774 T. Miki et al.

Figure 3. Schematic illustration of the adaptive meshing method: (a) the airway model is decomposed by isotropic subdomains and
(b) each subdomain consists of a structured Cartesian mesh. As an example, a 4> size subdomain is drawn.

method: decomposing the airway into small isotropic
subdomains consisting of a uniform Cartesian mesh, as
shown in Figure 3. Each subdomain includes information
on its connectivity to the neighbouring subdomains.
Consequently, the global computational domain comprises
unstructured subdomains, while the local subdomain
consists of a structured Cartesian mesh, as shown in
Figure 4. Although it may include unnecessary parts of the
mesh in the computational domain, some recent LBM
studies have used a similar form of domain decomposition
(Stirmer et al. 2009; Palabos 2010) to adapt complex
geometries to CPU parallel computation. In our study,
decomposition is used to optimise memory access for the
GPU computation. We compute each subdomain in a
CUDA block, in which the block is a group of processes
consisting of CUDA threads. Based on this, rather than one
thread, several threads in a block co-operatively access
each direction of the subdomain connectivity information
at once via coalesced memory access, which accelerates
the calculation.

Note that the size of the subdomains should be
determined carefully because the ratio of the airway mesh
to the entire mesh is highly dependent on this, and it also
changes the appropriate number of CUDA threads for the
computation in a subdomain. To determine the optimal
subdomain size, we evaluated the filling ratio, two
performance indices and memory usage. The filling ratio
compares the number of airway (fluid) mesh components
(N,) to the total number of mesh components (N,),

including the unnecessary mesh components, and it is
defined by

Filling ratio = (10)
The two GFLOPS performance indices used are
. . OXN, 1 ,
Real performance (GFLOPS) = mm, (11
: OXN, 1
1] 8 i = 2
Effective performance (GFLOPS) XS 1004 (12)

Computational domain (unstructured)

Subdomain (structured)

Figure 4. Schematic illustration of mesh hierarchy. The area in
grey represents airway mesh, and the area in white is unnecessary
mesh. Processor boundary in muiti-GPU computation is also
shown. Subdomains near processor boundary are indicated by the
shaded area.
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Figare 5. Results of the tests to determine the optimal
subdomain size: (a) the filling ratio and performance indices
and (b) memory usage.

In these, O is the number of floating-point operations
(0=1229 in our D3Q19 LBGK model), T is the
computational time and § is the number of computational
steps. From the definition, the real performance represents
the effort expended for the entire domain and the effective
performance is the effort expended for the airway domain.

Figure 5(a) shows the results for the computation of the
airway model in Figure 2 for subdomain sizes ranging
from 1° to 327, performed on an nVIDIA Tesla C1060
GPU. As a large subdomain includes many unnecessary
mesh components, the filling ratio decreases as the
subdomain size increases. The real performance of a 2°
size subdomain is the poorest, as only eight threads, which
is smaller than the warp size, are used to compute one
subdomain according to our CUDA block usage. The term
‘warp’ refers to the group of threads processed at one time;
one warp consists of 32 threads for CUDA version 3.1,
whereas 64 threads are used in a 4° size subdomain
computation and 256 threads are used in 8° size and 16
size subdomain computations. The real performance of 4°
size to 16 size subdomains ranges between 30 and 40
GFLOPS. However, the filling ratio decreases for the
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Figure 6. Effects of geometry complexity: (a) real performance
and (b) effective performance.

larger subdomains, and the effective performance is the
highest for the 4° size subdomain. The memory usage
for stored fluid variables and domain data is shown in
Figure 5(b). As the subdomain size increases, the memory
used to store fluid variables increases due to the increase in
unnecessary mesh components. The subdomain connec-
tivity information is stored for the entire mesh in the case
of 1° size subdomains; thus, the memory usage for the
domain data is the greatest. The minimum memory usage
occurs using 4° size subdomains. To check whether the
optimum subdomain size is affected by the complexity of
geometry, we compared different geometries that were
constructed by pruning airway branches from the original
13-generation airway model. We constructed 1- to
13-generation airway models, in which the complexity
increases with the number of generations. The result is
shown in Figure 6. The effective performance decreases as
the geometry becomes more complex, owing to the
decrease in the filling ratio, whereas the real performance
is affected less by the geometry complexity for all
subdomain sizes. In conclusion, GPU computations
using 4° size subdomains have the greatest effective
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performance for any airway model. An airway model
covered by 4? size subdomains, consisting of 11,265,536
mesh components with 176,024 subdomains, is shown in
Figure 3.

4. Comparison of the pefformance of multi-GPU and
multi-CPU computations

We adapted the patient-specific model to multi-GPU
computation using a message passing interface (MPI)
library. As all of the fluid variables are stored in the GPU
device memory and updated at every time step, additional
data transfer protocols are needed compared with multi-
CPU computation. First, the data in the device memory
are transferred to the host computer memory through a
PCI Express bus. After the data transfer, the data are
exchanged among cluster nodes through InfiniBand using
the MPI library. Finally, the exchanged data are copied
from the host memory to the device memory through the
PCI Express bus. As the GPU has the ability to compute
much faster than the CPU and additional data transfer
protocols are needed for GPU computation, the data
transfers easily become bottlenecks in terms of the overall
computational time. To reduce these bottlenecks, the
subdomains near the processor boundary, as shown in
Figure 4, are computed first, then the data transfers and
computation of non-processor boundary subdomains are
processed simultaneously. As the mesh components are
clustered into subdomains, domain decomposition for
multi-GPU computation is accomplished easily. For
domain decomposition, we primarily consider the load
balance among processors. Therefore, in our computation,
the subdomains are grouped from the trachea to the
peripheral airways, controlling the numbers of grouped
subdomains so that they are nearly equal. For example,
the domain decomposition for eight-processor compu-
tation is shown in Figure 7.

We compared the performance of entirely multi-GPU
computation with that of multi-CPU computation. The
tests were performed on TSUBAME 1.2, a supercomputer
system at the Tokyo Institute of Technology, using the
airway model constructed in Section 3. The system has
657 nodes of AMD Opteron CPUs (total 10,512 cores), of
which 170 nodes are connected to nVIDIA Tesla $1070
GPU devices. All of the nodes are connected with
InfiniBand. The effective performances of multi-GPU and
multi-CPU computations are shown in Figure 8(a). We
found that about 800 CPU cores must be recruited for
performance that equals eight-GPU computations. The
scalability of the GPU computation peaks at eight GPUs,
while the CPU computation peaks at 32 CPU cores. This
indicates that the time required for data transfer cannot
fully overlap with other processes in computations
involving more than 16 GPUs. Taking the opposite view,

Figure 7. Domain decomposition for eight-processor
computation. The subdomains shown in the same colour were
computed using the same processor.

eight GPUs are sufficient to compute pulmonary airflow
congisting of 12 million mesh components.

The same computation was performed on a small
cluster involving eight personal computers, each mounting
the latest quad-core CPU, Intel Core 17-930, and the latest
GPU, nVIDIA GeForce GTX 480. GeForce GTX 480 is
connected to the GDDRS5 device memory, which has a
bandwidth of 177.4GB/s, whereas Core i7-930 is
connected to triple-channel DDR3-1066 host memory,
which has a bandwidth of 25.6 GB/s. All computers are
connected using a 40-Gbps QDR InfiniBand. This cluster
costed less than $30,000 in the spring of 2010 and occupies
a footprint of 0.7m°, so it could be installed in medical
offices. The result of the benchmark test is shown in Figure
8(b), which shows that high-performance computation can
also be performed on personal-use GPUs. Figure 8(b) plots
the effective performance for GPU computation and real
performance for CPU computation, assuming that it may
not be necessary to apply the developed adaptive meshing
method, which includes unnecessary mesh components, in
the CPU computation. Nonetheless, comparing the
effective performance of GPUs with the real performance
of CPUs, the result shows that 170 CPU cores, which are
nearly equal to 42 quad-core CPUs, are needed to attain the
performance of eight GPUs, even if the CPU computation
could attain scalability. As the LBM handles 23 variables
in each lattice component, particle distributions moving
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Figure 8. Benchmark test: multi-CPU vs. multi-GPU:
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Figure 9. Particles are tracked along airflow streamlines, and
the data are overlapped with volume rendered lung data from the
same subject.

in 19 directions, three-dimensional velocity and density, an
advantage exists on using GPUs connected to a very wide-
bandwidth device memory. A simulation of inspiratory
airflow is shown in Figure 9, in which particles are tracked
along airflow streamlines, and the data are overlapped with
a volume rendered lung data generated from the same
subject. Freitas and Schroder (2008) reported a large-scale
pulmonary airflow simulation using the LBM on a
supercomputer system in the Jilich supercomputing
centre. They used a mesh with 12 million components
for the simulation, almost identical to the number we used;
such a computation can be performed on a small GPU
cluster using our LBM solver.

