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Abstract

Human herpesvirus-6 (HHV-6) belongs to the betaherpesvirus subfamily and mainly
replicates in T lymphocytes. Here, we show that major histocompatibility complex
(MHC) class I molecules are incorporated into HHV-6 viral particles and released into
the extracellular environment. In addition, HHV-6A/B-infected T cells showed reduced
surface and intracellular expression of MHC class I molecules. The cellular machinery
responsible for molecular transport appears to be modified upon HHV-6 infection,

causing MHC class I molecules to be transported to virion assembly sites.

Key words
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Introduction

Human herpesvirus 6 (HHV-6), which belongs to the betaherpesvirus subfamily (1)
was first isolated from peripheral blood lymphocytes obtained from patients with
lymphoproliferative disorders (2). HHV-6 isolates are classified as HHV-6A and
HHV-6B (see the Virus Taxonomy List 2011), based on genetic and antigenic
differences and their cell tropism (3, 4, 2, 5). Primary infection with HHV-6B causes
exanthem subitum (6). The diseases caused by HHV-6A have been unknown. HHV-6B
mostly infects infants and remains latent in more than 90% of the population (7).

In general, herpesviruses use several strategies to evade host immune responses. For
example, viruses may inhibit major histocompatibility complex (MHC) class
I-associated antigen presentation to escape detection by cytotoxic T lymphocytes
(CTLs). Several proteins expressed by herpesviruses block the transport of antigenic
peptides from the cytosol to the endoplasmic reticulum (ER) (8-11), whereas others
retain (12-14) or destroy class I molecules, or deliver them to lysosomes for degradation
(15-18). The result is reduced surface expression of MHC class I molecules, enabling
the virus to evade host immune surveillance.

HHV-6A, but not HHV-6B, downregulates the expression of MHC class I in dendritic
cells (19). HHV-6 U21 binds to and diverts MHC class I molecules to an endolysosomal
compartment, effectively removing them from the cell surface and providing a possible
means of immune escape (20).

Here, we show that the expression of MHC class I molecules by infected cells was
downregulated with incorporation into HHV-6 viral particles, suggesting a possible

mechanism by which the virus escapes host immune surveillance.



54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Materials and Methods

Cells and viruses

Umbilical cord blood mononuclear cells (CBMCs) were prepared as described
previously (21). CBMCs were provided by K. Adachi (Minoh Hospital, Minoh, Japan)
and H. Yamada (Kobe University Graduate School of Medicine, Kobe, Japan) and
purchased from the Cell Bank of the RIKEN BioResource Center, Japan. Virus stocks
were also prepared as described previously (22, 21). HSB-2 and MT-4 cell lines were
used in this study (23). HHV-6A (GS strain) and HHV-6B (HST strain) were prepared as

previously described (21).

Antibodies

Monoclonal antibody (Mab) OHV-1 (24) and a polyclonal antibody against gB (23, 25)
have been described previously. Other Mabs were purchased: MHC class 1 (clone:
W6/32; Bio Legend), CD63 (clone: CLB-gran/12, 435; Sanquin), and a-tubulin (clone:
B-5-1-2; Sigma). The following secondary antibodies were used: Alexa Fluor 488- or
594-conjugated F(ab’)2 fragment of goat anti-mouse or rabbit immunoglobulin G (IgG)
(Invitrogen) and anti-mouse IgG, horseradish peroxidase-linked whole antibody (from

sheep) (GE Healthcare).

Virion and exosome isolation
Virions and exosomes were purified as previously described (26, 23). The collected

fractions were used for Western blotting, electron microscopy, or LC-MS/MS.
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Liquid chromatography-tandem mass spectrometry

