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M, SHE TIIEE < oL HEE A TR % B
L. BN RET 8RN TR Z R
T LI LTV D, T B AT TR,
HERY & 72 % mRNA %3 DS BAES RO T
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RNA interference (RNAI) is a gene-regulating system that is controlled by external short interfering RNAs
(siRNAs). Sequence selective gene silencing by siRNA shows promise in clinical research. However, there
have been few efficient methods for delivering siRNAs to target cells. In this study, we propose a novel
type of RNA duplex-bindable molecule with an oligodiaminosaccharide structure. These 2,6-diamino-
2,6-dideoxy-(1-4)-B-p-galactopyranose oligomers (oligodiaminogalactoses; ODAGals) conjugated with
a-tocopherol (vitamin E; VE) or a VE analog were designed as novel siRNA-bindable molecules that
can be utilized to deliver RNAI drugs to the liver. Among these compounds, the VE analog-bound ODAGal
was suggested to bind to RNA duplexes without inhibiting RNAI activity.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the discovery of RNA interference (RNAi),' short interfer-
ing RNAs (siRNAs) have been receiving a lot of attention as candi-
dates for next-generation drugs.”* SiRNAs are composed of
double-stranded RNA. Because they target complementary se-
quences of mRNAs, siRNAs promise high target specificity. Further-
more, RNA molecules are smaller than antibody drugs and can
cross cell membranes using a suitable drug delivery system
(DDS). In principle, therefore, siRNAs can be delivered to any tissue
and target mRNA in any cell. However, DDSs for nucleic acid drugs
are far from established.

For the effective transfection and DDS of siRNAs, a variety of
methods have previously been reported, including viral and non-
viral delivery methods. Viral delivery is much effective, but there
are problems of cytotoxicity and immunological response.” Non-
viral delivery strategies have included the use of a variety of
RNA-conjugates and carriers, such as cationic lipids, polymers,
and other molecules.*"® Among these strategies, cationic carriers
are one of the dominant methods, and cationic polymers, repre-
sented by Lipofectamine™, have been widely used for in vivo
experiments. However, these cationic carriers generally need to

* Corresponding author. Tel./fax: +81 4 7121 3671.
E-mail address: twada®rs.tus.acjp (T. Wada).

0968-0896/$ - see front matter © 2014 Elsevier Ltd. All rights reserved.
htp:fidx.doi.org/10.1016/.bme.2013.12.060

be used in large doses to form nanoparticles, and suffer from cyto-
toxicity because of the increased quantities of cations.”!!

We previously reported that ‘oligodiaminosaccharides,” which
have amino groups at the 2- and 6-positions of a-1-4 linked oli-
go-D-glucose, exhibit A-type nucleic acid duplex-binding proper-
ties.!?> These ‘oligodiaminoglucoses (ODAGIcs) can specifically
interact with RNA duplexes rather than B-type DNA duplexes.
The 4mer of an ODAGIc can bind to the 12mer of an RNA duplex
in approximately a stoichiometric ratio. Thus, these RNA duplex-
specific-binding oligodiaminosaccharides can be useful as a com-
ponent of siRNA carriers.

Herein we report the synthesis of a novel type of oligodiamino-
saccharide conjugated with vitamin E or its analogs that can be
useful as a carrier of siRNA drugs. Vitamin E (VE), known as
o-tocopherol, is a fat-soluble vitamin. Such lipophilic compounds
are transported to liver cells with chylomicrons after absorption
from the small intestine. The liver-endocytosed vitamin E is drawn
to the cytosol of liver cells by a-tocopherol transfer protein
(o-TTP).** '

Previously, a vitamin E-conjugated siRNA was reported to be
efficiently transported to mouse liver cells. Importantly, vitamin
E had very low cytotoxicity,'* and the vitamin E-conjugated siRNA
did not show any side effects.’®

In the present study, we attempted to construct vitamin E-siR-
NA conjugates through noncovalent interaction with oligodiami-
nosaccharides. The noncovalent approach can prevent vitamin E
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from the sterically hindering the RNAi process if the binding
molecules become disassociated from the siRNA in cytoplasm.
Conjugates of vitamin E and its analogs with 2,6-diamino-2,6-dide-
oxy-B-p-oligogalactopyranoside are expected to have similar struc-
tures and functions as those of ODAGIcs. We thus propose these
‘oligodiaminogalactoses (ODAGals) as novel RNA duplex-bindable
molecules.