5. Conclusions

We proposed a novel approach for the patient-specific
modelling of pulmonary airflow. The computational time
is a major issue in the application of patient-specific
models to medical practice. To overcome this problem, we
developed an LBM flow solver for the use on GPU
clusters. The LBM is a fully explicit solver free of the
convergence problem of pressure Poisson equations
encountered in semi-implicit methods. Moreover, high-
performance computation can be achieved on a GPU with
a wide-bandwidth device memory because the perform-
ance of the LBM depends strongly on the memory access
speed. As adequate memory usage is essential for GPU
computation, we also developed an adaptive meshing
method for the complex pulmonary airway model. In this
method, the airway model is covered by small isotropic
subdomains consisting of a Cartesian mesh. The
computational mesh can be generated directly from CT
data, as the data consist of voxels aligned in Cartesian co-
ordinates. We demonstrated that 4° size subdomains
perform the best for patient-specific models of up to 13-
generation airways. We confirmed that the proposed
model with 12 million mesh components has scalability up
to eight GPUs on TSUBAME 1.2, which are sufficient for
simulating this model, while more than 800 CPU cores are
needed to obtain the same results, even if the CPU could
retain its scalability. The computation can also be
performed on a small personal-use GPU cluster within a
reasonable price and footprint. Eighty minutes is required
to simulate the airflow for 1§, or 5h to obtain the results
for one 4-s cycle of respiration, which would be reasonable
for practical use in clinical diagnosis.

We will be able to analyse gas exchange phenomena or
nanoparticle deposition in the airways simply by coupling
advection—diffusion equations or the Lagrangian tracking
of particles with this method. Such an analysis will provide
useful supporting information for diagnosis and treatment.
Although the GPU computation shows potential for CFD
problems, an application to complex geometry problems
has not been fully developed. This is a particularly crucial
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issue in biomedical engineering because almost all organs
have complex geometries. Qur method can be applied to
any complex geometry problem, such as the patient-
specific modelling of blood flow. We hope that this
method will lead to the efficient use of patient-specific
models in a variety of medical applications.
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Abstract Bio-nano hybrids introduce magnificent applica-
tions of nanomaterials to various fields. The choice of
carbon nanotube as well as sequence selection of the
nucleic acid bases play a crucial role in shaping DNA-
carbon nanotube hybrids. To come up with a clear vision
for the choice of carbon nanotube and nucleic acid bases
to create bio-nano hybrids, we studied the adsorption
mechanism of the nucleic acid bases guanine and
thymine on four different types of nanotubes based on
density functional theory. Nucleic acid bases exhibit
differential binding strengths according to their structural
geometry, inter-molecular distances, the carbon nanotube
diameter, and charge transfer. The 7m—m interaction
mechanism between the adsorbent and adsorbate is
discussed in terms of charge density profile and electronic
band structure analysis.
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Introduction

The study of the noncovalent interactions of biological

molecules with single-walled carbon nanotubes (SWCNT)
has emerged as a separate field in nanotechnology.
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Functionalization of CNT with biomolecules leads to many
potential applications in medicinal biology as well as in
solid state nano clectronics. Carbon nanotubes are being
explored as one of the most promising transfection vectors
for drug and gene delivery, due to their large surface area,
stability, flexibility and biocompatibility. Hybrids of
SWCNT-ribonucleic acid (RNA) polymer formed through
nonspecific binding are translocated into MCF7 breast
cancer cells with radioscope labeling [1]. SWNTs have
the ability to penetrate mammalian cells as intracellular
protein transporters with noncovalently bound protein cargo
[2]. An electronic biosensor for detecting antibodies
associated with human autoimmune diseases has been
developed through the nonspecific binding of proteins on
carbon nanotubes [3]. Carbon nanotubes decorated with
peptide is used in a field effect transistor (FET)-based
chemical sensor to detect specific targets using peptide
recognition clements [4].

Deoxyribonucleic acid (DNA) overstated its role not
only in biology, but also in nanotechnology. Integration
of carbon nanotubes with the genetic material DNA
opens up several possible applications of CNT in the
field of bio-nanotechnology. Over a decade of research
has now contributed to our understanding of the
interactions in DNA—~CNT hybrids. Nonspecific interac-
tion of CNTs with DNA helps the dispersion and
separation of CNTs in aqueous and non-aqueous solu-
tion, while leaving the unique physical and electronic
properties of CNTs unchanged. The helical wrapping of
poly(T) on a carbon nanotube (10, 0) converts CNT into
a water soluble object and helps to sort the carbon
nanotubes with respect to their electronic properties [5].
Self-assembly of the sequence d(GT), around individual
nanotubes enables nanotube separation using ion ex-
change liquid chromatography [6, 7]. In the study of a
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molecular dynamics simulation of a self-assembly of
random sequence ssDNA on CNT, achiral loops and
disordered kinked structures are observed due to the
flexibility of ssDNA [8]. Also, the helical wrapping of
poly (GT) on CNT [6, 7] is claimed to be structurally
unstable, and the oligonucleotide does not prefer to be
adsorbed onto CNTs as a dimer. “Ultrasoft” DNA
sequencing have been performed by detecting the varia-
tion in the current through a CNT when different DNA
base pairs are in contact with the CNT [9]; the individual
nucleosides adsorbed on the CNT are also identified with
the applied external gate voltage [10]. These results
shows that the adsorption mechanism of nucleic acid
bases on CNT wvaries with respect to each nucleic acid
base. Depending on the length and the sequence of
nucleic acid bases in the DNA, a large molecular library
is available from which to produce a number of DNA~
CNT hybrids, leading to a wider range of magnificent
applications. In its simplest form, individual nucleic acid
bases can interact with CNTs singly or in multiples
(poly). Interactions of isolated nucleic acid bases with
CNTs have been studied using density functional theory
(DFT) with different functionals [11, 12], and with
Raman spectroscopic technique [13]. Das et al. [14]
investigated the binding of nucleobases with CNT by
means of Hartree-Fock (HF) theory and isothermal
calorimetry experiments. Atomistic molecular dynamics
(MD) simulations were performed to study the binding of
nucleotide monophosphates with (6, 0) SWCNTs in aqueous
solution [15]. From previous reports, it is clear that generally
binding of DNA to CNT depends generally on the
nucleotide sequence and the nanotube diameter [16].

In earlier reports, binding energies of all five nucleic acid
bases with a carbon nanotube is calculated using different
density functional codes [11-17]. Interaction strength varies
in the order G>A>T>C>U [11, 13, 14]. Self-stacking
interactions of nucleobases compete with the cross-stacking
interaction strength of nucleobases with CNT [18]. Thus,
the interaction strength of nucleobases with CNT should be
able to overcome the self-stacking interactions. Using ion
exchange chromatography technique, Zheng et al. [5-7]
proved the ability of poly (T) and poly (GT) to disperse
CNTs in aqueous solution. Of the four nucleobases, from
the relative binding energies of self-stacking nucleobases
and cross-stacking on CNT, Wang [18] proved that thymine
can disperse CNT in aqueous solution better than adenine
and cytosine. Consequently, the nucleic acid bases thymine
and guanine have gained importance in the dispersion of
CNTs. Like the differential adsorption strength of nucleic
acid bases, different chiralities of CNT also play a
significant role in the binding strength of CNT-nucleic
acid base hybrids. Eatlier reports concentrated on finding
the variation in binding energies of different nucleic acid

@__ Springer

bases with a CNT. Some reports presented electronic band
structure analysis and iso surface charge density plots [11,
17], and examined the interaction between them. However,
we choose to investigate the role of the curvature and
chirality of the CNT in the formation of DNA—CNT hybrid.
In our study, to expand our knowledge of the interaction
between the nucleic acid bases thymine and guanine and
CNTs of different chiralities, with the help of standard
density functional code, we present the role of geometry,
adsorption mechanism, charge transfer, electronic band
structure analysis and charge density analysis.

