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Glioblastoma multiforme (GBM) is the most aggressive and fatal brain tumor. GBM is resistant to
chemotherapy and radiation. Recent studies have shown that glioma-initiating cells (GICs), which have
characteristics of cancer stem cells, are responsible for the resistance to chemotherapy and radiation and
regrowth. No effective therapy for GICs has been developed. Here we showed that p-isomer peptides
(dPasFHV-p53C’) consisting of a cell-penetrating peptide (FHV), penetration accelerating sequence (Pas)

Kem ords: and C-terminus of p53 (p53C’) induced the cell death of GICs. dPasFHV-p53C’ was effectively transduced
g;;’g de into human GICs. The peptides dose-dependently inhibited cell growth and at 3 M completely blocked
Drug delivery the growth of GICs but not embryonic stem cells. Autophagic cell death was observed in the GICs treated
Apoptosis with dPasFHV-p53C’ but apoptosis was not. dPasFHV without p53C’ showed the same effect as dPasFHV-

p53C, suggesting Pas to play a critical role in the cell death of GICs. Finally, dPasFHV-p53C’ reduced
tumor mass in mice transplanted with GICs. Peptide transduction therapy using dPasFHV-p53C’ could be
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a new method for the treatment of GBM.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Glioblastoma multiforme (GBM) is one of the most aggressive
human tumors with a poor prognosis. The median survival of
patients with GBM is less than 1 year, mainly because conventional
postsurgical chemotherapeutic agents and irradiation exhibit
limited effects [1,2]. A small subpopulation of CD133-positive cells
has been identified in specimens of GBM and called glioma-
initiating cells (GICs) [3,4]. The cells express additional stem cell
markers, exhibit self-renewal and differentiation into glial and
neuronal lineages, and can initiate xenograft tumors [5,6]. GICs are
the only cell population with tumorigenic capacity in GBM and may
possess innate resistance mechanisms against radiation- and
chemotherapy-induced cell death, allowing them to survive and
initiate tumor recurrence [7]. New approaches to GICs are needed
for the treatment of GBM.
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The C-terminus of p53 (p53C’), a biologically active tumor
suppressor protein, is a lysine-rich domain subject to a variety of
posttranslational modifications [8,9]. A peptide derived from the C-
terminus activates specific DNA-binding by p53 in vitro through an
unknown mechanism [10] and functions as a potent anticancer
peptide [11]. Intracellular protein delivery using membrane-
permeable peptide vectors has received increasing attention as
a highly efficient way to modify cellular functions with therapeutic
potential [12—14]. The vectors are often referred to as cell-
penetrating peptides (CPPs) or protein transduction domain (PTD)
peptides. Through conjugation with a short peptide vector (<12
amino acid residues) such as the PTD of the human immunodefi-
ciency virus type 1 TAT protein (TAT), poly-arginine, and the PTD
derived from flock house virus (FHV), various proteins have been
introduced into cells and have successfully exerted their functions
[12—14]. Previous studies have shown that p-isomer retro-inverso
peptides consisting of p53C' and TAT, which display greater
stability, induce the apoptosis of cancer cells and significantly
increase lifespan in animal models of terminal peritoneal carcino-
matosis and peritoneal lymphoma expressing wild-type p53
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[11,15]. However, a high concentration of the peptides is needed for Cathepsin D is a lysosomal enzyme that can cleave peptide
the growth inhibition of cancer cells because the transduced segments such as KPILFFRLK [17]. We recently found that a retro
peptides are mostly entrapped in macropinosomes, and sequence peptide of the cathepsin p-cleavable sequence (FFLIPKG)
then carried and degraded in lysosomes fused with macro- called the penetration accelerating sequence (Pas), enhanced the
pinosomes [16]. efficiency of intracellular delivery of bioactive peptides using
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Fig. 1. Delivery of dPasFHV-p53C’-SR101 into human GICs. (A) Scheme of the images of serial optical sections in B. The images were multiple optical 4-pum step sections scanning the
Z-dimension of laser scans of the sphere of GICs. (B) GICs that formed spheres were incubated with 10 uM dPasFHV-p53C’-SR101 for 0.5 and 6 h. After washing with PBS, SR101
signals (red) were observed with a laser confocal microscope. All nuclei were stained with DAPI (blue). Scale bar = 100 pm.
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arginine-rich CPPs by breaking the macropinosomal membrane
[18]. Moreover, the p-isomer peptides of p53C’ fused with the PTD
of FHV and Pas (dPasFHV-p53C’) more significantly inhibited the
growth of human glioma and bladder cancer cells, and induced
apoptosis [18,19]. These results led us to believe that dPasFHV-
p53C’ may be a tool for GBM therapy. However, the effect of the
peptides on GICs is unclear. We have established human GIC lines
that not only retain the characteristics of neural stem cells, but also
form GBM with their original pathological features when trans-
planted in vivo [20]. In the present study, we examined the effect of
dPasFHV-p53C’ on human GICs.

