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considered to be fairly small if the vascular geometry is correctly
modeled.'®?® Therefore, we believe that our CED simulation
using padent-derived high-resolution geometries and pulsatile
inlet flow rates can reproduce the flow fields and spatial
distribution of RRT. However, careful consideration should be
taken in quantitative assessment of our CFD results, especially
for the possibility of overestimation of WSS owing to
numerical simulation under the newtonian fluid and rigid
wall conditions.

CONCLUSION

The area with prolonged RRT colocalized with atherosclerotic
lesions on the aneurysm wall. Intra-aneurysmal vortex and flow
expansion at the bleb were recognized as local flow patterns
responsible for the prolongation of RRT. Male sex and prolonged
RRT were independent risk factors for atherosclerotic lesions of
the intracranial aneurysms.
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Physiological Evaluation of Visually Induced Motion Sickness Using Independent
Component Analysis of Photoplethysmogram

%

Makoto ABg,™ ¥ Makoto Yosuizawa,”™ Norihiro Sucita,” Akira Tanaka,™
Noriyasu Homma,”™ Tomoyuki Yamse,! Shin-ichi Nirrat

Abstract For continuous evaluation of the effects of visually induced motion sickness (VIMS), we
previously proposed a physiological index oma that represents the maximum cross-correlation coefficient
between blood pressure (BP) and heart rate, the frequency components of which are limited to the Mayer wave-
related band. However, pmax requires continuous BP measurement using a bulky measuring device that is difficult
to handle. Thus, we previously proposed an easier method for obtaining pmsx without continuous measurement of
BP, which uses only a finger photoplethysmogram (PPG). In this method, independent component analysis
(ICA) is used to extract BP-related signals from the PPG signals. However, continuous BP measurement is
needed to determine the mixing matrix used in ICA. In order to achieve practical application of the method, this
study aim to verify whether each subject’'s mixing matrix can be estimated based on short-term continuous BP
measurement. Being able to do so would mean that 0w« can be obtained from an estimated mixing matrix without
continuously measuring BP during an experiment that presents a visual image to a subject. The validity of the
proposed method was assessed by experiments performed on 28 subjects watching a swaying video image. From
the ex-perimental results, we verified that the proposed method is able to extract independent components
related to BP to yield pmax between heart rate and each independent component used to evaluate the effects of
VIMS. This result suggests that the effects of VIMS can be evaluated using short-term continuous BP

measurement before the evaluation task.

Keywords : visually induced motion sickness, photoplethysmography, independent component analysis.

Adv Biomed Eng. 2:pp. 25-31, 2013.

1. Introduction

Nowadays, many people are frequently exposed to various
artificial visual images from diverse sources such as video
games, movies, web content, and smartphones. Some of
these images can cause undesirable effects. One such
effect is visually induced motion sickness (VIMS), which
causes symptoms related to the autonomic nervous
system, such as nausea, vomiting, and dizziness.
Previous studies commonly evaluated VIMS subjec-
tively using questionnaires[1, 2]. However, these methods
do not allow estimation of the effects of VIMS as time
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series data.

To evaluate VIMS objectively and continuously, some
researchers have used methods based on cognitive
science [3] and motion components of video images [4].
Other researchers have used methods based on physio-
logical parameters such as the heart rate (HR), breathing
rate, blood pressure (BP), electrogastrography, and
postural stability [5-9]. However, these methods have
problems of individual differences and low reproducibil-
ity.

To continuously evaluate the effects of VIMS, we
previously proposed a physiological index pw.x represent-
ing the maximum cross-correlation coefficient between
the BP variability and the heart rate variability, the
frequency components of which are limited to the Mayer
wave-related band [10, 11]. However, pmax requires con-
tinuous BP measurement with an expensive and bulky
measuring device. Therefore, only a single subject’s data
can be obtained from one experiment, and it is difficult to
perform an experiment under identical conditions for all
subjects.

We have already proposed an easier method for
obtaining pw.x using independent component analysis
(ICA) to extract BP-related parameters from finger
photoplethysmogram (PPG) signals [12-14]. However,
BP has to be measured continuously throughout the
experiment to determine the mixing matrix used in ICA
[12, 13]. Furthermore, the estimated BP-related informa-
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tion correlates with BP only under resting conditions[14].

In order to further develop this method for practical
application, this study aimed to verify whether each
subject’s mixing matrix can be estimated based on short-
term continuous BP measurement. The novelty and main
advantage of the method is that pwax can be obtained from
an estimated mixing matrix without continuously measur-
ing BP during an experiment in which the visual image to
be evaluated is presented to the subject. This method
would allow collection of long-term and multiple data
points at the same time ; for example, when many persons
are watching the same movie under the same conditions,
because PPG can be measured more easily and economi-
cally than BP.

In this paper, we discuss the validity of the proposed
method based on experiments performed on 28 subjects
watching a swaying video image.

2. Method

2.1 Maximum cross-correlation coefficient

Let 2(i) and v (%) (=0, 1, 2, *-*) denote time series data;
ie, BP variability and heart rate variability (HRV),
respectively, sampled for a sampling period of 4t=0.5 s.
They are filtered through a band-pass digital filter with a
bandwidth between 0.08 and 0.12Hz to limit the
frequency components to the Mayer wave-related band.
At a certain point in time t=i-4f s, a Hamming window
with an interval between {—60 s and +60 s is applied to
#(3) and v(7). A cross-correlation coefficient ow(r) for a
lag of r=j-4ts,j=--, —1,0, 1, ---, is calculated as follows:

@uv(f)

6014;;(0) ) ?7111)(0) ( 1 )
where ¢ (1) is a cross-correlation function between #(7)
and 2({). and @w(r) and ¢.(r) are autocorrelation
functions of #(i) and »(i), respectively. The maximum
cross-correlation coefficient pmax and its delay 7wax are
defined as ‘

puv(f) =

Pmax = Max Pul7) (2)
08575108
Z-max =31‘g max puv(T) ( 3 )

0s575108
In the present study, omax Was successively calculated
every 1 s between =60 s (i.e., start time of calculation of
Omax) and 1=T—60 s (i.e., end time of calculation of omax),
where T s is the end time of the data obtained from an
experiment.