Computational details

Calculations were carried out using DFT with a plane wave
basis set as implemented in the Vienna ab-initio simulation
package (VASP) [19, 20]. The projected augmented-wave
method (PAW) is used to describe the interaction between
ions and electrons [21]. The PAW method has two
advantages over ultrasoft pseudo potentials (USPP). It
provides all-clectron wave functions for valence electrons
and shows a better convergence behavior than USPP [21].
DFT is used to describe the ground state properties of
many-body systems. Exchange correlation energy can be
evaluated with the help of local density approximation
(LDA) [22] or with generalized gradient approximation
(GGA) [23]. Non-covalent interaction between the two
systems is the result of van der Waals, hydrogen bonding,
ion-pairing, cation—t and 7—7t interactions. It is well known
that neither LDA nor GGA can describe weakly bound
systems perfectly. A considerable effect of exchange
cotrelation energy functionals in the binding energy was
noted with DFT techniques. Genetally, LDA overestimates
the interaction energy of weakly bound systems and GGA
underestimates it. Here, our aim was to study non-covalent
interactions between DNA—CNT hybrids, thus we had to be
very precise in choosing an exchange cotrelation functional
with which to determine accurate interaction energies and
structural properties. DFT-LDA calculations underestimate
dispersion energy at large distances but can reproduce the
empirical potential for graphitic structures successfully
[24]. Studies on self-stacking of benzene and cross stacking
of benzene on graphene sheet within GGA have shown
almost no binding energy [25]. However, the interlayer
distance for adenine adsorption on graphene sheet reported
using the DFT-LDA technique is very close to the
experimental result [26]. Most recently, Lim and Park [27]
have investigated the noncovalent adsorption of aromatic
molecules on CNT with the help of LDA, GGA and hybrid
functionals. It was found that DFT-LDA and M06 hybrid
functionals produce almost equal binding energy, and that
GGA fails to predict the noncovalent interaction. With this
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previous literature support, we decided to follow the LDA
approach to investigate the exchange correlation energy of
our weakly bound systems.

For k-points sampling of the brillouin zone, a 1x1x4
Monkhorst-Pack grid [28] is used with a spacing of 0.025
A", For the electronic band structure calculations, 41
irreducible k-points are considered along the z-axis direc-
tion. Cutoff energy for the plane wave basis set of the
valence electron was fixed as 500 eV throughout the
calculations. Residual minimization / direct inversion in
the iterative subspace method (RMM-DIIS) is used for
wave function optimization. Geometry optimization was
carried out until the magnitude of the forces acting on all
atoms was smaller than 0.0005 eV/A. The CNTs zigzag (5,
0), (10, 0), armchair (5, 5) and chiral (5, 2) were used in
this study. The number of unit cells of CNT is limited by
the height of the nucleic acid bases. In all four cases,
approximately 20 A distance is kept between adjacent tubes
to avoid interactions between them. Thymine and guanine
are nucleic acid bases found in the genetic material DNA.
Thymine is a pyrimidine nucleobase, having one hexagon
ring with two nitrogen atoms. Guanine is a derivative of
purine consisting of a fused pyrimidine-imidazole system
with conjugated double bonds. Initially, the hexagon of the
nucleic acid base is kept head-to-head with the hexagon of
the carbon nanotube. The plane of the nucleic acid base is
parallel with the nanotube z-axis direction. Atoms are
allowed to relax freely in all directions, to determine the
possible adsorption positions of nucleic acid bases on the
CNT surface.

Results and discussion

Geometry and energetics of adsorption of guanine
and thymine on SWCNTs

Prediction of accurate interaction energy of the adsorbate
with the adsorbent involves description of intermolecular

parameters such as the orientation of the adsorbate, and
inter-molecular distances between the adsorbent and
adsorbate. These parameters play a significant role,
especially in the case of non-covalent interactions.
During geometry optimization, the initial orientation of
nucleic acid bases on CNTs was altered to attain the
minimum energy configuration, but the nucleic acid
bases are still parallel to the nanotube surface. The
distance between the CNT and each nucleic acid base is
measured from the center of the hexagonal ring of the
adsorbate to the nanotube surface. Binding energies,
equilibrium distances and charge transfer from the
nucleic acid bases to the CNT are presented in Table 1.
There is no chemical bond formation between the systems
and the binding energies confirm that the process is
physisorption. The oxygen and nitrogen atoms of nucleic
acid bases have lone pairs of electrons and, due to the sp®
hybridization of carbon atoms in the CNT, each carbon
atom possesses one delocalized p electron. These n
electrons lead to physisorption of the nucleic acid bases
on the CNT.

Intermolecular distances between the CNT and the
nucleic acid bases guanine and thymine vary between
246 and 3.26 A. These values are comparable to those
reported in previous studies [13, 17]. Among the four
nanotubes, thymine is adsorbed close to CNT (10, 0) at a
distance of 2.46 A, which is less than the characteristic 7t—m
stacking distance. Intermolecular separation of adenine on
graphite surface is reported as 3.1 A within LDA, and AFM
studies give the same value [26]. As reported by Stepanian
et al. [13], the difference between intermolecular distances
estimated using second-order Moller-Plesset perturbation
theory (MP2) and DFT is about 0.02 A. Thus, the
calculated intermolecular separation of a non-covalently
bound system using DFT-LDA is comparable with the
results obtained from experiments and MP2 methods.
Adsorption of nucleic acid bases on CNT resembles AB
stacking between graphene layers. The orientation of
nucleic acid bases on the surface of the CNT differs with

Table 1 Binding energies, charge transfer, equilibrium distances for the adsorption of guanine and thymine on carbon nanotubes (CNTs), and

diameter of CNTs
System Binding energy (£, eV) Charge transfer from nucleic acid base (g, ¢)  Distance (d, A)  Diameter (d,, A)
CNT (5, 0)+Guanine 0.41 0.094 3.07 3.96
CNT (5, 2)+Guanine 0.36 0.009 3.05 4.95
CNT (5, 5)+Guanine 0.38 0.001 2.98 6.87
CNT (10, 0)+Guanine 0.39 0.008 3.06 7.94
CNT (5, 0)+Thymine 0.20 0.026 3.26 3.96
CNT (5, 2)+Thymine 0.26 0.005 295 4.95
CNT (5, 5)+Thymine 0.30 0.009 297 6.87
CNT (10, 0)+Thymine 0.20 0.014 2.46 7.94
@ Springer
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CNT chirality so as to attain the minimal energy configu-
ration.

The binding energy of guanine with a narrow
nanotube (5, 0) is 0.41 ¢V, and the tube becomes
compressed in the direction of the adsorbate. The
radius of the tube is reduced to 1.87A in the strained
direction (Fig. 1a,e). In studies of interaction between
nanotubes and biomolecules, to reduce the computational
expense, fragmented CNTs have been used [13, 18]
Fragmenting material such as high-curvature CNT may
not give reliable results. Wang [18] examined the
adsorption of DNA nucleic acid bases with fragments
derived from CNTs (5, 5) and (10, 0). The CNT fragments
were frozen with saturated H atoms, thus limiting the
interaction of the CNT with the nucleic acid base. This
will surely affect the binding energy of the nucleic acid
base, whereas we have taken the fully relaxed CNT and
allowed all the atoms to move freely in all three
directions. Wang [18] reported more than one stable
configuration of nucleic acid base on CNT, with a binding
energy for guanine varying from 0.32 to 0.44 eV for CNT
(5, 5) and from 0.22 to 0.34 eV for CNT (10, 0) without
basis set superposition error (BSSE) correction. In
another study using MP2 level theory, binding energies
of guanine with CNT (5, 5) in the order 0of 0.36 to 0.88 eV
were reported [13]. The curvature-free surface of gra-
phene facilitates the adsorption of planar molecules
compared to narrow nanotubes [29]. Except in the case
of CNT (5, 0), the binding energy of guanine increases
with increasing CNT diameter (Table 1).