2. Materials and methods
2.1. Peptide synthesis

All of the peptides used were chemically synthesized by Fmoc (9-
fluorenylmethyloxycarbonyl) solid-phase peptide synthesis on a Rink amide resin as
described previously [18]. Briefly, deprotection of the peptide and cleavage from the
resin were achieved by treatment with a trifluoroacetic acid/ethanedithiol mixture
(95:5) at room temperature for 3 h followed by reversed-phase high performance
liquid chromatography (HPLC) purification. Fluorescent labeling of the peptides was
conducted by treatment with sulforhodamine 101 (SR101) (Invitrogen, Carlsbad, CA) in
a dimethylformamide (DMF)/methanol mixture (1:1) for 1.5 h followed by HPLC
purification. The structure of the products was confirmed by matrix-assisted laser
desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS).

The structure of each peptide was as follows

1. dPasFHV-p53C’:

9063
FFLIPKGRRRRNRTRRNRRRVR-G-KKHRSTSQGKKSKLHSSHARSG-amide
2. dPasFHV-p53C'-SR101:

FFLIPKGRRRRNRTRRNRRRVR-G-KKHRSTSQGKKSKLHSSHARSGC(SR101)- amide
3. dPasFHV:

FFLIPKGRRRRNRTRRNRRRVR
4. p-p53C (control peptide):

KKHRSTSQGKKSKLHSSHARSG-amide
5. 1-p53C’ (control peptide):

KKHRSTSQGKKSKLHSSHARSG-amide.

The Pas segment is highlighted by the dashed line. The p-amino acids are shown
in italics. A Gly residue was inserted as a linker to connect the dPasFHV/dFHV and
p53C' segments.

2.2. Cell culture
2.2.1. Preparation of GICs

Primary human GBM samples were obtained with consent from patients diag-
nosed with GBM and underwent surgical resection in Kumamoto University
Hospital according to the guidelines of the University’s Research Ethics Committee.

The study was approved by the Ethics Committee. GICs were isolated from the
samples as described previously [21]. Briefly, tumor samples were washed twice
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Fig. 2. Dose-dependent effect of dPasFHV-p53C’ on the growth of GICs (A) and mouse embryonic stem cells (B). Cells were incubated with each concentration of the peptide for the
period indicated. As a control, cells were treated with 10 pM p-p53C’. The growth was evaluated with the WST-8 assay. (C) Comparison of the inhibitory effect of each concentration

of peptide on the growth on day 4. n = 4 each. *P < 0.001.

13



9064

with PBS and dissociated with an enzymatic solution containing 0.25% Trypsin in
0.1 mM EDTA at 37 °C for 60 min. Dissociated cells were then cultured as tumor
spheres in serum-free DMEM/F-12 (Invitrogen) containing human basic fibroblast
growth factor (bFGF; 20 uM, Wako, Osaka, Japan), human epidermal growth factor
(EGF; 20 puM, Peprotech, Rocky Hill, NJ), human leukemia inhibitory factor (LIF;
20 puM, Millipore, Billerica, MA), heparin (5 pM, Sigma—Aldrich, St. Louis, MO),
insulin (10 pM, Sigma—Aldrich), N2 supplement (1%, Invitrogen) and B27 supple-
ment (1%, Invitrogen) prior to use.

