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Table 3.4 Information versus Information Motion of the hand/finger
motion of finger/hand ~ N

Texture Lateral motion

Hardness Pressure

Temperature Static contact

Weight Unsupported holding

Global shape/volume Enclosure

Global shape/exact shape Contour following

For example, when we want to know the textures of the objects, we push softly
and stroke over the surfaces of the objects. Table 3.4 shows the relationship. These
indicate the design of the driving equipment of the sensor system.

Second point is to select the suitable sensor element from many sensor ele-
‘ments. The clarification of the mechanism of the sensory receptor in human skin
and touch feelings is useful to consider which information is necessary and as a
result sensor elements are chosen. For the sensor system, the chosen sensor ele-
ment is mounted to driving equipment and the sensor output is obtained. The last
one is the signal processing of the sensor output obtained by the sensor system.

The signal processing is also derived from the clarification of the mechanism of

the sensory receptor in human skin and touch feelings.

3.9 Sensor for Measuring Touch Sensation

Especially, we have focused on the Pacinian corpuscle and we have already devel-
oped some tactile sensor systems by using the feature of the Paccini. As mentioned
before, Pacinian corpuscle plays important role in Zﬁfgh—frequenf:y vibrations that
occur when we move our fingertips over structures with very fine texture.

We already tried to measure the tactile sensation of fabrics [8~10], human skin
[11-16], hair conditions [17], and we succeeded. Figure 3.13 is the sensor part.
PVDF film, polyvinylidene fluoride film is one of the piezoelectric materials. The
film is effective to measure a force and displacement and it is used for the sensory
material. In addition, PVDF film has features light weight, flexible, sensitive, and
thin. The thickness of the film is 28 wm. Furthermore, the film has ihe faatum that
the response is very similar to that of Pacinian corpuscle that is one of the receptor
of human skin. The lattice shape surface has a role to improve the sensitivity of the
sen%or as hke human ﬁ.ngm punt
of the fabrzcs ”ic sensor part as %hcwn in Fzg 3 13 is attachecf to the: t}p {;f tha
aruﬁczal robotic finger and the sensor is pushed to the surface of the fabric softly
by using the pzezoelectme: actuator. And the sensor is slid over the surface with the
x-axis stage driven by a stepping motor. The obtained sensor output is transmitted
to personal computer via AD card and the sensor signal is processed.

The typical sensor output is shown in Fig. 3.15.
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Fig. 3.13 Sensor part

Fig. 3.14 Sensor system

For the signal processing, we calculated two parameters. One is the evalua-
tion of the magmmd& of the amphtuiie of the sensor output, using this equation.
Thls parameter is based on the feature of Pacxman corpuscie since the ‘output of
Pacinian corpuscle is proportional to the appher;i,force,

Var = —— 12@(5) ©)?

{z=]
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Fig. 3.15 Typical sensor output on fabrics

Here, N is the data point number of PVDF output, x(i): ith PVDF output signal,
and ¥ is the average of PVDF output.
using the raw data, power spectrum density P(f) was calculated by FFT analysis.
Then, the summation is obtained in the range from 100 to 500 Hz, and in the rangc
from 100 to 2,000 Hz. We selected the frequency on the basis of the Pacinian
corpuscle characteristics as mentioned before.

Sa 00 , 2{)&0
Rs =55, Sa= > P(f), Sb= 3 P()
f=100 F=100

We measured six kinds of women’s underwear with this sensor system and two
parameters were obtained. The plotted data is shown Fig. 3.16.

Fig. 3.16 Rs versus Var 1
obtained from the sensor .
output 0.9 - : >

0.6

Y0 o1 02 03 04 05 06

Var(x10)
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Separating from the measurement experiment, the sensory test was done.
Semantic differential (SD) method with five grades scale was used, 14 key words
are prepared as follows. 1: Damp-Fine, 2: Rough-Smooth, 3: Prickling—Not
prickling, 4: Dry-Moist, 5: Not slmy~8hmy, 6: Not sticky-Sticky, 7: Hanging
about-not hanging about, 8: Hard-Soft, 9: Not downy-Downy, 10: Not
cool-Cool, 11: Warm—Not warm, 12: Not wet-Wet, 13: Bad feelmg—(}ood fﬂﬂhﬂg,
14: Uncomfortable-Comfortable. Subjects are five women, who are evaluation
experts in industry, and they are 30 and 40s.