2.2 Independent component analysis (ICA)
ICA is used in our method as follows:

1) Let x(k), x(k), -, xn(k) be m variables
extracted from the PPG signal at the A-th beat.
Define feature vector x (k) as x (k) = [ (k), . (k),
St Xm (k)]T.

2) Let si(k), s2(k), -+, s.(k) be # unknown physio-
logical parameters that are independent of one
another at the 4-th beat. Define parameter vector
s(k) as s(k)=1[s1(k), s2(k), ==, s2 (k)]

3) Assume that feature vector x (k) is given by a
linear combination of si(k), sa(k), -, s.(k) as

follows:

x{k)=As (k) (4)
where m Xn matrix A represents an unknown
constant mixing matrix consisting of coefficients
of the linear combination. Let K be the number of
beats observed in an experiment. Define m XX
matrix X and # XK matrix § as X=[x(1), x(2),
- x(K)Jand S=[s(1), s(2), -, s(K)], respec-
tively. Thus, matrix X is assumed to be given by 8
as follows:

X=AS (5)

4) ICA is applied to estimate mixing matrix 4 from

matrix X. Independent component § can be
obtained by

S=A"X (6)
where A" is the pseudoinverse matrix of A.

In this study, we used the first fixed point algorithm
(fast-ICA) presented by Hyvirinen and Oja to linearly
separate S from X [15, 16]. In addition, the number of
feature variables m was set to 7.

2.3 Photoplethysmogram (PPG)

A PPG is obtained optically from the volumetric
measurement of a blood vessel at the fingers or ears. In
general, a PPG sensor consists of a near-infrared LED and
photodiode for detecting reflection at the surface of the
fingers or ears. The PPG signals can be measured non-
invasively, easily, and inexpensively.

Figure 1 shows an example of the PPG signal. This
figure shows seven feature variables used in the present
study. These are defined for every beat as follows:

1) FFI:foot-to-foot interval of the PPG

2) 44 interval from the time of maximum value of the

PPG to time of minimum value of the PPG

3)  fmax stope: time of maximum slope of the PPG

4) PWhiss: minimum value of the PPG

5) PWumax: maximum value of the PPG

6) DP W value of the PPG at fuaxsiope

7) NPWA: area of the PPG normalized by FFI

These parameters may include information on the
hemodynamic state, such as BP and vascular compliance.
For example, parameter NPWA shows the mean value of
the pulsatile component of the arterial blood volume and
is a candidate to substitute BP [17]. FFI is used to
calculate HR.

FFI

1.8 v T T Y T T T T

:
: % i NPWA =PWA / FFI |1

pulse wave

time [s}

Fig.1 Definition of feature variables xi (k), x2(k), -, xn (k)
(sm=17) and the normalized pulse wave area (NPWA).
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24 Experiment

In this study, 28 healthy subjects (20 males and & females,
23.2+3.8 years) participated in an experiment in which
they were shown a swaying video image projected by a
LCD projector, as presented in Fig.2. The video was
filmed by a handheld camera swaying continuously for
about 17 min. Thus, the subjects were at an increased risk
of VIMS. Before and after watching the video, the subjects
watched a still picture of a landscape for 5 min as control.
The subject’s ECG, continuous BP, and finger PPG were
recorded during the experiment. After the second rest,
the simulator sickness questionnaire (SSQ) [1]was given
to the subject. The total score (7TS) of the SSQ was
calculated to obtain the subjectively evaluated intensity
of VIMS.

The experimental protocol was approved by the
Internal Review Board of Tohoku University, and
informed consent was obtained from all subjects before
the experiment.

2.5 Analyses

Based on the observed matrix X obtained from the
experimental data, the mixing matrix A, its pseudoinverse
A%, and the independent component matrix § were
calculated by ICA for each subject. Let »# independent
component time series IC;;1=1, 2, -, n as ICi= {s:(1),
s1(2), -, si(K)| with data size K be defined as corres-
ponding to the length of the experiment.

Let time series omax (BP) and omw (JC1) denote omax
between HR obtained from the ECG signal and BP, and
Omax between HR obtained from the PPG signal and
independent component IC, respectively.

Let /3 denotes the optimal number of / that mini-
mizes the mean square error between gmu (BP) and Omas
(ICz) as follows:

ny

+A \/E[ Z'max (BP)~ Tmax (ICJ>} ]) ( 7)

where A denotes the weighting factor of the term
related to 7max and was determined to be 0.1. This is
because Pmax changes from 0 to 1, while Tmax goes from 0 to

90 cm

evice for measuring
and recording

Fig.2 Experimental setup.

10. The optimal number #q: of independent components is
defined to be from 2 to 6. As previously mentioned, we
assume that one of the n-th independent components
calculated from seven feature vectors corresponds to
information of BP variability. Thus, 7. and Iz are defined
as follows:

Mow=arg min (pr) (8)
BP= Z?’m ( 9 )

IC.;, denotes the independent component time series
closest to BP variability BP, as defined in Eq. (7)), based
on the data of the first rest phase in the experiment. Let
Owax (ICip) denotes pmax between HR and ICi,. The
number of independent components 7 was empirically set
to 4.

In our previous study [12], A*and IC,,, were calcu-
lated from all the experimental data. In the present study,
Atand ICy,, were calculated from data of the first rest
phase only, for a duration of 5 min. Thereafter, the same
A" and IC,, obtained above were applied to all data
measured in the experiment. Thus, we only had to
measure BP once before the subjects watched the video
image. Figure 3 shows an example of the analysis. Figure
3 (a ) shows the time-series data of seven feature vari-
ables; (b) shows the time-series data of independent
components ICi; I1=1, 2, -, 4 when #e is 4; (¢) shows
Pmax (IC1) calculated from four independent components;
and (d)shows om (BP) and pwax (ICy,,) obtained from /gp,
which is calculated from Egs. (7)-(9). The process for
the proposed method is based on this figure.