2.2.2. Mouse embryonic stem (ES) cells

The mouse ES cell line, ING112, containing a Ins1-promoter-driven GFP reporter
transgene, was established by culturing blastocysts obtained from transgenic mice
homozygous for the Ins1-GFP gene [22]. Cells were maintained on mouse embryonic
fibroblast (MEF) feeders in Glasgow MEM supplemented with 1000 units/ml

leukemia inhibitory factor (LIF), 15% Knockout Serum Replacement (KSR, Invi-
trogen), 1% fetal bovine serum (FBS), 100 1M nonessential amino acids (NEAA), 2 mM
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L-glutamine (-Gln), 1 mM sodium pyruvate, 50 units/ml penicillin and 50 pg/ml
streptomycin (P/S), and 100 puM B-mercaptoethanol (B-ME). MEFs lacking Atg5
(Atg5~/~ MEF) and wild-type MEFs (Atg5 H MEF) were obtained from RIKEN CELL
BANK (Tsukuba, Japan). The cells were maintained in DMEM (Invitrogen) supple-
mented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37 °C in
5% CO,.

2.3. Cell viability assay (WST-8 assay)

Cell viability was determined using a WST-8 [2-(2-methoxy-4-nitrophenyl)-3-
(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] assay kit (Dojindo, Kuma-
moto, Japan). The sphere of GICs was dissociated into single cells using 0.02% EDTA.
The cells were then seeded into 96-well plates and incubated with each concen-
tration of peptide for the period indicated. Cell viability was measured every 24 h
according to the manufacturer’s instructions.

2h 4h 6h 8h 12h 24h 48hAtg5++Atg5+

6h 8h 12h 24h 48h +/+ /-

Fig. 3. Induction of autophagy but not apoptosis of GICs with dPasFHV-p53C'. (A) TUNEL staining of GICs treated with 10 uM p-p53C’ peptide (control, a-c), 1 tM dPasFHVp53C'(d—
f), and 10 pM (g—i) dPasFHV-p53C’. TUNEL staining was performed 24 h after each peptide application. Nuclei were stained with DAPI (b, e, h and k). For a positive control of TUNEL
staining, GICs were treated with 1 mM hydrogen dioxide for 24 h (j). Scale bars, 100 um (c, f, i and j); 20 pm (k). (B) Immunocytochemical analysis of LC3 in GICs treated with 10 uM
p-p53C’ peptide (a—c) and 2 pM dPasFHV-p53C’ (d—f). High magnification view of LC3-positive cells treated with 2 pM dPasFHV-p53C’ (g). Scale bars, 100 pm (c, f); 20 pm (g). (C)
Comparison of protein levels between LC3-I and -II. Both protein levels were analyzed by Western blotting with anti-LC3 antibodies. Each protein level was normalized with B-actin.
As a control, MEFs lacking Atg5 (—/—) and possessing wild-type Atg5 (+/+) were treated with serum-free medium for 24 h. Data are presented as the mean + S.EM. n = 4 each.
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24. TUNEL assay

The TUNEL assay was performed using an in situ cell death detection kit (Roche
Applied Science, Mannheim, Germany) as described previously [23]. Twenty-four
hours after the application of each peptide, cells were fixed with 4% para-
formaldehyde dissolved with phosphate-buffered saline (PBS) at 37 °C for 20 min.
They were then washed in PBS and treated with 0.1% Triton X-100 at 4 °C for 5 min.
After being rinsed, cells were incubated with the TUNEL reaction mixture at 37 °C for
60 min. The nuclei were counter-stained with 4’,6-diamidino-2-phenylindole
(DAPI).