Optimized structures of CNT-+thymine complexes
are presented in Fig. 2. The parallel orientation of
thymine helps the interaction between the 7t orbitals of
CNT and thymine. In the adsorption of thymine on CNT
(5, 0), the upper half of thymine gets very close to the
CNT (Fig. 2e). The lone pair of electrons present in the
nitrogen and oxygen atoms caused a tilt in the parallel
orientation of thymine on the CNT surface but still the
thymine remains planar without pyramidalization. Due to
7t electron cloud interactions between the CNT and

thymine, the CNT becomes distorted in the direction of
the adsorbate, like in the CNT (5, 0)+G complex. Here
the radius of the (5, 0) tube shrinks to 1.92A. In the other
three cases , the adsorbate does not lead to any change in
the CNT structure. Wang [18] analyzed the ability of
thymine to disperse SWCNTs by investigating the
adsorption of nucleic acid bases on CNT in the gas and
aqueous phases. The reported binding energies in the gas
phase using MPWBIK functional are in the range of 0.11
to 0.29 eV for the different orientations of thymine on
CNT (5, 5), and these values agree well with our results
(Table 1).

CNT (10, 0) is a wide tube, with a lesser curvature
effect compared to the other nanotubes considered in
this study. The binding energy of thymine with CNT
(10, 0) is 0.20 eV. In a study of the interaction of
thymine/thymine radicals with CNT (10, 0) [17], binding
energies in the order of 0.22 to 0.31 eV are reported,
which is comparable with our results. However, the
binding energy of thymine with CNT (10, 0) is expected
to be higher than the other narrow nanotubes. In the
optimized structure of CNT (10, 0)+T (Fig. 2d), thymine
is positioned at a distance of 2.46A. This is the shortest
intermolecular distance of all the nanotubes tested here.
Two CO and NH groups of thymine are tilted towards the
CNT. The intermolecular distance between the adsorbent
and adsorbate plays a key role in the m-stacking
interaction. The 71—t repulsive interaction between the
adsorbent and adsorbate causes the system to have a certain
distance of separation called the characteristic distance of
m-stacking, so as to minimize the exchange repulsive
interaction between them. Electronegative oxygen and nitro-
gen atoms present in thymine are thus dragged towards the
CNT; this increases the repulsive interaction between the
thymine and the CNT and results a considerable reduction in
the binding energy.

Generally, 77t interaction energy is the result of
clectrostatic, induction, charge transfer, dispersion and
repulsive energies between the adsorbent and adsorbate
[30]. DFT fails to describe the dispersion interaction of

Fig. 1a—e Optimized configurations of guanine adsorbed on carbon nanotubes (CNTs). a CNT (5, 0)+G; b CNT (5, 2)+G; ¢ CNT (5, 5)+G; d
CNT (10, 0)+G; e CNT (5, 0)+G
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Fig. 2a—e Optimized configurations of thymine adsorbed on CNTs. a CNT (5, 0)+T; b CNT (5, 2)+T; ¢ CNT (5, 5)+T; d CNT (10, O)+T; e
CNT (5. O)+T

noncovalent systems at very large distances. Calculating
the interaction energy perturbatively using symmetry-
adapted perturbation theory (SAPT) [31] can describe
such intermolecular interactions, including dispersion
energy. SAPT interaction energy is expressed as the
sum of electrostatic, exchange, induction, exchange-
induction, dispersion and exchange-dispersion compo-
nents. It is a very successful technique for molecules of
ten atoms or fewer but is not suitable for large systems. In
our case, the intermolecular separation between CNT and
nucleic acid base varies between 2.46 and 3.26A. With
this intermolecular separation, DFT-LDA can determine
the interaction energy of the noncovalent system
successfully [24]. Here, the binding energy results from
clectrostatic, induction, charge transfer and repulsive
interactions.

Charge transfer and charge density analysis

Bader charge density analysis [32] was performed to
determine the total charge associated with each atom and
to investigate possible charge transformation between the
two entities. Although there is no direct chemical bonding
between the adsorbate and CNT, we can expect a
fractional charge transfer between them due to the 7
electrons and lone pair of electrons. In a similar situation,

Stepanian et al. [13] observed a downshift of G-band
frequency in the Raman spectra due to partial charge
transfer to the nanotube from the nucleic acid base. In our
case, a charge of 0.09¢ is transferred to CNT (5, 0) from
guanine (Table 1); this validates the higher binding
energy of guanine with the narrow tube rather than the
wide tubes. The high curvature surface and the increased
electronegativity of CNT (5, 0) drag more electrons
towards it [10]. In the other cases, there is no significant
charge transfer.

In some carlier works, charge transfer between the
CNT and the nucleic acid base was calculated [11, 14,
17, 18] and isosurface plots [11, 17] were examined.
Physisorption of nucleic acid bases with CNT occurs due
to the interaction between the 7t electron clouds. Thus, by
concentrating on the complete charge density profile of
CNT and nucleic acid bases, we will be able to give a
better interpretation about the nature of the interaction
between them. We analyzed [33] the highest occupied
molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) surfaces of CNT and nucleic
acid bases. Here, we present the results of two important
as well as unique cases: adsorption of guanine on CNT
(5, 0) and adsorption of thymine on CNT (10, 0). Figure 3
shows the charge density distribution of the isolated
guanine molecule and CNT (5, 0) guanine hybrid.

Fig. 3a—d Charge distribution in the CNT (5, 0) guanine hybrid. a Highest occupied molecular orbital (HOMO) of isolated guanine. b Lowest
unoccupied molecular orbital (LUMO) of isolated guanine. ¢ HOMO of CNT (5, 0) guanine hybrid. d LUMO of CNT (5, 0) guanine hybrid
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Charge density is concentrated on the C-C and C-N
bonds of the isolated HOMO guanine (Fig. 3a), and in
LUMO (Fig. 3b) it spreads over all the atoms. Contri-
bution of the delocalized 7t electrons of the CNT in the
interaction is clearly visible in the bottom panel pictures.
Contraction of the CNT diameter near the adsorption
field disturbs the 7t electron distribution over the carbon
atoms (Fig. 3c¢). Thus there is depletion in the charge
density of HOMO, whereas in LUMO charge is distrib-
uted homogencously throughout the CNT (Fig. 3d).
HOMO charge density concentrated on the guanine
triggers physisorption with CNT. Charge accumulated
on the oxygen and C—N bonds of guanine induces charge
transfer to CNT. HOMO and LUMO of isolated thymine
and the CNT (10, 0) thymine hybrid are presented in
Fig. 4. In the HOMO of the isolated molecule (Fig. 4a),
the charge density is evenly distributed over the carbon,
nitrogen and oxygen atoms. Accurate geometry optimi-
zation plays a crucial role in the study of non-covalent
interactions. During the adsorption of thymine on CNT
(10, 0), thymine tilts towards the CNT along the side
with two oxygen atoms. In the HOMO (Fig. 4¢) of CNT
(10, 0)+Thymine, a large collection of 7 electron
density is gathered on the CNT near the thymine. Also,
some small amount of charge accumulates on the base.
Thus, the interaction between the 7 electron clouds is
repulsive, and reduces the binding strength between the
two entities.