3. Results

The experimental data of 28 subjects were obtained
successfully. Figures 4(a) and (b) compare omx(BP)
and pmax (JCr) during the first rest phase. Each pma was
the value averaged every 30 s for a single subject, and the
average Pma values of all subjects (168 points) were
plotted in these figures. The result of Fig. 4 shows that
Omax (JCh) correlates significantly with ome (BP) for the
28 subjects in the first rest phase of the experiment. This
result is consistent with the result of our previous study
[14].

Figure 5 shows the resultg of subjective evaluation
based on the SSQ. In general, VIMS causes symptoms
such as simulator sickness. Thus, the threshold TS that
determines whether a subject suffers from VIMS was
estimated to be 12.6, which was the median value. All
subjects were divided into two groups: sick and well. The
sick group consisted of 14 subjects with 7'S higher than
12.6, and the well group consisted of 14 subjects with 7S
lower than 12.6

Figares 6 and 7 show the changes in pms (BP) and
Owax (IC 1), respectively, over time. In these figures, Oumax of
the sick and well groups were compared. The shaded
areas shown in these figures represent the duration in
which a significant difference between the two groups
was found by Welch’s t-test.

As shown in Figs. 6 and 7, omax (BP) and ome (JC 13,,) of
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Fig.5 Subjective evaluation based on total score (7S) of

induced by watching the swaying video image. The
significant differences between the oms (BP) values of the
sick and well groups, as shown in Fig. 6, imply that the
effects of VIMS were especially strong at around 18 min.
Similarly, oma(ICip) of the sick group was significantly
lower than that of the well group at around 18 min. This
result indicates that Ouwas(JCy) calculated using the
mixing matrix obtained from the first rest phase is

§ 1 2 3 4 1 2 3 4
H °WWV“WWMW time {min] time {min)
-~ ‘50 1 2 3 4 5
o ¢ (b) indepedent components () Pmax calculated from
& o ' i W 'W,ﬁ"w independent component
1 2 3 4
time [min}
(a) feature variables
Fig.8 An example of ICA for a subject during the experiment.
" 7
@) 4,
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= s Y
% ‘/’ (o]
< 0.4 % 3
o X [
. 2
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(b) QWW(BP)
0.6
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o
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Fig.4 (a) Correlation plot between pwex (BP) and pwix (ICiy)

during the first rest phase. »=0.69 (p < 0.01). (b)
Bland-Altman plot between omex (BP) and omex(JCiyp)
during the first rest phase.

the sick group were significantly lower than those of the
well group. This result suggests that the decrease in
Omax(BP) or Pwmax(ICi;) reflects the effects of VIMS

suitable for estimating the effects of VIMS. However, the
time showing significant differences between two groups
in Fig. 7 does not correspond precisely to that in Fig. 6.
The reason for this result should be studied in detail.

Figure 8 shows pmax(ICi;,) obtained from A™ and
ICy,, calculated from all the experimental data by the
previous method[12].

A comparison between Pma(ICi,) obtained by the
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Fig. 6 Comparison of pmax derived from BP between sick and
well groups.
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Fig.7 Comparison of pux derived from IC,, between sick
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Fig. 8 Comparison of omux derived from ICi, between sick
and well groups by the previous method[12].

proposed method in this study and that obtained by the
previous method showed that both displayed similar
tendencies; that is, Omux(ICy,) of the sick group was
significantly lower than that of the well group at around
18 min. Therefore, the proposed method is superior to the
previous method[12]because only short-term continuous
BP measurement is required. However, the time showing
significant differences in pPmax(BP) was closer {0 Pmas

(IC1s») obtained by the previous method than to Omax
(ICy,) obtained by the proposed method. This fact
indicates that owss obtained by the proposed method has
scope for improvement.

4. Discussion

The result from Fig. 4 (a) shows that pmax(ICs,) corre-
lates significantly with pma (BP) in the rest phase. This
result is consistent with the result of our previous study
[14]. Thus, reliable feature parameters such as A* and
ICi,, were obtained from the 5-min experiment. This
finding indicates that once the personal feature para-
meters are obtained during the first rest phase, there is no
need to measure BP continuously during the experiment
in which the visual image to be evaluated is presented to
the subject. Therefore, many subjects can watch the same
movie under the same condition using the proposed
method.

In addition, A and JCy, calculated from short-term
continuous BP measurement in the first rest phase have
versatility to the other phases in Fig. 7. This result shows
that the proposed method has wider applicability than the
previous methods[13, 14].

Although the proposed method has great potential, it
has several problems that need to be addressed.

In this study, since the subjects watched the swaying
video image immediately after the first rest phase, the
change in Pm.(ICr,y) was similar to the change in Oma
(BP). On the other hand, if a subject’s hemodynamics
change drastically compared with the first rest phase, A*
and JC.,, may be changed. Therefore, we have to examine
the reproducibility and individual differences of the
proposed method.

Furthermore, since the time showing significant
differences between two groups in Fig.7 does not
correspond precisely to that in Fig.6, IC,, does not
conform exactly to BP variability. In this regard, we
should elucidate the physiological mechanisms of inde-
pendent components such as JCy,.

In addition, we determined the number of feature
variables by trial and error in the present study. We
should now try to develop a method for choosing the
appropriate number of feature variables.

5. Conclusion

To quantify the effect of VIMS, we proposed a new
method for extracting BP-related parameter from finger
photoplethysmogram using independent component
analysis based on short-term continuous measurement of
BP before the evaluation task. Experimental results
demonstrated that the proposed method is able to extract
the independent component related to BP and yield the
maximum cross-correlation coefficient omax between heart
rate and the independent component used to evaluate the
effects of VIMS.