There are many kinds of analysis method, and we tried factor anaiysis. The
elements of the first principal component are “damp”, “moist”, “wet”, “hanging
about”, “sticky” and “fitting” and the elements of the second are “d{}wny”y “soft”,
“not prickling”, “smooth”, “not cool”, “warm”. The factor loading of the first
principal component is larger than 0.9 and the loading of the second is larger than
0.5. And the cumulative contribution ratio of the first and second components is
95 %, and the evaluation of wear and/or touch feeling can be measured by the two
componems

The sensor in Fig. 3.15 cannot measure the feelings of “Tight” and “Warm”,
therefore, as the value of the first component, the average of “damp”, “moist”, and

“wet feeimg is calculated, and as value the second, the average of “soft” , “downy”,
and “not prickling”. The values are compared with the sensor ompu!: and we
obtained the clear relations between Rs and downy and soft feeling whose correla-
tion coefficient is—0.79, and Var and damp and wet feeling is—0.81.

3.10 Palpation Sensor

?alpatmn sensor for measuring hardness has also been developed [18]. The sensor
pushes the object based on the hapncs motion in Table 3.4. One example of sen-
sor is shown in Fig. 3.17. PVDF is used also sensory material. And the amphtude

Vulcanized rubber
Strain gauge

ke Metal base

Fig. 3.17 Palpation sensor for measuring prostate
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of the output is evaluated. The sensor is attached to the tip of finger and a small-
sized motor is attached to the base of the finger to excite the sensor to the: object.
When the objec:t is harder, the amplitude of the sensor output is larger. We tried to
measure the various prostates in clinical tests, such as normal prostate, prostatic
cancer, hypertmphy, with stones. The hardness of prostatic cancer is similar to that
of bone, and that of prostatic ‘hyper trophy is elastic. Concerning the prostate with
stone, the hardness of the part of stone is as same as stone.

Figure 3.18 shows the result that i is one example in clinical test. u means in
vertical axis the average of the amplitude of the sensor output. The prostate con-
ditions of subject are as follows. A: Normal and healthy, B: almost normal and
healthy, C: between and normal prostatic hypertrophy, D: under treatment of the
prostatic cancer, E and F: prostate stones in places, G: prostate stoned.

It is seen that the outputs on subjects A and B are much smaller than the others
and the output of B is slightly larger than that of A. The difference corresponds to
the difference of the disease A and B. |

The sensor value on subject C is much larger than that of subject A and B. It means
that the state of the prostate is closer to the hypertrophy. It is seen that the sensor out-
put on subject D, who is under treatment of prostatic cancer, is closer to that of subject
C. About the condition of subject D, the palpation result of the doctor without sensor
could not distinguish whether the stiffness is that of the prostatic cancer or hypertro-
phy. The result of the sensor output means the condition is closer to that of prostatic
hypertrophy. The sensor output is effective to evaluate the disease conditions.

Subjects E and F have prostate stones in places, and the sensor output takes the
maximum and much larger than the others’. Subject G has one prostate stone and
it was difficult for the doctor to search for the part. Therefore, the measurements
were done many times and the fluctuation of the sensor output was large. From the
doctor’s diagnosis, the state of prostate except the stone part is prostate hypertro-
phy. Therefore, the average value became the smaller than that of subject E and F.
However, it is noticed the maximum value on subject G is large and the result means
that it is unheaizhy condition.

Further, the conditions of subg'eCts’ were investigated using the ultrasound
tomography. The enlarged prostate conditions of subject C and D were observed.

Fig. 3.18 Sensor output on 0.03
prostate g arlands of subjects
A-G
002
=
=)
0.01
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The white marks, which correspond to the prostate stones, were observed in places
on the prostate glands of subject E and C. However, the white mark could not be
discovered on the prostate of subject G, by ultrasound tomography.

These results showed that the output of the present sensor varies with the
stiffness of pmstate glands and the present sensor output has a good correlation
between doctor’s palpation result. Further, it is said the sensor is effective in diag-
nosing the condztion of prostate glands.

