
supply power to the device. It takes approx.10 hours to the full
condition. This is because that we temporally set the
recharging current low due to keeping the device safe. Then,
after recharging, it demonstrated that the device lasts approx.
6 hours.

Fig 15 illustrates one result of ECoG recordings with GAIN:
80db, Cut-off Freq.: 1-240Hz, Sampling:1kHz, and Num. of
Ch.: 64ch , Distance between the implantable device and the
recording PC: 3m.

Yorking with the wireless ar supply York

Battery Volotage [V}

R i AT S N N
1 2 3 4 5 6 7 8 § 10 11 12 13 14 15
Time [hour]

Figure 14. Investigation on the battery condition

wdch
~8ch |

! ~dch ~3ch
| —5ch ~eh ~Fch

ECoG Signal [u¥]

0”’ 200 ‘1100 &00 SOO'VHIOOQ
Tirme Emsec]

Figure 15. Example of ECoG recording data (displaying only 8ch)

V. CONCLUSION

Due to reducing the infection risk and achieving long-term
ECoG measurement, we are developing a fully-implantable
wireless ECoG recording device. In this paper, we introduced
our 2™ proto-type: the 3D highly-dense multiple electrodes,
the ECoG measuring circuits, the titanium skull case, the
wireless controller, the wireless power supply. We have
investigated those performances, and are trying animal
experiments.
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Case Report

Possible roles of the dominant uncinate
fasciculus in naming objects: A case report of
intraoperative electrical stimulation on a
patient with a brain tumour

Keiko Nomura?, Hiroaki Kazui®*, Hiromasa Tokunaga®, Masayuki HirataP, Tetsu GotoP, Yuko GotoP,
Naoya HashimotoP, Toshiki Yoshimine® and Masatoshi Takeda®

&Department of Psychiatry, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
bDepartment of Neurosurgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan

Abstract. How the dominant uncinate fasciculus (UF) contributes to naming performance is uncertain. In this case report, a patient
with an astrocytoma near the dominant UF was given a picture-naming task during intraoperative electrical stimulation in order to
resect as much tumourous tissues as possible without impairing the dominant UF function. Here we report that the stimulations
with the picture-naming task also provided some insights into how the dominant UF contributes to naming performance. The
stimulation induced naming difficulty, verbal paraphasia, and recurrent and continuous perseveration. Moreover, just after
producing the incorrect responses, the patient displayed continuous perseveration even though the stimulation had ended. The
left UF connects to the inferior frontal lobe, which is necessary for word production, so that the naming difficulty appears to be
the result of disrupted word production caused by electrical stimulation of the dominant UF. The verbal paraphasia appears to
be due to the failure to select the correct word from semantic memory and the failure to suppress the incorrect word. The left
UF is associated with working memory, which plays an important role in recurrent perseveration. The continuous perseveration
appears to be due to disturbances in word production and a failure to inhibit an appropriate response. These findings in this case
suggest that the dominant UF has multiple roles in the naming of objects.

Keywords: Left uncinate fasciculus, naming objects, awake surgery, intraoperative electrical stimulation, low-grade astrocytoma

1. Introduction study found that demyelination and axonal injury of
the left UF were associated with a decline in naming
performance [3]. Although these two studies suggest-
ed that the left UF is associated with naming perfor-
mance, they have a few shortcomings. In the tumour
resection study, not only the left UF but also a part of
the surrounding cortical regions was resected [2]. In
the previous DTI study, the patients had temporal lobe
epilepsy [3], which is likely to cause atypical language

- — - lateralization [4]. In addition, the DTI study did not as-

*Corresponding author: Hiroaki Kazui, M.D., Ph.D., Department . .
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The uncinate fasciculus (UF) is a white matter tract
that connects the inferior frontal lobe with the anterior
inferior temporal lobe [1]. A tumour resection study
revealed that the left UF is essential for naming com-
mon objects [2]. Also, adiffusion tensor imaging (DTI)
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