In the future, we should develop a method for
determining the mixing matrix with the photoplethysmo-
gram using other mathematical theories or calculation
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algorithms for independent component analysis. In
addition; elucidating the physiological mechanisms of
independent components other than the BP-related
component is important.
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INVERSE PROBLEMS IN CARDIOVASCULAR MATHEMATICS

Reproduction of pressure field in
ultrasonic-measurement-integrated simulation of blood flow

Kenichi Funamoto®>' and Toshiyuki Hayase

Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

SUMMARY

Ultrasonic-measurement-integrated (UMI) simulation of blood flow is used to analyze the velocity and
pressure fields by applying feedback signals of artificial body forces based on differences of Doppler
velocities between ultrasonic measurement and numerical simulation. Previous studies have revealed that
UMI simulation accurately reproduces the velocity field of a target blood flow, but that the reproducibility
of the pressure field is not necessarily satisfactory. In the present study, the reproduction of the pressure
field by UMI simulation was investigated. The effect of feedback on the pressure field was first examined
by theoretical analysis, and a pressure compensation method was devised. When the divergence of the
feedback force vector was not zero, it influenced the pressure field in the UMI simulation while improving
the computational accuracy of the velocity field. Hence, the correct pressure was estimated by adding
pressure compensation to remove the deteriorating effect of the feedback. A numerical experiment was
conducted dealing with the reproduction of a synthetic three-dimensional steady flow in a thoracic aneurysm
to validate results of the theoretical analysis and the proposed pressure compensation method. The ability
of the UMI simulation to reproduce the pressure field deteriorated with a large feedback gain. However,
by properly compensating the effects of the feedback signals on the pressure, the error in the pressure field
was reduced, exhibiting improvement of the computational accuracy. It is thus concluded that the UMI
simulation with pressure compensation allows for the reproduction of both velocity and pressure fields of
blood flow. Copyright © 2012 John Wiley & Sous, Ltd.
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KEY WORDS: bio-fluid mechanics; computational fluid dynamics; ultrasonic measurement; color Doppler
imaging; measurement-integrated simulation

1. INTRODUCTION

Circulatory diseases such as heart disease and cerebrovascular disease are major causes of death.
In vivo and in vitro experiments and numerical simulations of blood flow have been extensively
carried out, indicating the relationships between diseases and hemodynamics [1, 2]. Blood flow
information acquired by medical imaging techniques, such as ultrasonic measurement, magnetic
resonance imaging (MRI) and computed tomography (CT), or directly measured by a catheter,
sphygmomanometer or electrocardiogram is limited. On the other hand, blood flow simulation pro-
vides detailed information on three-dimensional unsteady hemodynamics including wall shear stress
and pressure distributions. However, as it is inherently difficult to correctly specify the boundary
and initial conditions, the computational results may differ from the real blood flow field data [3,4].
Several methods have been proposed for flow simulation using defective boundary conditions, in
which only flow rates are known [5, 6]. However, their efficiency for blood flow in a complicated
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980-8577, Japan.
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vessel configuration remains to be investigated. Other factors, such as assumption of a rigid vessel
wall, and uncertainties in vessel geometry, physical properties, and the model of the blood rheology,
can also introduce errors into the computation. Consequently, at present, the diagnosis of circulatory
diseases depends on empirical knowledge with limited measurement data. An innovative technique
for accurate and detailed reproduction of blood flow field in a blood vessel is needed to realize more
accurate and reliable diagnoses.

Various methodologies have been developed to computationally reproduce a flow field by
integrating measurement and computation to overcome individual disadvantages. These methods
include a method using proper orthogonal decomposition [7,8], data assimilation based on Tichonov
regularization [9], lcast-squares finite clement methods [10, 11], the Kalman filter [12], varia-
tional methods [13, 14], and measurement-integrated (MI) simulation [15-18]. Data assimilation
based on four-dimensional variation is widely used, especially in numerical weather forecasting
[14]. However, it requires huge computational resources to repeatedly solve flow dynamics and its
adjoint, and therefore, is not suitable for application to problems of real-time flow reproduction.
In contrast, the Kalman filter and MI simulation are rather simple methods sequentially comparing
the computational result with the corresponding measurement data and directly feeding back the
differences to the numerical simulation. Compared with the Kalman filter, which usually employs
a low-dimensional linear model, the M1 simulation, which uses computational fluid dynamics as a
mathematical model, can provide a solution with high accuracy once a convergent result is obtained
although there is no systematic design method of the feedback signal. The authors have applied
MI simulation to blood flow analysis by integrating medical measurement (ultrasonic measurement
or phase-contrast MRI) and numerical simulation [19,20]. With ultrasonic-measurement-integrated
(UMI) simulation, the blood flow field is analyzed by applying artificial body forces proportional to
the differences between the measured and computed Doppler velocities of the blood flow. Figure 1
shows a block diagram of the UMI simulation. Note that a ‘Pressure compensation” block is newly
added in this paper as explained in the following section. In our previous studies, a two-dimensional
UMI simulation using real ultrasound color Doppler images was conducted [19]. The transient and
steady characteristics of UMI simulation and the efficiency of feedback to reproduce unsteady three-
dimensional hemodynamics were investigated by numerical experiments [21-23]. Those studies
revealed that the UMI simulation improved computational accuracy in comparison with the ordinary
simulation, making the computational velocity vector field approach that of a model solution of
real blood flow. However, the reproducibility of the pressure field was not necessarily satisfactory
[21,24].

In this study, reproduction of the pressure field by UMI simulation was investigated. In the
second section of this paper, the effect of feedback based on Doppler velocity on the pressure field
is first examined by theoretical analysis, and a pressure compensation method is derived. In the
third section, results of the theoretical analysis and the proposed pressure compensation method are
validated by a numerical experiment dealing with a synthetic three-dimensional steady flow in a
thoracic aneurysm.

Blood flow field Reproduced flow field
4

Pressure compensation
1

Ultrasound Doppler :’?’ Foodback v =yl Numerical
&

measurement simulation
J

Figure 1. Block diagram of the UMI simulation.
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2. THEORETICAL ANALYSIS

The effect of the feedback signal on the pressure field in the UMI simulation is clarified by
theoretical analysis, and a pressure compensation method is developed.