3.11 Concluding Remarks

In this chapter, it is shown that the characteristics of human sensory and haptics
of handffinger are useful. In order to make various things that human feel com-
fortable and good feelings in industry, it is impo;:t:ant to know how human feel
when he/she use the made things, and the establishment of an objective evaluation
method including sensor system is required. In medical welfare fields, the highly
accurate palpation sensor is expected to be effective to find the part of disease in
early stage and to keep the health. Further, to know the principals and mechanism
of the tactile sensation leads to the development of the technology, for example,
the tactile display system that can transmit someone else touch feelings and tech-
nology that can give reality using of characteristics of touch feelings. In future, the
range to use the technology of the touch feelings will extend more and more.
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Decreasing Coupling between Feeding Coils
for Functional Electrical Stimulation with Direct Feeding Method

K. Kato, K. Iwasaki, K. Furiya, N. Tamura®, T. Satoh, T. Takura®, F. Sato*, H. Matsuki
Graduate School of Bmd. Eng., Tohoku Univ., 6-6-05 Aoba Aramaki-aza, Aoba-ku, Sendai 980-8579, Japan
*Graduate School of Eng., Tohoku Univ., 6-6-05 Aoba Aramaki-aza, Aoba-ku, Sendai 980-8579, Japan

Functional electrical stimulation (FES) is a therapy used to rehabilitate patients with lost movement
functions, and to apply stimulations. We adapted a method of implanted direct feeding method to apply stimulation
as part of this therapy. Stimulus energy and signals for controlling devices are applied to devices by utilizing a
mounted system using magnetic coupling. Power feeding is presently carried out with a serial resonance circuit in the
method of direct feeding. Two feeding coils are used for the upper and lower arms individually in order not to disturb
the movement in the joint of the elbow. Declination of resonance from variations in coupling interference from the
movement of feeding coils is a problem. To solve it, we used a method that reduced variations in coupling interference
by using a short coil between feeding coils. We report here the result of experiments conducted on this method.

Key words: Functional electrical stimulation, divect feeding method, implant stimulator
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In this paper, we propose a novel patient-specific method of modelling pulmonary airflow using graphics processing unit
(GPU) computation that can be applied in medical practice. To overcome the barriers imposed by computation speed,
installation price and footprint to the application of computational fluid dynamics, we focused on GPU computation and the
lattice Boltzmann method (LBM). The GPU computation and LBM are corapatible due to the characteristics of the GPU. As
the optimisation of data access is essential for the performance of the GPU computation, we developed an adaptive meshing
method, in which an airway model is covered by isotropic subdomains consisting of a uniform Cartesian mesh. We found
that 47 size subdomains gave the best performance. The code was also tested on a small GPU cluster to confirm its
performance and applicability, as the price and footprint are reasonable for medical applications.

Keywords: pulmonary airflow simulation; patient-specific modelling; high-performance computing; multi-GPU

computation; lattice Boltzinann method

1. Introduction

Computational fluid dynamics (CFD) studies on pulmon-
ary airflow started in the early 1990s (Baldshdzy and
Hofmann 1993a, 1993b) and have contributed to revealing
respiratory mechanics using ideal airway models (Nowak
et al. 2003; Zhang et al. 2005; Yang et al. 2006). To
understand the mechanics in more detail and for practical
studies, patient-specific models constructed from medical
images have been used in the twenty-first century. van
Ertbruggen et al. (2005) computed the deposition of
inhaled microparticles using a realistic airway model,
while De Backer et al. (2008) measured the change in
airflow resistance in the lungs of patients with asthma
before and after bronchodilator administration, Modern
computational techniques most often used in pulmonary
airflow simulations are the finite volume method (Gemci
et al. 2008) and finite element method (Lin et al. 2007),
which are computed on airway models consisting of
tetrahedral elements. Recently, De Backer et al. (2010)
compared numerical results with in vivo measurement data
and reported on the validity of numerical pulmonary
airflow simulation. As the pulmonary airway tree has many
peripheral airways in which outlet boundary conditions
should be given, several researchers (Comeford et al. 2010;
Yin et al. 2010) have studied the estimation of outlet
boundary conditions for each outlet. Based on these

studies, patient-specific CFD computation will soon be
applied to the diagnosis and treatment of respiratory
diseases such as asthma and bronchiectasis. As disease
symptoms arise from unusual airflow behaviour, identify-
ing precise airflow features in each patient is important,
while geometric analysis and spirometry are currently used
in respiratory diagnosis. CFD can predict the effects of
local airway obstruction and dilation on overall respiratory
function, or it can be applied to custom-made drug-delivery
systems. The visualisation of airflow will also help both
medical doctors and patients understand what is occurring
in a patient’s body.