2.5. Transmission electron microscopy of autophagosomes in cells

Cells were fixed with 4% paraformaldehyde and 0.1% glutaraldehyde for 60 min
at 37 °C. Cells were post-fixed in 1% osmium tetroxide in 0.1 mol/L phosphate buffer
(pH 7.4), dehydrated in a graded ethanol series, and flat embedded in Araldite.
Ultrathin sections (40—60 nm thick) were placed on grids (200 mesh), and double-
stained with uranyl acetate and lead citrate. The sections were observed under an
electron microscope (H-7650, Hitachi, Tokyo, Japan).

2.6. Immunocytochemistry

Immunocytochemical staining for Microtubule-associated protein light chain 3
(LC3) was performed using anti-LC3 polyclonal antibody (Medical & Biological Lab.,
Nagoya, Japan) as described previously [23]. GICs treated with peptide were fixed
with 4% paraformaldehyde—PBS at 37 °C for 20 min, washed in PBS, and incubated
with 0.1% Triton X-100 at 4 °C for 5 min. The cells were pretreated with 3% BSA in PBS
for 30 min at room temperature, and immunostained with the antibody (1:1000)
overnight at 4 °C. Images were obtained using a confocal microscope (FV1000,
Olympus, Tokyo, Japan).

2.7. Western blotting

Western blotting was performed as described previously [24]. Cells were plated
on 6-well dishes 3 days before treatment with each peptide. Cells treated with
peptides were lysed with lysis buffer [20 mM HEPES (pH 7.4), 150 mM Nacl, 1 mM
EDTA, 1% Triton, 0.2% SDS, and protease inhibitor cocktail (Sigma—Aldrich)]. Protein
concentrations were determined using a BCA protein assay kit (Pierce, Rockford, IL),
and 50 pg of cell lysate was used for Western blotting. Cell lysates were mixed with
loading buffer and boiled for 5 min. The lysates were then separated by SDS-PAGE on
a 10% acrylamide gel and transferred to immobilon membranes (Millipore, Bedford,
MA). Membranes were blocked for 1 h in 10% skim milk in PBS (pH7.2), and probed
overnight with the primary antibodies to detect LC3 (Medical & Biological Lab.), Atg5
(Abcam, Cambridge, UK), and actin (Ab-I, Oncogene Science, Cambridge, MA) as an
internal control. Subsequently, membranes were probed with HRP-conjugated
secondary antibodies (GE Healthcare Life Sciences, Pittsburgh, PA). Detection was
performed using chemiluminescence, according to the manufacturer’s recommen-
dations (DuPont, Boston, MA).
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2.8. Transfection of siRNA

siRNA oligonucleotides (Nucleic sequences, GAUAUGGUUUGAAUAUGAATT and
UUCAUAUUCAAACCAUAUCTT) targeting the Atg5 mRNAs were obtained from
Sigma—Aldrich. Transfection of siRNA was performed with Lipofectamine™ RNAi-
MAX (Invitrogen). An unmodified oligo (44-2926, Invitrogen) was used as a control.
GICs seeded on 96-well plates were transfected with siRNA oligonucleotides (50 nM)
according to the manufacturer’s directions and incubated for 72 h.

2.9. Mouse models of GBM

The mice were obtained from Charles River Laboratories Japan (Yokohama,
Japan). All animal procedures were approved by the Animal Ethics Committee of
Kumamoto University.

2.9.1. Intracranial transplantation of GICs into the brain of nude mice

Human GICs (1 x 10 cells) were suspended in 3 pl of PBS and injected into the
brain of 5- to 8-week-old female nude mice that had been anesthetized with 10%
pentobarbital. The stereotactic coordinates of the injection site were 2 mm forward
from lambda, 2 mm lateral from the sagittal suture, and 5 mm deep.

2.9.2. Subcutaneous transplantation of GICs

Subcutaneous models were established by injecting 1 x 10* GICs suspended in
3 pl of PBS subcutaneously into the right back of anesthetized nude mice. Tumor size
was measured daily using calipers. When the subcutaneous tumor reached
~6.2 mm in diameter, 450 or 45 pg/kg of peptide was injected around the tumor
once a day for 5 successive days.