The fractions described above were analyzed by LC-MS/MS. Proteins were 10-times
diluted with 9.8M urea. The solutions were adjusted to pH 8.5, reduced with 13 mM
DTT at 37 °C for 1.5 h and alkylated with 27 mM iodoacetamide in the dark for 1 h.
The protein mixtures were further diluted with 100mM Triethylammonium bicarbonate
(TEAB) pH8.5 to reduce urea to 1 M, and digested with 4 ul of Img/ml trypsin-TPCK
solution. Samples were digested overnight at 37°C. Following digestion, lysates were
acidified by adding 10% TFA. The samples were desalted using peptide cleanup C18
spin tubes (Agilent Technologies) and vacuum-dried. NanoLC-MS/MS analyses were
performed on an LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) as described previously (27), while spray voltage was changed to
1800 V. Peptides and proteins were identified by automated database searches using
Proteome Discoverer v.1.1 (Thermo Fisher Scientific) against all entries of the Swiss
Prot protein database (version 3.26) with a precursor mass tolerance of 10 p.p.m., a
fragment ion mass tolerance of 0.8 Da, and strict trypsin specificity, allowing for up to
two missed cleavages. Cysteine carbamidomethylation was set as a fixed modification,

and methionine oxidation was allowed as a variable modification.

Western blotting

Western blotting was performed as described previously (28, 29).

Electron microscopy

Electron microscopy was performed as described previously (30).
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Briefly, the virion-containing pellet was resuspended in 2% (wt/vol) paraformaldehyde
solution buffered with 0.1 M phosphate (pH 7.2). Next, 5 pl of the resuspended pellet
was loaded onto Formvar—carbon-coated grids to adsorb the virions. Immunostaining
was then performed. The virions were incubated with mouse anti-gB, anti-MHC class 1,
or anti-CD63 antibody for 1 h at room temperature, followed by goat anti-mouse IgG
conjugated to 10 nm colloidal gold particles (GE Healthcare) for a further 1 h at room
temperature. After immunolabeling, the samples were washed in distilled water, stained
for 5 min with uranyl oxalate, pH 7.0, washed again, embedded in a mixture of 1.8%
methylcellulose and 0.4% uranyl acetate, pH 4.0, at 4°C, air-dried, and observed under a
Hitachi H-7100 electron microscope. For the control experiments, samples were

incubated with the secondary antibody alone.

Flow cytometry

MT-4 cells were infected with HHV-6B. At 72 h post-infection, the cells were fixed with
4% (wt/ vol) paraformaldehyde at room temperature for 15 min and incubated with the
anti-MHC class I Mab at 37°C for 1 h. Cells were then stained with an appropriate
secondary antibody at 37°C for 30 min. For the control experiments, samples were
incubated with the secondary antibody alone. Stained cells were analyzed using a flow

cytometer (ec800; SONY ;).

Immunofluorescence assay
The immunofluorescence assay was performed as described previously (28). Briefly,
MT-4 cells were infected with HHV-6B. At 72 h post-infection, the cells were fixed with

cold acetone-methanol (7:3) and incubated at 37°C for 1 h with an anti-HHV-6 gB
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rabbit antibody or an anti-MHC class I Mab. After washing for 10 min with PBS
containing 0.02% Tween-20, the cells were incubated with an appropriate secondary
antibody at 37°C for 30 min, followed by Hoechst33342 at 37°C for 40 min. After
washing as described above, signals were detected by a confocal laser-scanning

microscope (Olympus FluoView FV1000).

Results

Virion and exosome isolation

The extracellular viral particles containing exosomes were purified from the culture
supernatant of HHV-6A (strain GS)-infected HSB-2 or HHV-6B (sfrain HST)-infected
MT-4 cells. The particle-containing fractions were confirmed by Western blotting with
an anti-gB antibody (23, 25). Next, the particle-containing fractions were analyzed by
liquid chromatography-tandem mass spectrometry (LC-MS/MS) (27), which detected
many cellular proteins (unpublished data). Of the host proteins detected, we focused our

analyses on MHC class I molecules.

Virion- or exosome-associated fractions contain MHC class I molecules

To verify the expression of MHC class I within viral particles, the proteins in fractions
3—-10 were separated by SDS-PAGE and analyzed by Western blotting with anti-gB
rabbit, anti-MHC class I, or anti-CD63 antibodies. As shown in Figure 1, gB protein
was detected in fractions 5-6 and MHC class I was detected primarily in fractions 6-8.

We previously reported that the multivesicular body (MVB) marker, CD63, was
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incorporated into virions and exosomes (23); therefore, we also examined the
expression of CD63. As expected, CD63 was detected in fractions 5-10 (Fig. 1¢). To
confirm the expression of MHC class I within both virions and exosomes, we performed
negative staining of fractions 6 and 7 followed by electron microscopy (30). Fraction 6
contained mainly viral particles of approximately 200 nm in diameter. Both MHC class
I (Fig. 1e) and gB protein (Fig. 1d) were present in these particles. Fraction 7 contained
mainly exosomes of approximately 50—-100 nm in diameter (Fig. 1f). These exosomes
contained MHC class 1, which conformed the results of the Western blotting
experiments. Taken together, these results indicate that MHC class I molecules are

present in exosomes and virions released from HHV-6B-infected cells.