Nevertheless, computational time is a barrier to
achieving the practical use of such methods. The
pulmonary airways are multi-level bifurcating passages
that require a huge computational mesh to resolve the flow
field in all bronchi, and rapid simulation is crucial to the
clinical application of patient-specific modelling. One
possible approach is parallel computing, and parallel CFD
on a central processing unit (CPU) cluster is now
commonly used in commercial software. Parallel CFD
using a cluster system with a massive number of CPUs,
such as the machines on the Top500 list of supercomputers,
may overcome the problem, but few people can access
such resources. This is particularly important when we
consider the use of computing in medicine, as most
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clinicians can only afford low cost, small-footprint
computer systems. Recently, parallel CFD on graphics
processing units (GPUs) has attracted interest as a new
innovation in CFD simulation. A GPU contains hundreds
of streaming processors and is attached to very wide-
bandwidth device memories. Because nVIDIA introduced
the general-purpose GPU computing library, the Compute
Unified Device Architecture (CUDA) in 2006, many
researchers have attempted GPU computation for a variety
of CFD problems (Corrigan et al. 2010; Thibault and
Senocak 2010).

In this paper, we propose a novel patient-specific
method of modelling pulmonary airflow using multi-GPU
computation. Conventional patient-specific models use
semi-implicit methods to solve incompressible flow, but
most of the computational time is consumed in the
iterative procedure used to solve the pressure Poisson
equation due to very slow convergence. Instead, we use the
lattice Boltzmann method (LBM), a fully explicit
incompressible flow solver. The simple vectorised
operations of the LBM are suitable for GPU computation,
In addition, the performance of the LBM strongly depends
on memory bandwidth, due to many variables included in
the computation; hence, the LBM can benefit from GPU
computation. Some studies (Zhao 2008; Riegel et al. 2009;
Kuznik et al. 2010; T6lke 2010) have reported the capacity
of GPU computation with the LBM (GPU-LBM).

However, the computational mesh must be well
designed for GPU-LBM computation, as coalesced
memory access and reduced access to GPU device memory
are essential in the CUDA programming model. Here, we
apply a Cartesian mesh, which is suitable for both memory
access and patient-specific modelling. As medical image
data consist of voxels aligned using Cartesian co-ordinates,
a Cartesian mesh can be generated directly from the data,
whereas a tetrahedral mesh, often used in conventional
patient-specific modelling, requires laborious mesh gener-
ation, When we use a Cartesian mesh consisting of cuboid
domains, the data are inherently structured, which is
adequate for GPU computation. However, such a simple
cuboid domain results in much unnecessary mesh because
the pulmonary airway is a set of long branches and
occupies a very small region in medical image data.
Conversely, if we eliminate the unnecessary mesh, the data
become unstructured. In this case, each mesh component
must know the dependency of the neighbouring mesh
components, and the data position of each mesh component
is independent of its geometric position, bringing in non-
coalesced memory access and many accesses to the device
memory. Hence, GPU-LBM computation has not been
developed for complex geometry problems. To overcome
this drawback, we developed an optimal meshing method
that retains the features of both structured and unstructured
meshes.
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Figure 1. The D3Q19 lattice model.

2. Lattice Boltzmann method

The LBM is a numerical scheme for flow simulation based
on the application of the Boltzmann equation to the
analysis of molecular movement. In the LBM, a continuous
fluid is represented by ideal particles, which move only
along arestricted path (the lattice) ata limited speed. In this
study, we apply the D3Q19 lattice model as shown in
Figure 1 for an isothermal incompressible airflow.