2.1. Effect of feedback signals on the pressure field

The governing equations of the UMI simulation of blood flow in a blood vessel are the Navier—
Stokes equations and the equation of continuity.

p(%?%—(wV)u):uAu——Vp-{—f, ¢))

V-u=0, @

where u = (u, v, w) is the velocity vector, p is the pressure, p is the density, u is the viscosity,
t is the time, and f = (fx, f), fz) is the external force term corresponding to the feedback signal.
By substituting Equation (2) into the divergence of Equation (1), the pressure equation is derived
as follows:

Ap==V-pu-V)u+V-f 3)

Equations (1) and (3) are employed as the governing equations in the following analysis.

Regarding the boundary conditions, correct velocity profiles are assumed to be unknown, and a
uniform or parabolic parallel profile with a known flow volume and free flow condition are specified
at the upstreamn and downstream boundaries, respectively. The initial flow condition is an arbitrary
flow field. :

The feedback signal, f, in Equation (1) is an artificial body force, which is proportional to the
difference between the computed and measured Doppler velocities in the feedback domain defined
in the computational domain:

f=—K*

®;u—u) (pUZ)’ @

U L

where K is the feedback gain (nondimensional), U is the characteristic velocity, L is the
characteristic length, and ug is the velocity vector of the real blood flow. @4 (d = 1, 2, 3)
is a projection function of a three-dimensional vector to the -dimensional subspace [21]. The
projection of the three-dimensional velocity vector in the direction of the ultrasonic beam in the
UMI simulation corresponds to the case of d = 1, and @ (u) and & (u;) correspond to computed
and measured Doppler velocities, respectively. Here, measurement errors, such as noise, contained
in ultrasonic Doppler measurement are ignored for simplicity. Note that, in our previous study [23],
the effects of major measurement errors on the computational accuracy of the UMI simulation were
investigated, and methods to compensate those effects were proposed. The special case with K} =0
cotresponds to the ordinary numerical simulation without feedback.

Previous studies [21-23] have revealed that with a proper application of feedback, the
computational velocity field approaches the real velocity field of the blood flow. Generally, because
a velocity field has a unique pressure ficld, it was expected that the computational pressure field
would concurrently approach the real pressure field. However, the reproducibility of pressure field
was not necessarily satisfactory.

The pressure field by the UMI simulation is discussed in the following. The velocity field, u,
and the pressure field, ps, of a real blood flow satisfy governing Equations (1) and (3) without the
external force term, £, with the upstream and downstream boundary conditions of the correct velocity
profiles and with the initial condition of the correct velocity vector field at the first time step:

du, ,
p (7.9—5— +(u;- V) “s) = pAu,—Vp;, Q)
Aps =-V. p(ug - V) u;. ©)
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In the UMI simulation, incorrect specification of boundary conditions introduces error to the
computational result as compared with the real blood flow, but the feedback based on Doppler
velocity works to reduce the error in the velocity vector field in the feedback domain. Therefore, in
the equation derived from the subtraction of Equation (6) from Equation (3), the velocity vector, u,
is approximately equal to the real velocity vector, u,, and the following equation is approximately
satisfied in the feedback domain:

Ap=Ap;+ V-1 @

This equation implies that the pressure field, p, of the UMI simulation becomes different from
the real pressure field, pg, because of the effect of feedback in the case that the divergence of the
feedback force vector is not zero.

2.2. Pressure compensation method

A pressure compensation method for the UMI simulation is introduced. The pressure compensation
is applied after the convergent results of velocity and pressure are obtained (see Figure 1). The
correct pressure field, ps, is expressed as the summation of the computational result, p, and the
compensation term, p. ‘

ps=p+ pr 8

With Equation (7) and Equation (8) operated by Laplacian operator, the following equation is
obtained.

The pressure compensation, py, is calculated from Equation (9) by setting zero value at the
boundaries of the computation domain. In the case that the blood flow is considered to be
parallel flow such as the one in a straight blood vessel, pressure is constant over the cross-section
perpendicular to the flow. In addition, if the flow rate in the UMI simulation is identical to that of
the real flow, the pressure differences between upstream and downstream boundaries are the same
between the cases. Consequently, the boundary conditions of the pressure equations for p and p;
can be considered to be the same. Because pr = p, — p from Equation (8), the value of p¢ should
be zero at the upstream and downstream boundaries. By substituting the pressure compensation, pr,
into Equation (8), an estimated value, pj, of the correct pressure is obtained. )
The proposed pressure compensation method is equivalent to a modification of the UMI
simulation retaining only the divergence-free part of the feedback signal, f4,. The feedback signal,
f, can be decomposed to an irrotational part, fi, and a divergence-free part, based on Helmholtz
decomposition [25]. Pressure compensation, pr, obtained from Equation (9) determines the irrota-
tional part of the feedback signal as fi,, = —V py, which does not contribute to improvement of the
computational accuracy of the velocity field, but deteriorates that of the pressure field.

2.3. Discretization

Qutlines of discretization of the governing equations of the UMI simulation, including the pressure
compensation equation, are described in this section. The above-mentioned governing equations are
discretized by means of the finite volume method and are solved with the SIMPLER method [26].
The concrete notations of the parameters in the following equations, and supplementary pressure
correction equations and velocity correction procedure in the SIMPLER method, are explained
in [26].

The x-directional momentum equation in Navier—Stokes equations of Equation (1):

Bpu;i ji = Z Bupunp + Siji + Ai(Pim1jk — Pigjd) + AVijk fai i (10)

where Bs are the elements of the matrix consisting of all of the diffusive terms and a part of the
convective terms in the discretized Navier—Stokes equation, and (3, B,puyp) is the summation of
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730 K. FUNAMOTO AND T. HAYASE

the values at six adjacent nodes in the three-dimensional computation. The second term, S; j ¢, on
the right side is the source term, which consists of a part of the convective terms and a part of the
time-derivative term. The third term is the pressure gradient term in which A; is the cross-sectional
area of the control volume, and the last term is the feedback term in which AV ; ;. is the volume of
the cell. Subscript p denotes the position where u(i, j, k) is defined, and nb means adjacent nodes.
Equations for y-directional and z-directional momentums are analogous to that in Equation (10).