Fig. 4a~d Influence of the
intermolecular separation in

the charge accumulation and
depletion in CNT (10,0)
thymine hybrid. a HOMO of
isolated thymine. b LUMO

of isolated thymine. ¢ HOMO
of CNT (10, 0) thymine hybrid.
d LUMO of CNT (10, 0)
thymine hybrid

@ Springer

Electronic band structure and density of state analysis

Generally, the electronic property of a CNT is not
modified by physisorption of the adsorbate [11, 17].
Figure 5 shows the electronic band structure and density
of states plots for the CNT (5, 0) and CNT (5, 0) guanine
hybrid and CNT (5, 0) thymine hybrid, respectively.
Intrinsic CNT exhibits metallic characteristics; the adsorp-
tion of neither guanine nor thymine changes the electronic
properties of CNT (5, 0). However, the adsorption of the
nucleic acid bases introduced additional bands below
~0.5 ¢V in the intrinsic CNT band structure. In the DOS
plot, no changes were observed at the Fermi level,
confirming that the adsorption of nucleic acid bases on
CNT is a simple superposition of individual systems
without hybridization of orbitals. This holds true for all
the other cases too.

Interaction of guanine thymine pair with CNT (5, 0)

In addition to the study of the adsorption of isolated bases
on CNT, adsorption of a single guanine-thymine (GT)
wobble base pair on CNT (5, 0) was investigated. A GT
wobble base pair is formed with two hydrogen bonds
between the O-H-N atoms of the bases [8]. Zheng et al.
[6, 7] proposed CNT sorting mediated through a poly GT
oligonucleotide formed by a non-Watson-Crick hydrogen
bond network. A study of adsorption of a GT dimer on
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Fig. 5 Comparison between the band structure and density of states
of CNT (5, 0), CNT (5, 0) guanine hybrid and CNT (5, 0) thymine
hybrid

(11, 0) SWCNT revealed that, due to the stress induced
within the ssDNA sugar residues and glycosidic bonds
during optimization, the structural geometry was altered
and became unstable [8]. In our study, the sugar phosphate
backbone of DNA is not taken into account. Initially, the
GT base pair is placed parallel to the CNT in the z-axis
direction. The optimization process rearranged the initial
parallel orientation of the base pair. The oxygen- and
nitrogen-enriched middle portion of the nucleic acid base
pair is moved away from the CNT (Fig. 6). Binding
energy of the 7t stacked system is expected to increase
in proportional with the 7t electron surface [30]. The
calculated binding energy of the GT base pair with CNT
(5, 0) is 0.36 eV. In comparison with the binding energy of
isolated guanine (0.41 eV) and thymine (0.20 eV) with
CNT (5, 0), the binding strength of the guanine thymine
base pair on CNT (5, 0) is relatively weak. Charge density
analysis has shown a charge transfer of 0.1e to the CNT
from the base pair. The electronic charge density plots of
HOMO and LUMO are presented in Fig. 6. In the HOMO
(Fig. 6a), charge is distributed over the CNT and oxygen,
nitrogen atoms of the nucleic acid bases. Charge of the

Fig. 6a,b Intermolecular inter-
action of CNT (5, 0) guanine
thymine hybrid. a HOMO of
CNT (5, 0) guanine thymine
hybrid. b LUMO of CNT (5, 0)
guanine thymine hybrid

LUMO (Fig. 6b) is distributed evenly on CNT, which
establishes the metallic nature of the tube.

Conclusions

We have studied the interaction mechanism of the nucleic
acid bases guanine and thymine with four different CNTs,
Apart from the curvature effect of CNT, orientation of the
nucleic acid bases and intermolecular distance between
CNT and nucleic acid base play a predominant role in
deciding the binding strength, which in turn influences
charge transfer. Most importantly, the 77 stacking
interaction is affected by the intermolecular distance
between the CNT and the nucleic acid base. The binding
strength of the nucleic acid base is reduced due to the
exchange-repulsive interaction of the 77t charge cloud
when the intermolecular distance between the adsorbent
and adsorbate is less than the characteristic 7 stacking
separation. However, the resultant 7 stacking interaction
is attractive. When comparing the results obtained for
guanine and thymine, the interaction energy of guanine is
higher than that of thymine for all the CNTs tested. The role
of van der Waals interactions in determining the magnitude
of the 7r—7t interaction energy is directly proportional to the
area of the 7t overlap [30]. In addition to the pyrimidine
ring of thymine, guanine has a fused imidazole ring and
more electronegative nitrogen atoms, increasing the area of
7t surface of the adsorbate, which enhances the interaction.
The binding energy of the adsorbate increases as the
diameter of the CNT increases. However, this is not true
in the case of guanine adsorption on CNT (5, 0) and
thymine adsorption on CNT (10, 0). The high curvature of
the narrow CNT (5, 0) drags more electrons towards it, and
the contraction of the CNT facilitates the interaction of 7t
electron clouds. This explains the higher binding energy of
guanine with the narrow tube rather than the wide tubes. In
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the case of CNT (10, 0), the short intermolecular separation
between thymine and CNT (10, 0) leads to the reduced
binding energy of thymine because of the increased 77t
repulsive interaction. Our results confirm that DFT-LDA
can forecast the intermolecular separations and binding
energies of non-covalent systems. Modeling a bio-nano
hybrid like a non-covalently adsorbed nucleic acid base on
CNT can lead to the utilization of CNT as a sensor or as a
transporter for drugs and genes.
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Abstract: The aim of this study was to examine structural brain networks using regional gray matter volume,
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brain networks in three age groups showed economical small-world properties, providing high global and
local efficiency for parallel information processing at low connection cost. The small-world efficiency and
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# Structural Brain Network Change With Aging ¢

INTRODUCTION

New advances in the quantitative analysis of complex
networks, based largely on graph theory, have been
rapidly applied to studies of brain network topological
organization. The structural and functional systems of the
human brain show topological properties of complex net-
works, such as small-world properties, highly connected
hubs, and modularity [Bullmore and Sporns, 2009]. Signifi-
cant discoveries related to human brain functional net-
works have indicated that the brain exhibits small-world
properties characterized by a high clustering index and a
short average distance between any two regions [Latora
and Marchiori, 2001; Watts and Strogatz, 1998], using
modern neuroimaging techniques such as functional mag-
netic resonance imaging (fMRI), and electroencephalogram
(EEG) [Achard and Bullmore, 2007; Achard et al.,, 2006;
Bassett et al., 2006; Eguiluz et al., 2005; Ferri et al., 2007;
Micheloyannis et al, 2006; Salvador et al., 2005]. It has
been verified that structural networks of the human brain
revealed by measurements of cortical thickness or regional
gray matter volume (RGMV) have small-world properties
[Bassett et al., 2008; He et al., 2007, 2008, 2009a]. Moreover,
the small-world properties were confirmed in human brain
structural networks using diffusion MRI technique [Gong
et al., 2009b; Hagmann et al., 2007; Iturria-Medina et al,,
2008], Achard and Bullmore were the first to demonstrate
economical small-world properties in brain functional net-
works, which provide high global and local efficiency for
parallel information processing at a low wiring cost
[Achard and Bullmore, 2007]. Efficiency metrics have also
provided a new measure to quantify differences between
patient groups and appropriate comparison groups [He
et al., 2009a; Liu et al,, 2008; Wang et al., 2009b].

Modularity is thought to be one of the main organizing
principles in most complex systems, including biological,
social, and economical networks [Girvan and Newman,
2002; Guimera et al., 2005; Hartwell et al.,, 1999; Newman,
2006a]. A key advantage of modular organization is that it
favors evolutionary and developmental optimization of
multiple or changing selection criteria: a modular-organized
network can evolve or grow one module at a time, without
risking loss of function in other modules [Kashtan and
Alon, 2005; Redies and Puelles, 2001]. Defining and charac-
terizing modular organization in the human brain can help
us to identify a set of modules structurally or functionally
associated with components that perform specific biological
functions. This investigation will also provide us with rich
quarntitative insights into structural-functional mapping.
The modular organization of structural and functional net-
works in human brain has been demonstrated by several
previous studies [Chen et al., 2008; Ferrarini et al., 2009;
Hagmann et al, 2008; He et al, 2009b; Meunier et al,
2009a,b; Robinson et al., 2009; Valencia et al., 2009].