2.10. Statistical analysis

Data are shown as the mean (+S.E.M.). Data were analyzed using either
Student’s t test to compare two conditions or ANOVA followed by planned
comparisons of multiple conditions, and p < 0.05 was considered to be significant.
Survival curves were generated according to the Kaplan-Meijer method, and
differences in survival were analyzed by the Wilcoxon rank-sum test. P < 0.05 was
considered significant.

3. Results

3.1. Efficiency of the delivery of dPasFHV-p53C'-SR101 into human
GICs

dPasFHV-p53C is delivered effectively into human glioma cells
and the peptide has a long-lasting anti-tumor effect [18]. In the
present study, it was first examined whether dPasFHV-p53C’ was

Fig. 4. Electron microscopic analysis of GIC cells treated with 2 pM p-p53C’ (A and B), and 2 pM (C and D) and 10 uM (E) dPasFHV-p53C’ for 24 h. Arrows in D show autophagosomes.

Scale bars, 2 pm.
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delivered into human GICs. Human GICs were incubated with
10 uM dPasFHV-p53C’-SR101 for 0.5 and 6 h (Fig. 1A). SR101 signals
were detected only at the surface of spheres of GICs 0.5 h after the
application (Fig. 1Ba—j). However, the signal had diffused into the
core of the spheres 6 h after the transduction (Fig. 1Bk—t), sug-
gesting that dPasFHV-p53C’ was effectively delivered in GICs.

3.2. Dose-dependent effect of dPasFHV-p53C on the growth of GICs

The dose-dependent effect of dPasFHV-p53C’ on the cell
growth of GICs was examined next. The cells were treated with 1,
2, 3,5, and 10 uM of the peptide for a specific period and the WST-
8 assay was performed. p-p53C’ (10 uM) was used as a control. The
peptide had no effect at 1 pM, but dose-dependently inhibited
growth at more than 2 pM (Fig. 2A,C). At 3 and 5 pM, it almost
completely inhibited the growth (Fig. 2A,C). To investigate
whether the peptide affects the growth of normal stem cells,
mouse embryonic stem (mES) cells were treated with each
concentration of dPasFHV-p53C’. Lower concentrations (1-5 pM)
of the peptide had no effect whereas 10 uM of the peptide
inhibited growth (Fig. 2B,C).

3.3. Observation of autophagy of GICs by dPasFHV-p53C

We expected dPasFHV-p53C’ to induce the apoptosis of GICs as
an effect on glioma cells [18] and examined whether the peptide
induced apoptosis with the TUNEL assay. However, 1 and 10 uM
peptides did not increase the TUNEL-positive cells although many
cells died when treated with 10 uM peptide (Fig. 3A). Moreover,
condensed chromatin was not observed in GICs treated with 10 pM
peptide (Fig. 3a—k).

Autophagy is a cellular pathway involved in protein and
organelle degradation [25] and frequently activated in tumor cells
following treatment with chemotherapeutic drugs [26,27] or y-
irradiation [28]. We next examined whether dPasFHV-p53C’
induces the autophagy of GICs. Microtubule-associated protein
light chain 3 (LC3) is a marker of autophagosomes. LC3 is pro-
cessed by Atg4 and becomes LC3-I [29]. Upon the induction of
authophagy, the C-terminal glycine of LC3-I is conjugated to
phosphatidylethanolamine, resulting in the formation of
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membrane-bound LC3-1I [30]. Most LC3-II is present on the
autophagosome membrane [30]. In the present study, LC3 was
diffusely and faintly expressed in the cytoplasm of GICs treated
with control peptide (Fig. 3Ba—c). In contrast, dense staining of
LC3 was observed in the cytoplasm of cells treated with 2 pM
peptide for 24 h (Fig. 3Bd-f). Higher magnification revealed the
formation of autophagosome vacuoles (green dots) in GICs treated
with the peptide (Fig. 3Bg). Protein levels of LC3-II were analyzed
with immunoblotting. LC3-II levels increased in a time-dependent
manner after treatment with dPasFHV-p53C' (Fig. 3C). As
a control, LC3-II protein levels were increased in Atg5*/* mouse
embryonic fibroblasts (MEFs) when incubated in serum-free
medium for 24 h whereas LC3-II levels were faint in Ath‘/‘
MEFs (Fig. 3C).