The pressure equation of Equation (3):

CPpi,j,k = Z Cub Pnb + Spi‘j‘;; + Sf,'»jyk’ (1t

where Cs are the elements of the matrix derived from discretization of the pressure equation, S,; ; x
is the source term derived from discretization of the first term on the right side of Equation (3),
and Sy; ;x is the source term because of the feedback. Subscript P denotes the position where
p(i, j, k) is defined. The source term because of the feedback, Sy; ; x, is denoted in the following
equation:

P ) .
St = ?[(fxi,j.k = frivrji)Ai + (fyijk— fyigerr) Aj + Uzije = feigk+ 1) Az,
p
12)
where A;, A;, and Ay are the cross-sectional areas of the control volume facing each direction.

Pressure compensation for feedback of Equation (9):
Equation (9) is also expressed in a way similar to the pressure equation

Copfijn = Z Cob Pty = Sfiixo (13)

where coefficients Cp and Cy 5, and the source term S z; ; ;. are identical with those in Equations (11)
and (12).

3. VALIDATION WITH NUMERICAL EXPERIMENT

Results of the theoretical analysis and the proposed pressure compensation method are validated
by a numerical experiment dealing with a synthetic three-dimensional steady flow in a thoracic
aneurysm. Ultrasonic measurement provides the Doppler velocity necessary for the feedback in
UMI simulation, but it does not provide other information necessary for evaluating the UMI
simulation such as three-dimensional velocity vectors or pressure field. Hence, we do not use real
measurement data for the reference data. Instead, we use a numerical solution for a synthetic steady
flow with realistic upstream and downstream velocity boundary conditions called ‘standard solution’
as a model of real blood flow to perform the numerical experiment. The boundary conditions of the
standard solution are determined from a preliminary simulation of blood flow in a whole aorta
including an aneurysm. Reproduction of the standard solution by the UMI simulations with/without
the pressure compensation and the ordinary numerical simulation without feedback are investigated.
The numerical simulations conducted in this section are summarized in Table I.

Table I. Classification of preliminary simulation (PS), standard solution (SS), UMI simulation (UMIS),
and ordinary simulation (OS).

Name Solver Domain Grid Boundary velocity Feedback Note
PS FLUENT Whole aorta  Hexahedral Uniform inlet N/A Boundary velocity for
Figure 2(a) 142,417 Free stream outlet SS was obtained.

SS Original Aneurysm Orthogonal Specified velocity N/A Maodel of real flow
(SIMPLER) Figure 2(b) = 40x34x49 inlet & outlet

UMIS  Original Aneurysm Orthogonal Uniform inlet Applied  Measurement data was
(SIMPLER) Figure 2(b) 40x34x49 Free stream outlet was generated by SS.

(0] Original Aneurysm  Orthogonal Uniform inlet N/A

(SIMPLER) Figure 2(b) 40x34x49 Free stream outlet

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2013; 29:726-740
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3.1. Methods

A numerical experiment was conducted to investigate the computational accuracy of the pressure
field by the UMI simulation and to examine the efficiency of the proposed pressure compensa-
tion method. The objective was a steady flow in a thoracic aneurysm, which was the same as in a
previous study [22]. A steady numerical solution with realistic boundary conditions was first defined
as the standard solution. The boundary conditions of the standard solution were determined from
a preliminary simulation of blood flow in a whole aorta including the aneurysm. Although genera-
tion of synthetic measurement data for validation of new algorithms has been investigated [27,28],
the computational three-dimensional velocity vectors were simply projected in the direction of the
ultrasonic beam without consideration of measurement errors to obtain the Doppler velocity of the
standard solution. Then, with inaccurate boundary conditions but with the correct flow volume,
UMI simulation and an ordinary simulation without feedback were performed. In the UMI simula-
tion, Doppler velocities of the standard solution were used for feedback. After the convergent results
of velocity and pressure were obtained, the pressure compensation was applied to the pressure field
(see Figure 1).

A preliminary simulation for a whole aorta was first performed. The configuration of the
whole aorta from the ascending aorta to the abdominal aorta, including an aneurysm in the
descending aorta, was reconstructed, as shown in Figure 2(a), by accumulating X-ray CT images
(Aquilion 16, Toshiba, Tokyo, Japan) of a 76-year-old female patient with commercial three-
dimensional reconstruction software (Mimics 7.3, Materialise, Leuven, Belgium) [22]. A prelimi-
nary simulation of a steady blood flow in the whole aorta (Figure 2(a)) was carried out by using
commercial computational fluid dynamics software (FLUENT 6.1.22, Fluent, Inc., Lebanon, NH).
The computational grid used in the preliminary FLUENT simulation consisted of 142,417
hexahedral elements. Pressure—velocity coupling was accomplished by the SIMPLE method, and
spatial discretization schemes were employed as follows: a Green-Gauss cell-based scheme for
gradient; a standard scheme for pressure; and a first-order upwind for momentum. Uniform velocity
was applied at the inlet boundary so that the average flow rate became 8.65 x 107> m3/s, and a

(b)

Figure 2. Computational grids for (a) a preliminary simulation of a steady flow in the whole aorta with an
aneurysm in the descending aorta by using FL.UENT, and for (b) the other simulations of the flow in the
partial domain including the aneurysm with a feedback domain (dark gray zone) and a probe position at O.

Copyright © 2012 John Wiley & Sons, Lid. Int. J. Numer. Meth. Biomed. Engng. 2013; 29:726-740
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free-flow condition was applied at the downstream boundary. A no-slip condition was set on the
wall. The convergence criterion in the numerical simulation was set at 1 x 10™* for momentum and
continuity equations.