Normal processes of brain maturation and senescence
might be reflected as quantifiable changes in structural
and functional network topological properties [Bullmore

and Sporns, 2009; Micheloyannis et al.,, 2009]. A previous
study on functional brain networks indicated that an older
age group had significantly reduced cost efficiency in com-
parison to a younger group [Achard and Bullmore, 2007].
Normal aging might thus be associated with changes in
the economical small-world properties of brain functional
networks. Furthermore, normal aging had been proven to
be associated with changes in modular organization of
human brain functional networks [Meunier et al.,, 2009a].
A recent study reported that the organization of multiple
functional brain networks shifts from a local anatomical
emphasis in children to a more distributed organization in
young adults [Fair et al,, 2009]. The study also demon-
strated that community detection by modularity optimiza-
tion reveals stable communities within the graphs that are
clearly different between young children and young adults
[Fair et al., 2009]. A recent study also reported that the de-
velopment of large-scale brain networks is characterized
by weakening of short-range functional connectivity and
strengthening of long-range functional connectivity,
comparing the children group (7-9 years) with the young-
adults group (19-22 years), [Supekar et al, 2009]. How-
ever, few studies have analyzed the influences on both
small-world and modular organization with normal aging.
The main purpose of this study is to clarify topological
properties in structural brain networks among different
age groups. We hypothesized that the economical small-
world properties and the modular organization of struc-
tural brain networks would be altered with normal aging.

In the present study, we divided all healthy subjects
into three groups by age. Study participants were selected
from a large-scale brain MRI database of normal Japanese
(1421 subjects, ages from 18 to 80 years), [Sato et al., 2003].
The structural connectivity in the human brain consisting
of 90 regions was constructed by computing the correla-
tion matrix of RGMV across subjects within each group.
Efficiency metrics were applied to investigate whether
structural brain networks show economical small-world
attributes and whether significant differences exist in
properties of brain networks among three age-specific
groups. We investigated the regional nodal characteristics
of brain networks and compared the between-group differ-
ences in node betweenness. Furthermore, we examined the
modular organization of structural brain networks and
identified several modules of the brain network in each
age-specific group. To clarify differences on the modular
organization of brain networks among three groups, we
compared the constitution of modules and computed
attributes using, for example, the connector ratio and the
distribution efficiency.

MATERIALS AND METHODS

Subjects

The subjects were all community-dwelling normal
Japanese subjects recruited by two projects; the Aoba Brain
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TABLE 1. Characteristics of the subjects

GroupID  Agerange Number of subjects Age (mean + SD)
Young (Y) 18-40 551 (F: 231/M: 320) 2742 £ 6.77
350 (F: 158/M: 192) 2731 + 6.65
Middle (M) 41-60 560 (F: 331/M: 229) 50.94 £ 522
350 (F: 196/M: 154) 51.07 + 5.26
Old (O 61-80 372 (F: 198/M: 174) 68.32 =+ 4.58
350 (F: 188/M: 162) 68.17 & 4.03

The italic and bold characters indicate the characteristics of 350
subjects randomly selected for each group.

Imaging Project, Sendai, Japan and the Tsurugaya Project,
Sendai, Japan. The Aoba Brain Imaging Project was per-
formed to create a database of normal Japanese brain
images [Sato et al, 2003]. To perform this, we obtained
1,637 brain MR images from normal Japanese volunteers
who were living in and around Sendai City, Japan. The
Tsurugaya Project study is a comprehensive geriatric
- assessment (CGA) of the elderly population. It involved
1,179 subjects aged 70 years or older in 2002 who were liv-
ing in Tsurugaya district, Sendai City, Japan. We selected
210 subjects by random sampling from subjects who would
be willing to undergo brain MRI and submitted these
patients to MRI. The subjects of the two projects were all
healthy and had neither present illhess nor a history of
neurological disease, psychiatric disease, brain tumor, or
head injury. Prior to the acquisition of MR images, all sub-
jects enrolled in the two projects were interviewed by med-
ical doctors for screening to determine whether he/she
was normal and to obtain clinical data. In both projects, we
excluded in advance those subjects who had past or pres-
ent history of malignant tumors, head traumas, cerebrovas-
cular diseases, epilepsy, or psychiatric diseases. After the
interview, brain MR images were obtained from each sub-
ject. The MR images were inspected by two to three well-
trained radiologists. Images with the following findings
were excluded from this study: head injuries, brain tumors,
hemorrhage, major and lacunar infarctions, and moderate
to severe white matter hyperintensities. We did not exclude
the images with mild spotty white matter hyperintensities.

We collected brain images of 1,483 subjects in this study
{mean + S5.D.; age, 46.30 & 16.98 years; range: 18-80 years).
To investigate the topological properties and organization
of structural brain networks with normal aging, we di-
vided all subjects into three groups by age (young, 18-40
years; middle, 41-60 years; old, 61-80 years), without
regard to sex. Group ID naming and characteristics of the
subjects are shown in Table L.

MRI data acquisition and the use of them for the studies
by Fukuda H (the last author of the study) were approved
by the Institutional Review Board of Tohoku University
School of Medicine. Informed consent was obtained from
each subject after a full explanation of the purpose and
procedures of the study, according to the Declaration of
Helsinki (1991), prior to MR image scanning.

Image Acquisition

Brain images were obtained from each subject using two
0.5 T MR scanners (Sigma contour, GE-Yokogawa Medical
Systems, Tokyo) with two different pulse sequences: (1)
124 contiguous, 1.5-mm thick axial planes of three dimen-~
sional T1-weighted images (spoiled gradient recalled ac-
quisition in steady state: repetition time (TR), 40 ms; echo
time (TE), 7 ms; flip angle (FA), 30°; voxel size, 1.02 mm x
1.02 mm x 1.5 mm); (2) 63 contiguous, 3 mm-thick axial
planes of gapless (using interleaving) proton density-
weighted images/T2-weighted images (dual echo fast spin
echo: TR, 2,860 ms; TE, 15/120 ms; voxel size, 1.02 mm x
1.02 mm x 3 mm). T1 images were used for the present
analysis and all three images were used to exclude those
MRIs with abnormalities, as described above.

Measurements of Regional Gray Matter Volume

After the image acquisition, RGMV for each subject was
measured by using statistical parametric mapping 2
(5PM2) (Wellcome Department of Cognitive Neurology,
London, UK) [Friston et al., 1995] in Matlab (Math Works,
Natick, MA). First, Tl-weighted MR images were trans-
formed to the same stereotactic space by registering each
of the images to the ICBM 152 template (Montreal Neuro-
logical Institute, Montreal, Canada), which approximates
the Talairach space [Jean Talairach, 1988]. Then, tissue seg-
mentation from the raw images to the gray matter, white
matter, cerebrospinal fluid space, and non-brain tissue was
performed using the SPM2 default segmentation proce-
dure. We applied these processes using the MATLAB file
“cg_vbm_optimized” (http://dbm.neuro.uni-jena.de/vbm.
html). WEU_PickAtlas software was employed to label the
regions in the gray matter images, which provided a
method for generating ROI masks based on the Talairach
Daemon database [Lancaster et al., 2000; Maldjian et al,,
2003, 2004]. We parcellated the entire gray matter into 45
separate regions for each hemisphere (90 regions in total,
see Supporting Information Table SI) defined by the Auto-
mated Anatomical Labeling (AAL) atlas [Tzourio-Mazoyer
et al., 2002] to calculate the RGMYV for each subject.