It has been previously reported that vitamin E is recognized by
o-TTP at the chroman ring, rather than at the alkyl chain.*®?7 Thus,
we synthesized two types of ODAGal derivatives: one ODAGal
derivative was conjugated with native vitamin E, whose phenolic
hydroxy group was used to covalently bind vitamin E to the ODA-
Gal moiety, and the other ODAGal derivative was conjugated with
a VE analog whose phenolic hydroxyl group was preserved.

2. Results and discussion
2.1. Preparation of the glycosyl donor

To construct the p-linked oligodiaminogalactose structure via
glycosylation, an adequately designed glycosyl donor was synthe-
sized from the known galactosamine derivative 1, which was
synthesized by the procedure described in the literature.’® Next,
the 6-OH group of 1 was converted to a phthalimide group via
the Mitsunobu reaction to afford 2. The 3-OH group of 2 was then
selectively protected with a p-methoxybenzyl (PMB) group using
dibutyltin oxide to obtain 3.?° Finally, the 4-OH group of 3 was
chloroacetylated to afford the glycosyl donor 4 (Scheme 1).

2.2. Elongation of sugar chains

In the glycosylation reaction, commonly used N-iodosuccini-
mide and trifluoromethanesulfonic acid were employed for activa-
tion of the thiophenyl glycoside 4. However, when using
dichloromethane or dichloromethane-diethyl ether (1:1, v/v) as
the solvent, partial removal and iodination of the PMB group were
observed (Scheme 3). Furthermore, the iodinated PMB group was
more stable and difficult to remove than the unmodified PMB
group under acidic conditions (data not shown). In this study,
these side reactions were inhibited using dichloromethane-diethyl
ether (1:3, v/v) as the solvent, and the glycosylation reaction
proceeded in good yield. Dechloroacetylation was then carried
out under weak basic conditions, as shown in Scheme 1. When
the 4-O-acetylated glycosyl donor was used, however, the acetyl
group could not be selectively removed under basic, acidic, or
enzymatic conditions. Thus, by repeating the synthetic cycle
including glycosylation and dechloroacetylation, the trimer of
ODAGal 7 was obtained (Scheme 2).

1395

The PMB groups of trisaccharide 7 were removed in good yield
under acidic conditions using trifluoroacetic acid, although a minor
amount of cleavage of the glycoside bond occurred as a side reac-
tion. It is noteworthy that in the case of 3-O-benzyl trisaccharide,
the benzyl groups were not efficiently removed. In reductive reac-
tions, such as catalytic reduction using palladium on carbon, the
reaction rate was very slow, and two of the benzyl groups re-
mained even after one day. Under acidic conditions, the desired
compound was not obtained because nealy all of the glycoside
bonds were cleaved.

dated and conjugated with a propargylated vitamin E (11), vitamin
E analog (16'7), and the 4-methoxytriphenylmethyl (MMTr) group
(19) via the Huisgen reaction®’ to obtain triazole-linked trisaccha-
rides 13, 17 and 20, respectively. The phthalimide groups of 13 and
17 were then removed by treatment with hydrazine monohydrate
and the products were purified by reverse-phase HPLC to afford the
VE and VE analog conjugated ODAGal derivatives 14 and 18. Sepa-
rately, the MMTr group was removed following dephthaloylation
of 20 to obtain the non-conjugated ODAGal 21.