Electric microscopic analysis revealed double-membraned
autophagic vacuoles in the cytoplasm of GICs treated with 2 uM
dPasFHV-p53C for 24 h (Fig. 4C and D), whereas GICs treated with
control peptide didn’t exhibit these features (Fig. 4A and B). When
GICs were treated with 10 pM dPasFHV-p53C/, much vacuolar
degeneration occurred with collapsed autophagosomes seen in the
cytoplasm but no condensed chromatin or fragmented nuclei,
which are features of apoptosis (Fig. 4E). These results suggest that
dPasFHV-p53C’ induced authophagic cell death but not apoptosis
of GICs.

3.4. Effect of autophagy on the growth inhibition of GICs by
dPasFHV-p53C

Autophagy is thought to promote the survival of tumor cells in
the face of chemotherapeutic drugs and radiation [31]. We next
examined whether Inhibition of autophagy induces the inhibitory
effect of dPasFHV-p53C’ on the growth of GICs. GICs were treated
with siRNA for Atg5, a protein essential to the formation of auto-
phagosomse vesicles, and control siRNA. After 72 h, cells were
treated with dPasFHV-p53C’ (day 0) and growth was evaluated
with the WST-8 assay. RNAi-mediated knockdown of Atg5 did not
affect the growth of GICs (Fig. 5A and B). However, the knockdown
induced an inhibitory effect of dPasFHV-p53C’ on the growth when
treated with 1 pM of the peptide (Fig. 5A and B).
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Fig. 5. Effect of knockdown of Atg5 on dPasFHV-p53C’-mediated inhibition of the growth of GICs. (A) GICs were transfected with siRNA of Atg5 (siRNA) and control siRNA (control).
After 72 h, cells were treated with 1 and 2 M dPasFHV-p53C’ (peptide) and vehicle only (vehicle) (day 0). The WST-8 assay was performed every 24 h after the application for 6
successive days. (B). Comparison of the growth at day 6 among each treatment. n = 8 each. *P < 0.001.
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3.5. Effect of dPasFHV on autophagic cell death of GICs

Previous studies have shown that p53C’ induces apoptosis of
cancer cells but not autophagic cell death [11,19]. Therefore, p53C’ is
unlikely to induce autophagy in GICs. Cancer cells resist chemo-
therapy and radiation by induction of autophagy [26—28]. For this
resistance to be achieved, autophagosomes must fuse with lyso-
somes [31]. Pas may prevent this because the peptide enhances the
translocation of CPPs through endosomal and macropinosomal
membranes [18]. We next examined whether dPasFHV without
p53C’ induced autophagic cell death of GICs. dPasFHV had no effect
on the growth of GICs when applied at 2 uM (Fig. 6A). However, at
3 uM it significantly inhibited, and at 5 pM, completely inhibited
the growth (Fig. 6A). The peptides did not induce the apoptosis of
GICs the same as dPasFHV-p53C’ (Fig. 6B). When GICs were treated
with 2 pM dPasFHV, dense staining of LC3 was observed in the
cytoplasm. LC3-II levels also increased after treatment with
dPasFHV in a time-dependent manner (Fig. 6C). These results
suggest that dPasFHV induces the autophagic cell death of GICs.
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3.6. Effect of dPasFHV-p53C on survival of tumor-bearing mice and
the growth of xenografts of GICs