Construction of Brain Structural
Connection Matrix

To study the topological properties of structural brain
networks among three age-specific groups, we examined
the correlationl matrices using graph-theoretical analysis:
GroupIDs were Young, Middle, and Old. Since there was
a large difference in the number of subjects in each group,
we randomly selected 350 subjects for each age group (the
original group) (Table I) to reduce the influence due to
varying degrees of freedom for each group in computing
inter-regional correlation across subjects. We also repeated
this randomly-selected grouping method 20 times in each
age group to examine whether subject characteristics were
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TABLE Il. Topological parameters of structural brain networks used in this study

Network properties Characters Descriptions
Economical small-world Cost The cost or the sparsity to construct a network.
properties Eloc The local efficiency measures how efficient are the network to exchange the infor-
mation at the clustering level.
Eglob The global efficiency measures how efficient are the network to exchange the infor-
mation at the global level.
Tetoe The integrated local efficiency is the integrals of the local efficiency curves over
the preselected range of cost threshold.
Fegion The integrated global efficiency is the integrals of the global efficiency curves over
the preselected range of cost threshold.
Nodal characteristics - BC The normalized betweenness measures the ability of a node relative to information
flow between other nodes throughout the network.
Inc The integrated normalized betweenness is the integrated normalized betweenness
over the preselected range of cost threshold.
Modularity B The modularity measures how the network is organized into modules with high

level of local clustering.

sBC

The within-module betweenness centrality measures the importance of a node rel-

ative to the information flow between other nodes in the module.
PC The participant coefficient measures the ability of a node to maintain the commu-
nication between its own module and the other modules.

significantly changed. As a result, the characteristics of 350
subjects randomly selected for each age group were not
significantly different from those of the original group. We
used a linear regression analysis to remove the effects
from total gray matter volume and sex, so that the resid-
uals of this regression were employed as the substitute for
the raw RGMYV, denoted as corrected RGMV {cRGMV). To
analyze the structural brain network by using RGMV, we
first applied the method introduced by He et al. to con-
struct the structural connection matrix [He et al., 2007].
We computed the Pearson correlation coefficient between
cRGMYV across 350 subjects randomly chosen from each
group to construct the interregional correlation matrix (N x
N, where N is the number of gray matter regions, here N =
90) for each group. Each connection matrix can be con-
verted to a binarized and undirected graph (network) G by
using a correlation or cost threshold. Then the networks
were analyzed by using graph theoretical methods. All top-
ological parameters of the networks calculated in this study
and their implications are shown in Table IL

Small-World Properties

Small-world properties (clustering coefficient, C, and
characteristic path length, L,) were originally defined by
Wattz and Strogatz [1998]. In addition to the conventional
small-world parameters (C, and L), more biologically sen-
sible properties of brain networks are the efficiency met-
rics (global efficiency, Ege, and local efficiency, Ejoo),
which measure the capability of the network with regard
to information transmission at the global and local levels,
respectively [Latora and Marchiori, 2001]. In several recent
studies, the efficiency metrics have been applied to human

brain functional [Achard and Bullmore, 2007, Wang et al,,
2009a,b] and structural [He et al., 2009a; Iturria-Medina
et al., 2008] network studies. For a graph G with N nodes
and K edges, the global efficiency of G can be computed
as [Latora and Marchiori, 2001]:

1 1

NIN=T) @

Eg]ob (G)
1%]\,G

where dj is the shortest path length between node i and
node j in G. The local efficiency of G is defined as [Latora
and Marchiori, 2001}:

Eioc(G) = Z Egion (G1) @

ze("

where Egp(Gy) is the global efficiency of G;, the sub-graph
of the neighbors of node i. In this study, we generated a
population (n 1,000) of regular networks and random net-
works that preserved the same number of nodes and
edges, respectively. The efficiency metrics (Egop and Ejoc)
of real brain networks (G) were compared with those of
regular graphs (Gy.g) and random graphs (Grana), respec-
tively. The real brain network G is considered to be a
small-world network if it meets the following criteria
[Latora and Marchiori, 2001]:

Eglob (Grcg) < Eglob (G) < Egiob (Grand) and Eloc (Grand)
< E!m: (G) < E]oc (Greg) (3)

In this study, we applied a cost threshold to investigate
economical small-world properties of networks. Such a
thresholding approach can normalize all networks to have
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the same number of edges or wiring cost and thus provide
an avenue to detect changes in topological organization
with aging [Achard and Bullmore, 2007; He et al., 2009a].
To estimate the small-world properties of structural brain
networks and to define a small-world regime, we first
applied a broad cost threshold range (0.05 < cost <0.5,
increased by 0.01) to all the connection matrices. The cost
(or sparsity) was computed as the ratio of the number of
actual connections divided by the maximum possible
number of connections in the network. We then adopted
the following complementary approaches to choose the
small-world regime: (1) the small-world properties were
estimable (K > log(N) = 4.5, N = 90) [Watts and Strogatz,
1998], (2) all brain networks were fully connected, and (3)
the resulting brain networks have sparse properties and
distinguishable properties in comparison to the degree-
matched random networks [Bassett et al., 2008; Liu et al,,
2008; Wang et al., 2009a]. Finally, we selected the small-
world regime as a range of cost threshold (0.11 < cost
<0.25, step = 0.01), These thresholds were also used for
the following calculation of regional nodal characteristics
and modularity.

Regional Nodal Characteristics

In this study, we examined the node betweenness in the
networks. The betweenness be; of a node i is defined as
the number of shortest paths between any two nodes that
run through node i [Freeman, 1977]. We defined the nor-
malized betweenness as BC; = be/<be>, where <be>
was the average betweenness of all nodes. Thus, the nor-
malized betweenness of BC; measures the ability of a node
relative to information flow between other nodes through~
out the network. Finally, we averaged the normalized
betweenness across the range of cost threshold (0.11 <
cost <0.25). Regions with a higher value of BC; (> mean +
SD) were identified as global hubs in the brain network
[Sporns et al., 2007].

Modularity and Regional Role

A module can be generally defined as a subset of nodes
in the graph that are more densely connected to the other
nodes in the same module than to nodes outside the mod-
ule [Radicchi et al., 2004]. Several algorithms have been
proposed to define the modular decomposition of an
undirected graph [Clauset et al., 2004; Danon et al., 2005;
Guimera and Amaral, 2005a, 2005b; Guimera et al., 2004;
Newman 2006a, 2006b, 2004; Newman and Girvan, 2004;
Reichardt and Bornholdt, 2006]. Despite the many interest-
ing alternative methods, it should be noted that the prob-
lem of community finding remains a challenge because no
single method is fast and sensitive enough to ensure ideal
results for general, large networks, a problem that is com-~
pounded by the lack of a clear definition of communities.
Here, we adopted the spectral algorithm [Guimera and

Amaral, 2005b; Guimera et al., 2004; Newman, 2006a] for
community detection, which is believed to be the most
precise and be able to find a division with the highest
value of modularity for many networks [Costa et al,
2007]. This algorithm reformulates the modularity concept
in terms of the eigenvectors of a new characteristic matrix
for the network, called the modularity matrix [Newman,
2006a].

For each subgraph g, its modularity matrix B¥ has
elements

( kik;
b;g) za,']‘ wm}m 6:’]‘ Z

- @
neN(g)

for vertices i and j in g. In Eq. (4), the actual number of
edges falling between a particular pair of vertices i and j is
aij; k; is the degree of a vertex i; 8y = 1 if { = j and 0 other-
wise. Thus, to split the network in communities, the mod-
ularity matrix is constructed and its most positive
eigenvalue and corresponding eigenvector are determined.
According to the signs of the elements of this vector, the
network is divided in two parts (vertices with positive ele-
ments are assigned to one community and vertices with
negative elements to another). Next, the process is
repeated recursively to each community until a split that
makes a zero or negative contribution to total modularity
is reached. Similarly, Newman proposed a new definition
of communities as indivisible subgraphs, ie., subgraphs
whose division would not increase the modularity.