2.3. Evaluation of the interactions between the ODAGal
derivatives and RNA-RNA duplexes

To evaluate whether ODAGals can interact with and induce
structural changes or thermodynamic stabilization of RNA du-
plexes, UV melting, CD spectrometry, and fluorescence anisotropy
measurements were carried out. All of the experiments were per-
formed under near to physiological conditions with a 10 mM phos-
phate buffer containing 100 mM NaCl at pH 7.0. Figures 1 and 2
present the results of the UV melting analyses of the non-conju-
gated ODAGal 21 complexed with the RNA duplexes
(5'-rCGCGAAUUCGCG-3'); (RNA-I) and (5-rAAAAAAUUUUUU-3'),
(RNA-II) (1 equiv of 21 was added to the RNA duplex solution)
respectively. The melting temperatures (Tp,) for the two systems
increased by 2.0 °C and 2.2 °C, respectively (Table 1). These results
suggest that the ODAGal moiety did interact with the RNA du-
plexes, and thermodynamically stabilized them. On the other hand,
when 4 equiv of 21 were added to the RNA duplex solutions, the Ty,
values were slightly decreased. These results suggest that an ex-
cess amount of ODAGal thermodynamically destabilizes the du-
plexes, or aggregation of 21 occurs at such a high concentration.

The UV melting curves for the complexes of VE-bound ODAGal
14 with RNA-I and RNA-II are shown in Figures 3 and 4, respec-
tively. Although the curves for both RNA-I and RNA-II were signif-
icantly changed, an increase in the Ty, values was not observed in
either case. In addition, when 4 equiv of 14 were added, the T, val-
ues for RNA-I decreased and the UV melting curve showed an

Ho O Ho NPhth Ho NPhth
% ;o a_ | g :‘o b | o
HO SPh HO SPh PMB SPh
NPhth NPhth NPhth
1 2 3
.
claco \Phth
%&
PMBO SPh
NPhth
4

Scheme 1. Synthesis of the glycosyl donor 4. Reagents and conditions: (a) DIAD, phthalimide, PPh3, THF, rt, 1 h, 71%; (b) (i) Bu2SnO, toluene, reflux, 12.5 h, (ii) PMBCI, TBAI,

toluene, reflux, 5.5 h, 93% over two steps; (c) ClAcCl, pyridine, 0 °C, 30 min, 93%.
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Scheme 2. Synthesis of the protected tri-diaminogalactose 8. Reagents and conditions: (a) (i) NIS, TfOH, 3-bromo-1-propanol, CH;Cl,, 0 °C, 20 min, (ii) NaOMe, CH,Cl,—
MeOH, 0°C, 12.5 h, 85% over 2 steps; (b) (i) 4, NIS, TfOH, CH,Cl>-Et,0, 0 °C, 1.5 h, (ii) NaOMe, CH,Cl,-MeOH, 0 °C, 13 h, 79% over two steps; (c) (i) 4, NIS, TfOH, CH,Cl,-Et;0,
0°C, 1.5 h, (ii) NaOMe, CH,Cl,-MeOH, 0 °C, 14 h, 77% over two steps; (d) T0%TFA in CH,Cly, 0°C, 2 h, 71%.
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Scheme 3. Side reaction in glycosylation reaction.

abnormal shape, while the T, value for RNA-II could not be
determined. These results indicate that, unlike the non-conjugated
ODAGal 21, the VE-bound 14 did not bind efficiently to the RNA
duplexes.

In contrast, the VE analog-bound ODAGal 18 stabilized the RNA
duplexes. As shown in Figures 5 and 6, although the addition of
1 equiv of 18 induced no significant change in the UV melting
curves, an increase in the melting temperatures was observed
when 4 equiv of 18 were added to the RNA solutions. In this case,
the Ty, values increased by 2.7 °C for RNA-I and 9.4 °C for RNA-IL
These results suggest that the VE analog-bound ODAGal 18 inter-
acts with the RNA duplexes in a manner similar to that of ODAGIc
and non-conjugated ODAGal. However, for RNA-II, a second flexion
point was observed at 50-60°C. This phenomenon can be
attributed to other events rather than dissociation of the duplex.