Downregulated expression of MHC class I molecules on the surface of
HHYV-6B-infected cells

Downregulation of MHC class I occurs in many different virus-infected cells (31-37).
Because MHC class I molecules were incorporated into virions, HHV-6-infected MT-4
cells might show an apparent downregulation in cell surface expression. To confirm this,
HHV-6B- or mock-infected cells, which were harvested at 72 h post-infection, were
fixed and then stained with an anti-MHC class I antibody. The surface expression of
MHC class I was then analyzed by flow cytometry. As expected, HHV-6B-infected cells
showed downregulated cell surface expression of MHC class I when compared with
mock-infected cells (Fig. 2a). This reduced expression was confirmed by Western blot
analysis (Fig. 2b), indicating that the expression of MHC class I molecules within
HHV-6-infected cells (not just expression on the cell surface) was also downregulated.

We next observed the localization of MHC class I molecules in these cells after they
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were fixed and co-stained with anti-MHC class I and gB antibodies. MHC class I in
infected cells was localized mainly within intracellular compartments, and colocalized
with the envelope glycoprotein gB during the later stages of infection; however, MHC

class I was mainly localized to the plasma membrane in mock-infected cells (Fig. 2c¢).

Discussion

Here, we used mass spectrometry-based proteomics analysis to show that MHC class I
molecules are incorporated into HHV-6 viral particles. The downregulation of MHC
class I molecules in virus-infected cells is an important mechanism by which viruses
evade immune surveillance (31-37). We showed that downregulation of MHC class I
molecules occurs in T cells infected by HHV-6. MHC class I molecules are incorporated
into viral particles and exosomes and then released into the extracellular environment,
suggesting a possible strategy for escaping host immune responses. In addition, MHC
class I molecules incorporated into virions and exosomes may assist viral entry. Further
studies are needed to address this question.

We previously reported that immature HHV-6 particles bud into TGN or TGN-derived
vesicles (which are produced in HHV-6B-infected cells), that vesicles containing mature
virions become MVBs, and that virions and exosomes are released into the extracellular
environment via an exosomal secretary pathway (23). It is possible that MHC class I
molecules are transported into the TGN-derived membranes from which the virions bud
and then incorporated into virions within infected cells without being recycled (Fig. 3).

The MHC class I molecules within infected cells colocalized with the gB protein in the

cytoplasm, indicating that, like viral glycoproteins, they are sorted into vesicles. The
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reduction in the total (both cell surface and intracellular) expression of MHC class I in
HHV-6-infected cells suggests that some of them may be transported to lysosomes and
degraded, as this route is the same as that used to transport particles to MVBs.

Several host proteins are expressed in the same intracellular compartments
incorporating viral particles, although they are usually expressed on the surface of
uninfected cells. Newly formed compartments within HHV-6-infected cells may show
the combined characteristics of early and late endosomes. Recycling to early endosomes
in HHV-6-infected cells may be modified or defective; therefore, several cellular
proteins that use the same recycling system may be incorporated into virions and

€Xosomes.
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Figure Legends

Figure 1. MHC class I molecules are incorporated into virions and exosomes and

released from HHV-6B-infected cells. Virions and exosomes were collected from the

culture medium of HHV-6B-infected cells by sucrose density gradient centrifugation

and examined by Western blotting (a, b, and c) and electron microscopy (d, e, and f).

Western blots with anti-gB rabbit (a), anti-MHC class I (W6/32) (b), or anti-CD63

(CLB-gran/12, 435) (c) antibodies are shown. The same amount of each protein fraction

was added to each well of the gel. Immunogold labeling of gB (d) in Fraction 6 and of

MHC class I in Fractions 6 and 7 (e and f). The Fraction number is shown at the top of

each panel. The fractions were collected from the bottom of tube. Labeled virions

(empty arrowheads) and exosomes (arrowheads). Scale bars: 200 nm (d—f).