In the following computations for the standard solution, the UMI simulation, and the ordinary
simulation, the computational domain was limited to the vicinity of the thoracic aneurysm, as
shown in Figure 2(b). A computational grid system was generated by introducing a staggered grid
system of 40 x 34 x 49 grid points in x, y, and z directions, compromising reproducibility of vessel
configuration and computational load. The grid interval dz in the z direction was set at 2.00 x 1073
m, which was the same as the slice interval of the X-ray CT, and those in the other directions were
determined to be dx = dy = 1.78 x 1073 m. The equivalent diameter of the blood vessel, D, at the
upstream boundary calculated by averaging x-directional and y-directional maximum lengths of the
cross-section of the blood vessel at the upstream boundary was 23.47 x 103 m. Flow rate was set at
8.65x 10™> m>/s (same as the preliminary simulation), and the average flow velocity at the upstream
boundary, U, was 2.00 x 10~ m/s. The density, p, and viscosity, y, of the blood were assumed to
be 1.00 x 10 kg/m3and 4.00 x 10™3 Pa- s, respectively. All the variables were nondimensionalized
with the equivalent diameter of the blood vessel, D, as the characteristic length, L, the average flow
velocity as the characteristic velocity, U, and the density of blood, p, as the characteristic density.
The Reynolds number of the steady flow was 1174. From here on, the same symbols are used for
both dimensional and nondimensional values because it does not cause any confusion.

In the computation of the standard solution, velocity profiles at the upstream and downstream
boundaries were determined as those on the corresponding cross-sections of the preliminary
simulation. In the UMI simulation and the ordinary simulation, a uniform parallel flow was applied
at the upstream boundary, and the free flow condition was set at the downstream boundary.

Because the computational result converges to the target flow with the aid of the feedback process,
unsteady flow computation is required for the UMI simulation even for the present steady target flow.
Time-dependent computation was performed for all cases. The computational time increment was
setas Az = 0.01(1.17 x 1073 5) [22].

In UMI simulation, considering the acquisition of Doppler velocities in the three-dimensional
domain by transesophageal ultrasonography, the ultrasound probe or the origin of ultrasonic beam
was set at O[(x, y, z) = (0.008,0.023,2.045)((0.000 m, 0.001 m, 0.048 m))], which was located at
the same height as the aneurysm, as shown in Figure 2(b). The Doppler beam direction was along
a line from the origin of ultrasonic beam to each computational gird point. Blood flow in the whole
aneurysmal domain M[1.193 < z < 2.897(0.028 m < z < 0.068 m), shown by a dark gray zone
in Figure 2(b)], including the parent blood vessel, was assumed to be measured. Domain M was
defined as the feedback domain, and at all the grid points in the fluid region of domain M, feedback
signals were added to the UMI simulation based on the differences of Doppler velocities between
the simulation and the standard solution.

In the computation of the standard solution, the UMI simulation and the ordinary simulation,
the governing equations were discretized by the finite volume method and were solved with an
original program based on the SIMPLER method [26, 29] as described in the previous section.
The convective terms were discretized with the reformulated QUICK scheme [30], and the time
derivative terms were discretized with the first Euler implicit scheme. Linear algebraic equations
were solved using the modified strongly implicit (MSI) scheme [31]. The convergence criterion in
the numerical simulation was set at 1 x 10™* for momentum and continuity equations.

To evaluate the computational accuracy of the UMI simulation and the ordinary simulation, a
space-averaged error norm of a variable, ¢ (velocity vector, u, or pressure, p), in a monitoring
domain £2 was defined by the following equation:

ég(d,i) z/—:i Z

XneQ

Uen (Z) — Uy (l)
Gret

, 14

where n and N are the identification number and the total number of the monitoring points,
respectively, | - | is the absolute value for scalar variables or the I norm, |u| + |v| + |w], for velocity
vector u, and . is the characteristic value for normalization: a..s = U for velocity or gy = pU 2
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for pressure. Subscripts, ¢ and s, means UMI simulation or ordinary simulation and the standard
solution, respectively.

3.2. Results and discussion

The results of the UMI simulation with/without pressure compensation were evaluated by error
norms of the velocity vector and pressure in feedback domain M (or the aneurysmal domain),
émlu, 1) and éy(p, t), and compared with those of the ordinary numerical simulation. The
variations of em(u, t) and ém(p, t) of the UMI simulations at K = 0, 80 and 160 are shown
in Figure 3. The UMI simulations diverge at K7 = 170 in the case of At = 0.01 as revealed in
our previous study [22]. There is an inversely proportional relationship between the time increment
and the maximum feedback gain. Concerning this issue, we theoretically clarified that the feedback
signal in the source term destabilized the iterative calculation, and proposed a computational scheme
to remove the destabilization phenomenon [32]. However, we used the previous scheme in this study
because improvement of computational accuracy of pressure can be discussed in a stable region with
the feedback gain of K < 170. In the case of K = 0, which corresponds to the ordinary simulation
without feedback, neither error norm temporally changes because the steady solution was set as the
initial condition (a dotted line in Figure 3). In contrast, by applying feedback in the UMI simulations
at K7 = 80 and 160, the error norm of the velocity vector, éy(u, f), monotonically decreases and
converges at each constant value (dashed and solid black lines in Figure 3(a)). This indicates that
the velocity field of the UMI simulation is closer to the standard solution than that of the ordinary
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Figure 3. Transient changes of space-averaged error norms of (a) velocity vector and (b) pressure in
the feedback domain in the UMI simulations without/with pressure compensation at K = 0, 80, and
160 (nondimensional).
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simulation. Moreover, the larger feedback gain reduces the error more rapidly. On the other hand, the
error norm of pressure, em(p, t), of the UMI simulations without pressure compensation drastically
increases at the first time step (¢ = 0.01), and then decreases toward each constant value (dashed and
solid gray lines in Figure 3(b)). With either feedback gain, the convergent value of éy(p, ¢) remains
larger than that of the ordinary simulation, indicating deterioration of the computational accuracy
of the pressure field by the feedback. Generally, improvement of the computational accuracy of
the velocity field leads to better reproduction of the pressure field as time progresses. However, as
described in the theoretical analysis, pressure error against the standard solution arises because the
feedback signals do not become zero so as to reduce the error derived from a constant difference of
the boundary conditions. The results of ém(p, ¢) by the UMI simulations at K = 80 and 160 with
pressure compensation are presented with dashed and solid black lines in Figure 3(b), respectively.
In the time of r > 0.2, the error norms of the pressure of the UMI simulations are smaller than
that of the ordinary simulation. This means that the pressure field approaches the standard solution,
cancelling the error in the pressure field caused by feedback signals. Moreover, the UMI simulation
with a large feedback gain (Kf = 160) presents a larger value of ém(p, 1) than that of the UMI
simulation with a small feedback gain (K\* = 80) at the beginning of the computation, but it finally
gives a smaller convergent value.