This difference in the properties of the VE-bound ODAGal 14
and VE analog-bound ODAGal 18 likely result from steric hin-
drance near the oligodiaminogalactose moiety. In the case of VE-
bound ODAGal 14, the methyl groups on the aromatic ring are in
proximity to the ODAGal moiety and prevent it from interacting
with the RNA duplexes. On the other hand, the VE analog-bound
ODAGal 18 is less sterically hindered and advantageous for RNA
binding.

Next, to detect the structural changes in the RNA duplexes, CD
spectra were measured for RNA-I and VE analog-bound ODAGal 18,
which possibly binds to the duplex. Figure 7 shows the CD spectra

of RNA-I in the presence and absence of 18. Upon addition of VE
analog-bound ODAGal 18, changes .in the spectra of the
RNA-RNA duplex were observed. The positive peak near 265 nm
shifted 1-2nm to a longer wavelength, its peak intensity
increased, and the molar ellipticity near 230 nm continuously
changed. These changes in the peak at 265 nm are very similar to
those observed in our previous study upon addition of ODAGIcs
to RNA duplexes.!? On the basis of the combined results for UV
melting and CD analyses, it can be concluded that the VE analog-
bound ODAGal 18 interacts with RNA duplexes in a manner similar
to that for ODAGIcs.

Finally, we measured the binding affinity of the VE derivative-
bound ODAGals for RNA duplexes using direct fluorescence
anisotropy titration. A fluorophore-labeled RNA duplex (5'-FAM-
CGCGAAUUCGCG), was used in this experiment. Figure 8 clearly
shows that the VE analog-bound ODAGal 18 binds to the RNA du-
plex with K4 3.8 + 1.2 (x107% M). On the other hand, the affinity of
VE-bound ODAGal 14 for the the RNA duplex could not be
confirmed from the titration (see $). In addition, with 14, the ob-
served values did not converge and anisotropy could not be mea-
sured at more than 0.5 uM 14.

2.4. Evaluation of RNAI activity in the presence of ODAGal
derivatives

On the basis of the above results, it can be concluded that at
least a portion of the ODAGal derivatives interact and form com-
plexes with RNA duplexes. Therefore, experiments designed to
evaluate RNA interference in the presence of the ODAGal deriva-
tives were performed using an siRNA that targets apoB1 mRNA.*
In these experiments, only the VE analog-bound ODAGal 18 was
used because it was determined that the VE-bound ODAGal 14
had no or only a weak binding ability with RNA duplexes. Before
the RNAi experiments were conducted, UV melting analyses of
the siRNA 1(5-GUCAUCACACUGAAUACCAAU-3)-1(3'-CACAGUAGU
GUGACUUAUGGU-5’) with added 18 were carried out. Interest-
ingly, it was observed that the T, value of the RNA was only
slightly increased upon addition of 18 (see $i). These results are
likely to derive from the high Ty, value of the siRNA (71 °C). It
has been previously shown that the oligodiaminosaccharides
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Scheme 4. Synthesis of the VE bound ODAGal 14. Reagents and conditions: (a) 3-bromopropyne, NaH, DMF, rt, 20 min, 82%; (b) NaN3, DMF, 80 °C, 15 h; (c) Cu powder, t-
BuOH-water, 80 °C, 19 h, 66% over two steps from 8; (d) 3%NH,NH,-H,0, EtOH, 80 °C, 4.5 h, 29%.
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Scheme 5. Synthesis of the VE analog bound ODAGal 18. Reagents and conditions: (a) (i) 3-bromopropyne, NaH, THF, 60 °C, 6 h, (ii) 1 M TBAF, THF, rt, 30 min, 75% over two
steps; (b) NaN3, DMF, 80 °C, 12 h; (¢) Cu powder, t-BuOH-water, 80 °C, 3.5 h, 91% over two steps from 8; (d) 3%NH,NH,-H,0, EtOH, 90 °C, 4.5 h, 59%.
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Scheme 6. Synthesis of the VE unbound ODAGal 21. Reagents and conditions: (a) pyridine, rt, 3 d, 82%; (b) NaN3, DMF, 80 °C, 12 h; (¢) Cu powder, t-BuOH-water, 80 °C, 3.5 h,
quant over two steps from 8; (d) (i) 3%NH2NH3-H20, EtOH, 90 °C, 4 h, (ii) 80%AcOHagq, 11% over two steps.
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Figure 1. UV melting curves of (5-rCGCGAAUUCGCG-3')2 in the presence of VE
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Figure 2. UV melting curves of (5-rAAAAAAUUUUUU-3)2 in the presence of VE
unbound ODAGal 21.

increase the T, values of RNA duplexes that have low T, values,
and not high Ty, values.’? Next, RNAi activity in the presence and
absence of the ODAGal derivative 18 was determined, and the re-
sults are shown in Figure 9.