Finally, we examined the inhibitory effect of dPasFHV-p53C’
on the growth of GICs in vivo. The spheres of GICs were dissoci-
ated into single cells, and the cells were treated with 1 and 10 pM
dPasFHV-p53C’ and 10 uM -p53C’ (control peptide) for 2 h. GICs
(1 x 10 cells) were then transplanted into the brain of nude mice
stereotaxically (day 0). GBM formed with human pathological
features such as necrotic regions with surrounding pseudopali-
sades, vascular proliferation, and dividing tumor cells
(Supplementary Fig. 1). All of the tumor-bearing mice treated
with control peptide developed GBMs and died within 32 days
(Fig. 7A). The survival of mice transplanted with GICs treated
with 1 pM peptide was slightly prolonged (Fig. 7A). All of the
tumor-bearing mice treated with 10 pM peptide survived for 90
days (Fig. 7A).

GICs (1 x 10% cells) were subcutaneously transplanted into nude
mice. When the tumor grew to 6.2 mm in diameter about 2 weeks
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Fig. 6. Effect of dPasFHV on the growth (A) and induction of autophagy (B and C) of GICs. (A) GICs were treated with each concentration of dPasFHV and dPasFHVp53C’. The growth
was evaluated with the WST-8 assay. n = 4 each. (B) GICs were treated with 2 pM dPasFHV and dPasFHV-p53C’ for 24 h. Cells were then stained with TUNEL (a—c) and immu-
nostained with anti-LC3 antibodies (d—j). (j) High magnification view of LC3-positive cells treated with 2 uM dPasFHV. The nuclei were counterstained with DAPI. Scale bars, 20 pm
(c, fand i), 10 pm (j). (C) The protein level of LC3-II increased time-dependently after treatment with 5 pM dPasFHV. Data are presented as the mean + S.EM. n = 4 each.
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p53C’ (control peptide) for 2 h before the transplantation. Nude mice were then transplanted with the cells at day 0. The survival of the mice was measured by monitoring life span
and data were analyzed using the Kaplan—Meier method. (B) Effect of dPasFHV-p53C’ on growth of tumors transplanted subcutaneously into nude mice. After a tumor had reached
6.2 mm in diameter, 45 or 450 pg/kg of peptide was injected around it once a day for 5 days. The diameter of the tumor was measured using calipers every 24 h. n = 6 each.

**P < 0.001 vs. control peptide.

after the transplantation, 450 or 45 pg/kg of peptide was injected
around the tumor once a day for 5 successive days. .-p53C’ was
injected as a control. Tumor growth was completely inhibited until
day 6 when treated with 450 pg/kg peptide (Fig. 7B). Tumor size
gradually increased after 7 days but was significantly smaller than
that of mice treated with control peptide at day 10 (Fig. 7B).

4. Discussion

GBM is characterized by resistance to chemotherapy and
radiotherapy. Therefore, the prognosis of patients with GBM
remains extremely poor and has not changed significantly during
the last decade [32]. CD133-positive GICs have been implicated in
the enhanced radiation- and chemotherapy-resistance and in the
repopulation of tumors following these treatments [6,33]. New
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strategies for killing GICs are indispensable to develop anti-GBM
therapy. In the present study, we showed that dPasFHV-p53(’
inhibited the growth of GICs in a dose-dependent manner. At 3 pM,
the peptide almost completely inhibited the growth of the cells but
had no effect on the growth of mouse embryonic stem cells.
Moreover, the peptide significantly inhibited the growth of tumors
in mice implanted with human GICs. We previously showed that
dPasFHV-p53C inhibited the growth of human malignant glioma
cell lines [18], and induced the apoptosis of bladder cancer cells but
had no effect on normal cells [19]. GBM is made up of intermingled
glioma cells and GICs. To cure GBM, therefore, it is important to
treat both cells. p53C’ induced the apoptosis of cancer cells [19] and
Pas induced the autophagic cell death of GICs as shown in the
present study. These results suggest that dPasFHV-p53C' may be
promising for GBM therapy.
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Fig. 8. Scheme of the induction of autophagic cell death of GICs by dPasFHV-p53C’ and dPasFHV.
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