The variations of steady values of the space-averaged error norms of the velocity vector and
pressure in the feedback domain M, ém(u, tx) and ey (p, fo) (teo = 20), with the feedback gain
are shown in Figure 4. In the UMI simulation, the value of ey(u, f«) monotonically decreases
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Figure 4. Variations of steady values of space-averaged error norms of (a) velocity vector and (b) pressure
in the feedback domain with feedback gain (nondimensional).
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with increasing feedback gain (Figure 4(a)). Note that the error norm of the velocity vector in the
UMI simulation is not affected by the pressure compensation. However, the value of ey(p, foo) at
first decreases and then increases (open circle plots in Figure 4(b)). In K > 20, the error norm is
larger than that of the ordinary simulation (K = 0). When the feedback gain is relatively small
(K3 < 20), the computational accuracy of the pressure field seems to be improved in accordance
with the improvement of that of the velocity field because the pressure deviation as a result of the
application of artificial body forces {or feedback signals) is not significant. With large feedback
gain, however, the ability to reproduce the pressure field deteriorates becaunse the significant arti-
ficial body forces proportional to the feedback gain are applied. In contrast, as the feedback gain
increases, the value of em(p, fx) after the pressure compensation monotonically decreases, sim-
ilar to that of the velocity vectors (solid circle plots in Figure 4(b)). This reflects the fact that the
pressure field concurrently becomes closer to the standard solution with the velocity field. Regard-
ing the determination of the feedback gain, K, in the practical application of the UMI simulation,
although the UMI simulation with a large feedback gain reduces the error against the measurement
data, it reproduces the measurement error as well. In our previous study [23], the effects of major
measurement errors on the computational accuracy of the UMI simulation were investigated, and
methods to compensate those effects were proposed. An appropriate value of the feedback gain
should be determined based on the results, considering how much compensation is achieved. It is
also noted that the UMI simulation has sufficiently high frequency response characteristics to ensure
the convergence to the unsteady flow [22].

The result of the UMI simulation at K = 160 is further investigated in the following. The steady
values of the space-averaged error norms of velocity vector and pressure against the standard solu-
tion in each z-directional cross-section, €c(z) (W, foo) and Eey(z) (P, foo) (teo = 20), in the ordinary
simulation (K v = O) and the UMI simulations without/with the pressure compensation are shown
in Figure 5(a) and (b}, respectively. The dotted line and the gray and black solid lines represent the
results of the ordinary simulation and the UMI simulations without and with the pressure compensa-
tion, respectively, and the gray area indicates the feedback domain in the UMI simulation. Compared
with the ordinary simulation, in the case of the UMI simulations, the error norm of the velocity
VECLOr, €4(7) (W, {0, is decreased after the feedback domain (z = 1.193), and remains smaller in a
certain downstream region of the feedback domain (2.897 < z < 3.8), as shown by the solid lines
in Figure 5(a). Regarding the error norm of pressure, éc(z) (P, fo0), sShown in Figure 5(b), the UMI
simulation with the pressure compensation presented a smaller value than the ordinary simulation in
all z-directional cross-sections and almost the same value near the downstream boundary, implying
the ability to reproduce the pressure field with good accuracy. On the other hand, the error norm
of pressure, €.(z) (P, foo), in the UMI simulation without pressure compensation increases in the
upstream region of the feedback domain and exceeds that of the ordinary simulation with the peak
value near the upstream boundary of the feedback domain. It then decreases in the downstream
direction and becomes the same as that in the UMI simulation with the pressure compensation.
Figure 5(c) shows a summation of absolute values of the divergence of the feedback force vector
in each z-directional cross-section. The value is large in the upstream side in the feedback domain
where the error in the velocity field is large, especially at the upstream boundary of the feedback
domain where feedback signals discontinuously change. Moreover, in comparison with Figure 5(b),
the large value of the divergence of the feedback force vector also influences the computational accu-
racy of the pressure field in the upstream domain before the feedback domain where the divergence
is zero.

The pressure distributions on a y-directional cross-section (y = 1.462) of the standard solution,
the ordinary simulation (K = 0), and the UMI simulations (K} = 160) without/with the pressure
compensation are depicted in Figure 6. Between the pressure fields of the standard solution and the
ordinary simulation, ps and p, (Figures 6(a) and (b)), a difference can be observed near the upstream
boundary, but similar pressure profiles are obtained in the aneurysm. As observed in the error
norm of pressure in Figure 5(b), the UMI simulation without pressure compensation (Figure 6(c))
provides a pressure distribution different from that of the standard solution (Figure 6(a)), especially
in the upstream region of the feedback domain (see an arrow), but it gives almost the same
distribution in the aneurysm. In the UMI simulation with the pressure compensation (Figure 6(d)),

Copyright © 2012 John Wiley & Sons, Lid. Int. J. Numer. Meth. Biomed. Engng. 2013; 29:726-740
DOT: 10.1002/cnm

— 134 —



736 K. FUNAMOTO AND T. HAYASE

0.0

o
=
—

1.5

10

¥

o fl

0.5

3

0.0

Z
(c)
Figure 5. Steady values of space-averaged error norms of (a) velocity vector and (b) pressure, and

(c) space-averaged absolute value of divergence of feedback signal vector in each z-directional cross-section
(nondimensional). The gray zone implies the feedback domain.

the difference in pressure distribution observed in the UMI simulation without the pressure
compensation is properly improved.

The distributions of error norm of pressure against the standard solution on the corresponding
y-directional cross-section are shown in Figure 7. As mentioned above, the ordinary simulation and
the UMI simulation without the pressure compensation show relatively large error near the upstream
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