Table 1
Melting temperatures of RNA duplexes in the presence of ODAGal derivatives
RNA-I RNA-II
T (°C) AT (°C) Tm (°C) AT (°C)

RNA only 19.7 — 63.2 —

21 1 equiv 219 22 65.2 2.0
4 equiv 18.8 -0.9 62.4 —0.8

14 1 equiv 19.8 0.1 62.5 -0.7
4 equiv 17.6 -2.1 n.d. -

18 1 equiv 20.1 0.4 63.8 0.6
4 equiv 29.1 9.4 65.9 2.7

g 1.5

g /

@14 /

E 13 ~——RNA only
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.5 /// (1 equiv)

® wwnnBENA + ODAGal-VE

> 1.1 .
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Figure 3. UV melting curves of (5-rCGCGAAUUCGCG-3)2 in the presence of VE
bound ODAGal 14.

The level of apoB1 mRNA was evaluated using a quantitative re-
verse transcriptase-polymerase chain reaction (qRT-PCR). The cell
lines showed nearly the same RNAi activity regardless of the
addition of the ODAGal derivative. This result confirms that the
ODAGal did not affect the RNAi activity. Although there is room
for further discussion as to whether the ODAGal derivative 18
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Figure 4. UV melting curves of (5'-rAAAAAAUUUUUU-3')2 in the presence of VE
unbound ODAGal 14.
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Figure 5. UV melting curves of (5'-rCGCGAAUUCGCG-3")2 in the presence of VE
analog bound ODAGal 18.
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Figure 6. UV melting curves of (5'-rAAAAAAUUUUUU-3')2 in the presence of VE
analog bound ODAGal 18.
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Figure 7. UV melting curves of (5-rCGCGAAUUCGCG-3')2 in the presence of VE
analog bound ODAGal 18.
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Figure 8. Fluorescence anisotropy of 100 nM of 5-FAMlabeled RNA duplex was
titrated by increaseing concentration of VE analog-bound ODAGal 18 at 20 °C. The
formation of the 18-RNA complex is reflected an increase in the observed anistropy
values.
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Figure 9. Evaluation of siRNA activity in the presence of ODAGal derivatives; Cell
line name: McA-RH7777; Transfection reagent: Lipofectamine 2000 in culture cells
of McA-RH7777. m+SEM Sense Sequence: 5-GUCAUCACACUGAAUACCAAU-3'
Antisense Sequence: 3’-CACAGUAGUGUGACUUAUGGU-5".

binds to siRNAs, it appears that the compound does not inhibit the
process of RNA interference, such as RISC formation.

3. Conclusion

Novel oligodiaminosaccharides, 2,6-diamino-2,6-dideoxy-p-p-
oligogalactopyranoside derivatives conjugated with VE and its
analog, were synthesized. The analysis of UV melting and CD
spectral observations suggests that, like ODAGIcs, the ODAGal
moiety efficiently interacts with and thermodynamically stabi-
lizes RNA duplexes with small structural changes, although ste-
ric hindrance likely affects their binding ability. RNA
interference experiments also demonstrated that the addition
of the VE analog-bound ODAGal 18 to an siRNA did not affect
the RNAi activities. This VE analog has recognition sites for
o-TTP, and thus, the ODA derivative 18 may have potential as
a useful carrier of RNAi drugs with the ability to bind to RNA
duplexes without inhibiting RNAi activity. Further in vitro and
in vivo experiments, including siRNA delivery to liver cells are
now in progress.