The movement of the particles is simply expressed by
collision and streaming steps described in the lattice
Boltzmann equation:

Sfilx + cAr, t + Ar) = fi(x, 1) + Qffi(x, D], (1)

where f; is the particle distribution heading in direction
i=0-18, and Ar is the time interval. As the distance
which the particles travel is limited to adjacent lattice
points at every time step, the particle speed ¢ can only take
the values

0, for i=0
c=<{ Ax/At,
V2Ax/At, for i=1T7~ 18

fori=1~6 %))

where Ax is the lattice spacing and  is the collision
operator for which the lattice Boltzmann-Gross—Krook
(ILBGK) model (Qian et al. 1992) is often applied.
The LBGK equation is

fi(x + CA’; t+ At) :fi(x> t) + :l’—, {ﬁq(xy 3] _fi(x> t)};
&)
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where the subscripts @ and B represent a direction in
Cartesian co-ordinates, 6 is the Kronecker delta and 7, is a
coefficient that depends on the particle direction, i.e. ty =
1/3fori=0,7 =1/18 for i= 1-6 and £, = 1/36 for
i=7-18. The LBGK equation satisfies the equation of
continuity and the Navier—Stokes equation. 7 is the
relaxation time: the amount of time until the lIocal particle
distribution reaches equilibrium after particle collisions
represented by

s&ol ©

=

+ ®

[

using the fluid kinetic viscosity v. ¢; is the speed of sound,
related to the particle speed in the LBGK model by

s =—=C. ©)

The macroscopic fluid variables density p, velocity u, and
pressure P can be obtained from the following equations:
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p=> fi 7

i==(}
i8
Py = Zficim (8)
=0
P=clp, ©)

using the microscopic variable f;. As shown above, the
solution procedure is fully explicit, and no iterative solver
is necessary in the LBM.

The GPU code was developed with CUDA version 3.1
(CUDA C programming guide 2010) and all of the
macroscopic and microscopic fluid variables were
computed in single precision. The bounce-back condition
was applied to satisfy the no-slip condition at the airway
wall. The tracheal inlet boundary condition is described
by a prescribed flow velocity. The computations
performed in this study are all computed with a tracheal
Reynolds number in 1500 with a parabolic velocity profile;
hence, laminar flow can be assumed in most of the
computational domain. The outlet boundary condition to
the outermost peripheral airways is given by a fixed
pressure. As the pulmonary airways have a branched
geometry, the boundary condition should be estimated for
each outermost airway to obtain a better solution
(Comeford et al. 2010; Yin et al. 2010). However, in thisg
paper, we mainly discuss the applicability of the GPU-
LBM to medical practice. For CFD simulation of any
complex geometry, the code is implemented to compute
the outlet and inlet boundary conditions facing arbitrary
directions. Overall velocity distribution represented in this
study qualitatively agreed with other pulmonary airflow

studies (Rochefort et al. 2007; Freitas and Schréder 2008),
for example, with respect to secondary vortexes, although
the patient-specific airway models used in their study and
our study are different.

3. Adaptive meshing method

For this study, a subject-specific voxel airway model was
constructed from the computed tomography (CT) data of a
41-year-old male using in-house airway-lumen extraction
software based on the region-growing method. We built a
13-generation airway model consisting of a fluid mesh
with 7,746,378 cubes measuring 0.215%° mm>, as shown in
Figure 2. The term ‘generation’ indicates the number of
branches from the trachea to the outermost peripheral
airways. As the CT data consist of voxels aligned in
Cartesian co-ordinates, a computational mesh can easily
be generated from the CT data using a Cartesian mesh.
According to the CUDA C best practices guide (2010),
coalesced memory access and less access to GPU device
memory are necessary to bring out the performance of the
GPU computation. The term ‘coalesced memory access’,
in GPU computation, indicates memory access to
successive data blocks within a certain size at one time.
This is achieved easily on the simple cuboid domains
created with a Cartesian mesh. However, the use of a
simple cuboid domain covering the entire airway model is
uneconomical because the pulmonary airway is a set of
long branches, which occupies a very small region in the
CT data. Therefore, we propose an adaptive meshing
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Figure 2. A 13-generation airway model: colour distribution
indicates generation number of airways.