In this study, we detected the community structure for
the structural brain networks of three groups, which were
thresholded by a specific cost threshold (cost = 0.11). With
this threshold, we can capture the structural connectivity
backbone underlying the modular organization of the
most sparse and fully-connected brain networks. To fur-
ther distinguish the roles of nodes in terms of their intra-
and inter-module connectivity patterns, the two measure-
ments, the within-module betweenness centrality, sBC and
the participant coefficient (PC) were applied [Guimera and
Amaral, 2005a; Guimera et al., 2005]. The sBC (i) of a node
i is the betweenness centrality, but is calculated only
within the module s to which it belongs. This parameter
measures the importance of a node relative to the informa-
tion flow between other nodes in the module. The PC(i) of
a node i is defined as

Ny

PCli) =1~ (%)2

§=1

where Ny is the number of modules, ki is the number of
links of node i to nodes in module s and k; is the total
degree of node i. The PC(i) tends to 1 if node i has a ho-
mogeneous connection distribution with all the modules
and to 0 if it does not have any inter-module connections.
PC measures the ability of a node to maintain the
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communication between its own module and the other
modules. A high PC value for a given node usually means
the node has many inter-module connections. Depending
on the sBC, the nodes in the brain functional network
were classified as modular hubs (sBC >mean + std) or
non-hubs (sBC <mean + std), respectively. In terms of the
PC, the hub nodes were further subdivided into R1 con-
nector hubs (PC > 0.25) and R2 provincial hubs (PC <
0.25), and non-hub nodes were divided into R3 connector
non-hubs (PC > 0.25) and R4 peripheral non-hubs (PC <
0.25) [Guimera and Amaral, 2005a; Guimera, 2005].

Statistical Analysis

To analyze statistical significance of between-group dif-
ferences with regard to the efficiency metrics (local and
global efficiency) among three age-specific groups, a non-
parametric permutation test method was applied in the
small-world regime defined above (0.11 <cost <0.25, step
= 0.01), [Bullmore et al., 1999; He et al., 2008]. Thus, we
can explore the between-group differences in efficiency
metrics at each threshold level. Here, we performed three
comparisons (Zy, Zy, Zm) including the young versus mid-
dle (Y vs. M), the middle versus old (M vs. O), and the
young versus old (Y vs. O), respectively. For each compar-
ison, the efficiency metrics of binarized graphs at a given
threshold were computed separately for each group. Then
one randomization procedure of the permutation test
yielded two new groups that were generalized by ran-
domly reallocating each subject’s set of cRGMV measures
from previous groups. The correlation matrices for new
groups were recomputed and binarized by thresholding to
achieve the same threshold as in the real networks. The ef-
ficiency metrics of corresponding binarized graphs and
their between-group differences were calculated. This per-
mutation test randomization procedure was repeated 1,000
times at each threshold, consistent with the real networks.
Finally, the 95th percentile points of each distribution
were used as the critical values for a one-tailed test of the
null hypothesis with a probability of Type I error of 0.05.
Moreover, we calculated the integrals of the efficiency
metrics curves as the integrated metrics (Igio, the inte-
grated local efficiency; Iggon, the integrated global effi-
clency) over the preselected range of cost threshold.
Between-group significances of three comparisons on the
integrated metrics were also estimated by 1,000 permuta-
tion tests. For the investigation of node betweenness, we
also computed the between-group significance of two com-
parisons (Y vs. M and M vs. O) on the integrated normal-
ized betweenness (Ipcy) over the cost threshold range,
using 1,000 permutation tests. To adjust for the multiple
comparisons, a false discovery rate (FDR) procedure was
applied at a g value of 0.05 [Genovese et al., 2002]. We
also calculated the ratio of intermodule connections under
a cost threshold range (0.11 < cost <0.25, step = 0.01)
with the modular organization by the cost of 0.11. An

ANOVA analysis was applied to test the between-group
significance of the ratio of intermodule connections.

RESULTS

Economical Small-World Properties and
Age-Related Changes

We used a range for cost threshold (0.11 < cost <0.25,
step = 0.01) to verify the properties of structural brain net-
works from three age-specific groups (Young, 1840 years;
Middle, 41-60 years; Old, 61-80 years). With the cost
thresholding strategy, both the local and global efficiency
curves of structural brain networks in three groups were
intermediate compared with those of the matched random
and regular networks (Fig. 1A,B). The structural brain net-
works in three age-specific groups exhibited economical
small-world properties, indicated by higher local and
global efficiency than comparable random and regular net-
works, respectively [Latora and Marchiori, 2001].

As shown in Figure 1A, the local efficiency in the young
group was significantly larger than those of the middle
and old groups, whereas no significant difference was
found between the middle and old groups. The global effi-
ciency of the young group was significantly lower than
that of the middle and old groups, and the old group had
significant lower values than the middle group (Fig. 1B).
Using the integrated efficiency metrics over the small-
world regime, we defined a U-curve model to clarify the
trend of topological properties of structural brain networks
with normal aging. The integrated local and global
efficiency showed a U-curve and an inverted-U-curve,
respectively (Fig. 1C,D).

Regional Nodal Characteristics and
Age-Related Changes

To identify the global hubs in structural brain networks,
we averaged the normalized node betweenness centrality
BC; of each region over the cost threshold regime. The
regions with higher BC; (> mean + sd) were identified as
the global hubs (Table III). In the young group, 16 regions
were designated as the global hubs, specifically 14 associa-
tion regions and 2 limbic/paralimbic regions. In the mid-
dle group, 14 regions were identified as the global hubs,
specifically 10 association regions and 4 limbic/paralimbic
regions. In the old group, 14 regions were identified as the
global hubs, specifically 10 association regions, 3 limbic/
paralimbic regions and 1 subcortical region. Among the
identified global hubs, 12 of 16 regions in the young
group, 9 of 14 regions in the middle group, and 7 of 14
regions in the old group were frontal and parietal regions.
Results also indicated that 10 out of all 14 global hubs in
the middle group and 6 out of all 14 global hubs in the
old group were also identified as the global hubs in the
young group. To further clarify the alteration of regional
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Figure I.

Economical small-world properties and age-related changes. Left:
The local and global efficiency of brain networks as a function of
cost threshold. Right: The trend for the integrated efficiency
metrics in age-specific groups. A: Local efficiency calculated
under the cost threshold range of 0.11-0.25. B: Global effi-
ciency calculated under the cost threshold range of 0.11-0.25.

nodal characteristics, we applied 1,000 permutation tests
to compute the significance of between-group differences
in node betweenness (P < 0.001, FDR-corrected). The
results indicated that six regions in the dorsal frontal-
parietal junction [IFGopercl, SFGmed.L, SFGmedR,
SFGdor.L, IPL.L, PCUN.L; for abbreviation see Supporting
Information Table SI] showed decreased node betweenness
from young to middle age, whereas only three regions in
the ventral frontal and temporal Ilobes [ORBinfL,
ORBInf.R, STG.L] revealed increased node betweenness
(see Supporting Information Table SII). For the period
from middle to old age, five ventral lateral cortices in
the frontal and temporal lobes [ORBinfL, ORBinfR,
ORBmed.R, MTG.L, MTG.R] showed decreased node
betweenness, whereas nine regions mostly in the lateral
occipital-parietal junction [MOGL, MOGR, ANGL,
ANG.R] and the paralimbic/subcortical area [PHG.R,
AMYG.R, CAU.L, THA.L] revealed increased node betwe-

Significant differences between age groups were tested by per-
mutation test under uncorrected conditions (P < 0.05). A; Y
vs. M, xX; Yvs. M, ;Y vs. O. C: Integrated local efficiency. D:
Integrated global efficiency. Three comparisons were performed
as follows: Z; (Young vs. Middle), Z; (Middle vs. Old), and Zy
(Young vs. Old).

enness (see Supporting Information Table SIII). The global
hubs and the significant age-related changes in node
betweenness were visualized by surface representations of
structural brain networks using the Caret software [Van
Essen, 2005], (see Fig. 2).

Modularity and Age-Related Changes

Maximum modularity (M) of brain networks decreased
as a function of increasing cost threshold (see Supporting
Information Fig. S1). It is generally accepted that M > 0.3
are indicative of nonrandom community structure [New-
man and Girvan, 2004]. In this study, as the values of
modularity were all larger than 0.3 over the preselected
cost threshold range, and structural brain networks were
consistently modularly organized in three age groups.
However, there was no significant difference in modularity
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